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ABSTRACT
We investigate the near-wall motion of an undulatory swimmer
in both Newtonian and non-Newtonian fluids using a two-
dimensional direct numerical simulation. Our results show that
the undulatory swimmer has three types of swimming mode
depending on its undulation amplitude. The swimmer can be
strongly attracted to the wall and swim in close proximity
of the wall, be weakly attracted to the wall with a relatively
large distance away from the wall, or escape from the wall.
The scattering angle of the swimmer and its hydrodynamic
interaction with the wall are important in describing the near-
wall swimming motion. The shear-thinning viscosity is found to
increase the swimming speed and to slightly enhance the wall
attraction by reducing the swimmer’s scattering angle. The fluid
elasticity, however, leads to strong attraction of swimmer’s head
towards the wall, reducing the swimming speed. The combined
shear-thinning effect and fluid elasticity results in an enhanced
swimming speed along the wall.
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1. Introduction

Near-surface accumulation of micro-organisms have been widely observed for
spermatozoa (Rothschild, 1963;Woolley, 2003), bacteria (Lauga,DiLuzio,White-
sides, & Stone, 2006), C. elegans (Yuan, Raizen, & Bau, 2015) and algae (e.g.
Chlamydomonas) (Kantsler, Dunkel, Polin, & Goldstein, 2013). Many different
effects are involved in thewall-induced attractionof swimmingmicro-organisms.
The far-field hydrodynamic effects on a swimmerdependon the swimmer type.A
pusher, which generates thrust behind its body such as most bacteria, is attracted
to the wall when swimming parallel to the surface. A puller, on the other hand,
reorients itself in the direction perpendicular to the surface (Berke, Turner, Berg,
& Lauga, 2008; Spagnolie & Lauga, 2012). Other studies have showed that the
orientational Brownian diffusion and intrinsic swimming stochasticity enhance
the wall accumulation (Drescher, Dunkel, Cisneros, Ganguly, &Goldstein, 2011;
Li & Tang, 2009). More details on the near wall motion of swimmers in the
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Stokes regime canbe found in recent reviewarticles (Elgeti,Winkler,&Gompper,
2015; Lauga&Powers, 2009). Beyond the Stokes regime, small but non-negligible
inertial effects has been considered by Li and Ardekani (2014).

When a swimmer gets close to a wall, the short-range hydrodynamic in-
teraction and the contact with the wall are important in accurate prediction
of the near-surface behaviour. Experiments show that the contact between the
cilia and the surface determines the scattering behaviour of bull spermatozoa
and Chlamydomonas algae from a solid boundary (Kantsler et al., 2013). Sper-
matozoa accumulate close to a surface (Rothschild, 1963). Their flagella beat
in a three-dimensional waveform of conical shape or in a nearly planar wave
form (Woolley, 2003). Numerical simulations show that the near-wall swimming
motion of a sperm depends on its initial location and angle (Smith, Gaffney,
Blake, & Kirkman-Brown, 2009). The wall attraction of the sperm is affected by
the flagellar wavenumber but not the shape of the head (Ishimoto & Gaffney,
2014). It swims at a distance of about the swimmer size away from the wall
(Smith et al., 2009).Wall attraction of a sperm is also observed in the simulations
based on the multi-particle collision dynamics (Elgeti, Kaupp, & Gompper,
2010). However, these results show that the sperm is in a close contact with
the wall. A sperm, whose flagellum has chiral asymmetry, swims in a circular
trajectory (Elgeti et al., 2010). A circular trajectory was also observed for bacteria
swimming near a wall (Lauga et al., 2006). For a hyper-activated sperm, its
large undulation amplitude and asymmetric waveform greatly affect the near-
wall motion and the binding dynamics to the wall (Curtis, Kirkman-Brown,
Connolly, & Gaffney, 2012; Simons, Olson, Cortez, & Fauci, 2014).

The fluid environment of micro-organisms is often complex and shows both
shear-thinning and viscoelastic properties (Hwang, Litt, & Forsman, 1969;Wolf,
Blasco, Khan, & Litt, 1977). Such examples can be found in bacteria within
biofilmswhich occur on different surfaces (Hall-Stoodley, Costerton, & Stoodley,
2004), the spermatozoa in the female reproductive tract swimming through
the cervical mucus (Suarez & Pacey, 2006), H. pylori colonising the mucus
layer covering the stomach (Montecucco & Rappuoli, 2001) and B. burgdorferi
penetrating the connective tissues in the skin (Harman et al., 2012). The effects
of fluid elasticity on the micro-organisms swimming speed in an unbounded
domain have been widely investigated. Depending on the swimming strategy,
flexibility of the flagellum, and the rheological properties of the background
fluid, both speed enhancement and reduction have been observed (Lauga, 2007;
Shen & Arratia, 2011; Teran, Fauci, & Shelley, 2010; Thomases & Guy, 2014; Li
& Ardekani, 2015). For a finite planer flagellum, the speed enhancement due to
the fluid elasticity occurs for a soft kicker with an amplitude increasing from its
head to the tail (Thomases & Guy, 2014). However, it should be noted that the
speed of a soft undulatory flagellum is much smaller than a stiff swimmer (Guy
& Thomases, 2015).
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Recent studies show that shear-thinning viscosity have an important effect on
the micro-organism swimming behaviour (Li & Ardekani, 2015; Vélez-Cordero,
& Lauga, 2013). A peak in the swimming speed of bacteria at a certain polymer
concentration was observed in a solution of high molecular weight polymers
(Martinez et al., 2014). The enhanced swimming speed of bacteria is found
to be related to the reduced viscosity encountered by its fast-rotating flagella
instead of fluid elasticity (Martinez et al., 2014). For a C. elegans in a shear-
thinning fluid, its swimming speed and kinematics are less affected by the shear-
thinning behaviour of the fluid, while its flow field and power consumption are
greatly modified (Gagnon, Keim, & Arratia, 2014; Gagnon & Arratia, 2016). A
similar behaviour is observed using the analysis of small amplitude waving sheet
(Vélez-Cordero, & Lauga, 2013). Numerical simulations, on the other hand,
show speed enhancement of a sperm in a shear-thinning fluid (Montenegro-
Johnson, Smith, & Loghin, 2013; Montenegro-Johnson, Smith, Smith, Loghin, &
Blake, 2012). Our recent studies illustrate that the speed enhancement occurs at
large oscillation amplitudes as an undulatory flagellum creates a corridor of low-
viscosity fluid around it, leading to a similar effect as confinement (Li&Ardekani,
2015). The relationship proposed by Li and Ardekani for the swimmer’s energy
consumption in a shear-thinning fluid is recently experimentally observed for
C. elegans (Gagnon & Arratia, 2016). A spherical squirmer, on the other hand,
may swim faster and slower in a shear-thinning fluid depending on the slip
velocity on its surface (Datt, Zhu, Elfring, & Pak, 2015).

Proximity to a wall greatly affects the motion of a micro-organism in both
Newtonian and non-Newtonian fluids. Analytical results show that an infinitely
long flagellum swims faster but less efficient when close to a wall in a Newtonian
fluid (Katz, 1974). This speed enhancement is weakened by the fluid elasticity
(Chrispell, Fauci, & Shelley, 2013). These studies of infinitely long flagellum does
not consider wall attraction, which can be important for bacteria and spermato-
zoa. The wall effects on the motion of passive particles in viscoelastic and shear-
thinning fluids have been extensively studied (Ardekani, Joseph, Dunn-Rankin,
& Rangel, 2009; Ardekani, Rangel, & Joseph, 2007; Li, McKinley, & Ardekani,
2015). However, the near-wall swimming of a self-propelled micro-organism
in non-Newtonian fluids is still poorly understood. The analytical results for a
squirmer showed that the fluid elasticity leads to an emergence of a limit cycle for
pushers and pullers near a wall and changes the center fixed points to unstable
foci. (Yazdi, Ardekani, & Borhan, 2015). For a squirmer with an oscillating
tangential surface velocity, both pullers and pushers in a viscoelastic fluid swim
towards the no-slip boundary if they are initially located within a small attraction
region near the wall (Yazdi, Ardekani, & Borhan, 2014). In a fluid with strong
fluid elasticity, direct numerical simulations showed that the neutral squirmer in
viscoelastic fluids stays near a wall for a longer time compared to a Newtonian
fluid, while a puller is less affected. A pusher is found to be trapped near the
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wall because of a highly stretched region of polymer molecules formed behind
its body (Li, Karimi, & Ardekani, 2014).

In this work, we investigate the near-wall motion of an undulatory swim-
mer in Newtonian and non-Newtonian fluids using a two-dimensional direct
numerical simulation. We simulate the swimmer as a finite-length flagellum
with a kinematically specified waving form, and two types of swimmer, kicker
and burrower, are studied to model the sperm and C. elegans, respectively. Wall
attraction of the swimmer as well as its effect on the swimming performance
is analysed. The effects of shear-thinning fluid viscosity and fluid elasticity on
the near-wall swimming dynamics are considered. In particular, we find that an
enhanced swimming speed can be achieved by a combination of wall effects, fluid
elasticity and shear-thinning viscosity.

2. Mathematical model and numerical method

2.1. Governing equations

Wemodel the swimmer as a two-dimensional flagellumof finite length immersed
in a fluid. An undulatory swimmer with its waving plane perpendicular to the
wall were observed for sperm (Kantsler et al., 2013) and C. elegans (Yuan et al.,
2015). The prescribed motion of the waving flagellum (Taylor, 1951) is given by
a travelling wave y = a(s) cos[2π(s/l − t/T)], where t is the time, a(s) is the
dimensionless amplitude, l is the swimmer length and s ∈ [0, l] is the length
measured from the head of the swimmer. In all our results, the length is scaled by
l, time by the waving time period T , velocity by l/T , and pressure and stress by
μ/T , where μ is the fluid dynamic viscosity. Two undulatory swimming types
are considered by varying the undulation amplitude along the swimmer. For
the kicker, its amplitude linearly increases from the head to tail as a(s) = As/l,
and for the burrower, the undulation amplitude decreases towards the tail as
a(s) = A(1 − s/l). At length and velocity scales relevant to micro-organisms,
inertial effects are neglected. The dimensionless equations for conservation of
momentum and mass are

Re
Du
Dt

= −∇p + ∇ · τ + f , ∇ · u = 0, (1)

where u is the velocity vector, p is the pressure and τ is the deviatoric stress tensor.
For micro-organisms, the Reynolds number Re = ρl2/Tμ is negligible, where ρ

is the fluid density. In this study, theReynolds number is set toRe = 6.25× 10−3.
The forcing term f , calculated using a distributed Lagrange multiplier method
(Ardekani, Dabiri, & Rangel, 2008; Li & Ardekani, 2015), is used to ensure the
no-slip boundary condition on the flagellum.

We use the Carreau constitutive model (Carreau, De Kee, & Chhabra, 1997)
to investigate the undulatory motion in an inelastic shear-thinning fluid
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Figure 1. Shear-dependent viscosity of Carreau and Giesekus models in a simple shear flow.

τ = βeγ̇ , (2a)

βe = βs + (1 − βs)(1 + Cu2|γ̇ |2) n−1
2 , (0 < n ≤ 1) (2b)

whereβe is thenormalized effective viscosity,βs is the ratio of the solvent viscosity
to the zero-shear-rate viscosity of the solution, |γ̇ | = √

γ̇ : γ̇ /2 is the effective
shear rate. TheCarreaunumberCu = λc/T is the ratio between the characteristic
time scale λc of the solution and the typical flow time scale T , where λc is the
inverse of the shear rate at which the fluid transitions from Newtonian-like to
power-law behaviour. The power-law index n determines how fast the viscosity
decreases with shear rate. The larger n is, the slower the viscosity thins. At
βs = 1, Cu = 0, or n = 1, the model recovers to the Newtonian fluid. In all our
simulations, we set βs = .5 and n = .3.

To model the elasticity and shear-thinning properties of biological fluids, we
use the Giesekus constitutive relation (Giesekus, 1982), in which τ can be split
into solvent and polymer contributions as τ = τ s + τ p, where τ s = βsγ̇ ,

τ p + De
�
τ p + De α

1 − βs
τ p · τ p = (1 − βs)(∇u + ∇uT), (3)

The Deborah number De = λ/T is the ratio of the polymer relaxation time λ to
the characteristic flow time scale T . Same viscosity ratio βs = .5 is used for the
Giesekus fluid. The mobility factor α, which is in the range of 0–1/2, represents
the anisotropic hydrodynamic drag exerted on the polymer molecules by the
surrounding solute molecules and affects the viscosity of the polymeric solution.
At α = 0, the Giesekus constitutive equation recovers to the Oldroyd-B model

and has a constant viscosity. The notation
�
A represents the upper-convected

derivative,
�
A = ∂A

∂t
+ u · ∇A − ∇uT · A − A · ∇u. (4)

In a simple shear flowofGiesekus fluid, the effective viscosity is (Bird,Armstrong,
& Hassager, 1987)
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βe = βs + (1 − βs)
(1 − k)2

1 + (1 − 2α)k
, (5)

where k = [1−χ ]/[1+ (1−2α)χ ] and χ2 = [(1+16α(1−α)De2|γ̇ |2)1/2−1]/
[8α(1 − α)De2|γ̇ |2]. We set α = .1 for the Giesekus model. In this case, the
effective viscosity of Giesekus fluid behaves similarly as the Carreau model of
n = .3, as shown in Figure 1. In biological materials, such as biofilm and mucus,
λ and λc vary from O(1) to O(103) s, n from .1 to .9, and βs from O(10−3) to
O(10−1). The typical beating frequency of the flagellum ranges from 2 to 50Hz.
Therefore, for micro-organisms,De and Cu vary in a very wide range, fromO(1)
to O(104).

2.2. Numerical method

Simulations are conducted using a finite volume method on a fixed staggered
grid implemented in the code developed by Dabiri and coworkers (Dabiri &
Bhuvankar, 2016;Dabiri, Doostmohammadi, Bayareh, &Ardekani, 2015;Dabiri,
Lu, & Tryggvason, 2013; Dabiri & Tryggvason, 2015). A conventional operator-
splitting method is applied to enforce the continuity equation. The spatial
derivatives in the convection term are evaluated using the Quadratic Upstream
Interpolation for Convective Kinetics scheme and the diffusion terms are dis-
cretized using the central difference scheme. The viscoelastic stress is solved using
a commonly used formulation denoted as elastic and viscous stresses splitting
method (Guénette & Fortin, 1995). The computational domain is 1.24 × 20 with
the grid size being 
x = .01 uniform in x-direction and in the region y < 3,
where the flagellummotion occurs, and is gradually stretched outside this region.
The time step is 
t = 10−3 and a second-order total variation diminishing
Runge–Kutta method is used for time marching. At the bottom boundary at
y = 0, a no-slip boundary condition is imposed. Periodic boundary conditions
are imposed at the left and right sides of the computational domain and far-field
boundary conditions are imposed at the top boundary. The flagellum ismodelled
using a series of Lagrangian points immersed inside the fluid domain. The
forcing term along the flagellum is calculated iteratively to impose the prescribed
undulatory velocity and is then distributed back to the fluid (Ardekani et al.,
2008). The details of the numerical method and validations can be found in our
previous publications (Ardekani et al., 2008; Li & Ardekani, 2014).

When the swimmer approaches the wall, the high pressure in the thin film
between the swimmer and the wall prevents any unphysical overlaps. However,
a very small grid resolution is needed to properly capture this dynamic process
and consequently it is computationally expensive. A short-range repulsive force
(Glowinski, Pan, Hesla, Joseph, & Periaux, 2001) is added if the distance of any
point on the swimmer from the wall is smaller than a certain value
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Figure 2. Trajectory of a near-wall kicker in a Newtonian fluid for (a) two different domain lengths,
solid lines: Lx = 10.24 and dashed lines: Lx = 20.48 and (b) different repulsive forces, solid lines:
ε = 10−3, dashed lines: ε = 10−4 and dashdot lines: ε = 10−5.

Fr = FR
ε

(
d − dr
dr

)2
ez , (6)

where FR is the characteristic force, ε = 10−4 is a small positive number, d is
the distance between the point on the swimmer and the wall, dr is the force
range and is usually set to the smallest grid size
x in the computational domain
(Glowinski et al., 2001). The direction of the repulsive force ez is normal to the
wall. In Figure 2, we investigate the effects of the length of periodic domain
and the repulsive force on the results. The near-wall motion of flagellum is not
sensitive to the choice of these parameters.

3. Near-wall motion in a Newtonian fluid

Wefirst investigate the nearwall swimmingmotion of a flagellum in aNewtonian
fluid. Initially, the flagellum is located above the wall at y0 = .5, with an initial
angle θ0 = −45◦. Here, θ is measured with respect to the direction parallel to the
wall, and the swimmer is heading towards the wall for θ < 0. Figure 3 compares
the trajectory of the centre of the swimmer (s = l/2) undulating with different
amplitudes. The high frequency oscillations correspond to the motion of the
swimmer’s centre in each undulatory cycle. Three different near-wall swimming
modes are observed for the kicker. At A ≤ .3, the kicker is stably attracted to
the wall. The kicker swims close to the wall and periodically collides with it.
This type of near-wall motion of an undulatory swimmer has been observed
in simulations (Evans & Lauga, 2010) and experiments for a sperm (Kantsler,
Dunkel, Polin, & Goldstein, 2013). At A = .35, the kicker is weakly attracted
to the wall and swims in a cyclic trajectory. The kicker stays near the wall in
a few undulatory cycles and quickly escapes, and it takes a much longer time
for the swimmer to swim back towards the wall. The average distance between
the kicker and the wall is on the order of the swimmer size which is consistent
with the results of Smith et al. (2009). Similar cyclic near-wall motion was also
observed for a puller squirmer near a wall (Li & Ardekani, 2014). At high enough
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Figure 3. Trajectory of a near-wall (a) kicker and (b) burrower of different amplitudes in a
Newtonian fluid. The swimmer is initially located at y0 = .5 and θ0 = −45◦. Time history of the
orientation angle θ̄ averaged over an undulatory cycle for a (c) kicker and (d) burrower.
Note: Error bars show the range of temporal variation of the angles.
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Figure 4. (a) The swimming speed U and (b) power consumption P of swimmers in a Newtonian
fluid as a function of the swimmer’s amplitude A.

amplitude, the kicker eventually escapes the wall. Therefore, the wall attraction
of an undulatory flagellum is strongly affected by its undulation amplitude. The
burrower is weakly attracted to the wall and swims in a cyclic motion. The
amplitude of its cyclic trajectory slowly decreases with time. Wall attraction is
weakened at higher amplitudes for both swimmer types.

The weak attraction of an undulatory swimmer towards the wall can be
understood in the light of theorientational angle of the swimmer. Figures 3(c) and
(d) show the time history of the swimmer’s angle averaged over an undulatory
cycle, and error bars show the range of its temporal variation. As the swimmer
approaches the wall, its head first contacts with the wall and the angle of the
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swimmer quickly increases. For the kickers of A = .2 and .3, the final average
angle is negative θ̄ � −6◦ and the kicker is stably attracted to the wall. In this
swimming mode, both the head and the tail of the kicker periodically collide
with the wall. For a kicker with larger amplitudes, its scattering angle becomes
positive, meaning the swimmer first escapes the wall after the collision and then
swims back to the surface. Positive scattering angle is also observed for the
burrower, and the wall effect slowly reduces the angle of the swimmer. Note
that for a swimmer with large amplitudes, for example kicker of A = .35, there
is no contact between the swimmer’s tail and the wall, and the hydrodynamic
interaction is responsible for the swimmer’s attraction towards the wall after the
first escape. The strength of this hydrodynamic interaction determines the near-
wall swimming mode of the swimmer. For a kicker of A = .35 and a burrower
with different undulation amplitudes, the orientation angle becomes negative
and the swimmer comes back to the wall. For a kicker of A = .4, its initial
scattering angle is large and the wall hydrodynamic effect becomes negligible
before it can reorient the swimmer towards the wall. Therefore, the wall contact,
the initial scattering angle of the swimmer and the hydrodynamic effects are all
important to the near-wall motion of an undulatory swimmer.

The wall attraction strongly affects the swimming performance of an undula-
tory flagellum. In Figure 4, the swimming speed and the power consumption of
swimmer in a bulk fluid and near a wall are compared. The power consumption
is calculated by P = ∫

s u · f dS. In the bulk fluid, the swimming speed and the
power consumptionmonotonically increase with the swimmer’s amplitude. Due
to symmetry, the performance of kickers and burrowers is exactly the same. The
wall attraction increases the swimming speed as well as the power consumption
compared to a swimmer in the bulk fluid. The effects are stronger for a swimmer
closer to the wall. These results are consistent with an infinitely long flagellum
near awall (Katz, 1974). For both swimmer types, themaximumswimming speed
occurs at A = .3. For the kicker, the near-wall swimming speed is about four
times its speed in a bulk fluid, and its power consumption increases about 60%.
These results indicate that the undulatory swimmer can optimise its swimming
performance near the wall by tuning its undulation amplitude.

4. Near-wall motion in non-Newtonian fluids

Figure 5(a) and (b) compare the trajectories of a swimmer of A = .2 and .4 in
Newtonian and inelastic shear-thinning fluids. The swimmer is initially located
at y0 = .5 and θ0 = −45◦. Stronger wall attraction is observed for both kicker
and burrower in an inelastic shear-thinning fluid. The kicker of A = .4 no
longer escapes the wall and it swims in a cyclic trajectory in a shear-thinning
fluid at Cu = 1. Further increase in the Carreau number to Cu = 3 does
not affect kicker’s trajectory. The shear-thinning effect decreases the distance
of a burrower from the wall and a stable attraction is observed for burrower of



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 53

x

y

0 5 10 150

0.5

1

(a)

Cu=0
Cu=1
Cu=3

A=0.4

A=0.2

kicker

x

y

0 5 10 150

0.5

1

(b) Cu=0
Cu=1
Cu=3

A=0.4

A=0.2

burrower

t

θ

0 20 40 60 80

-40

-20

0

20

(c)

kicker, A=0.4

°

Cu=0
Cu=1
Cu=3

Cu0 1 2 30.5

1

1.5

2 burrowerkicker
(d)

P/PN

U/UN

near wall
bulk

Cu0 1 2 30.5

1

1.5

2

Figure 5. Trajectory of a near-wall swimming (a) kicker and (b) burrower of A = .2 and .4 in an
inelastic shear-thinning fluid at Cu = 1. (c) Time history of the orientation angle θ̄ averaged over
each undulatory cycle for a swimmer of A = .4. (d) The normalized swimming speed U/UN and
power consumption P/PN of swimmers of A = .2 swimming in a bulk fluid and near a wall.
Note: Here, UN and PN are the swimming speed and power consumption in a Newtonian fluid, respectively.

A = .2. The strong wall attraction is mainly related to the scattering angle of
the swimmer. The shear-thinning viscosity decreases the scattering angle of the
swimmer from the wall (see Figure 5(c)). Therefore, it stays near the wall for a
longer time. In Figure 5(d), we compare the normalized speed and power of a
stably attracted swimmer of A = .2 for different values of Carreau numbers. For
both swimmer types, the shear-thinning effects increase the swimming speed and
reduce the power consumption, no matter whether the swimmer is in the bulk
fluid or near the wall. The shear-thinning effects are the same for a kicker and
burrower in the bulk fluid. The speed reaches a peak at Cu ∼ 1 as the swimmer
moves in a corridor of low-viscosity fluids generated by large shear rates near
an undulatory flagellum as demonstrated in our previous work (Li & Ardekani,
2015). When attracted to the wall, the swimmer’s speed monotonically increases
with increasing Cu. This speed enhancement is stronger for a swimmer near a
wall. The power consumption roughly follows the same trend as the swimmer in
the bulk fluid (Li & Ardekani, 2015).

The fluid elasticity strongly affects the wall attraction of the swimmer. Stable
wall attraction of a kicker of A = .2 is observed in a viscoelastic fluid at De = 1
and α = 0 (see Figure 6(a)). Compared to the swimmer in a Newtonian fluid,
the kicker in a viscoelastic fluid of De = 1 and α = 0 has a larger distance
from the wall. Later, we will see that this is due to the fact that the kicker has
a large orientation angle towards the wall in a constant-viscosity viscoelastic
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Figure 6. The trajectory of a near-wall swimming (a) kicker and (b) burrower of A = .2 in
Newtonian and viscoelastic fluids. Comparison of the swimming speed of a near-wall swimming
(c) kicker and (d) burrower in different fluids.

fluid. The fluid elasticity has same effects on the burrower, and a stable wall
attraction is observed for a burrower in viscoelastic fluids (see Figure 6(b)).
The non-Newtonian rheological behaviour of the background fluid has similar
effects on the wall attraction of a kicker and a burrower, but their effects on the
swimming speed are different. In Figure 6(c), we compare the temporal evolution
of the swimming speed of a kicker of A = .2 in different fluids along the wall
during an undulatory cycle. The instantaneous speed of the swimmer depends
on its undulatory phase and the waveform near the wall. The non-Newtonian
fluid behaviour does not qualitatively affect the temporal evolution of swimming
speed, but it strongly affects the average swimming speed. The kicker swimsmuch
slower in a constant-viscosity viscoelastic fluid. Interestingly, the combination
of the fluid elasticity and the shear-thinning viscosity strongly increases the
swimming speed, which is larger than the one in an inelastic shear-thinning
fluid. Such a speed enhancement in a shear-thinning viscoelastic fluid is not
observed for a burrower.

The polymer molecules are highly stretched in the region near the head of
the swimmer in a constant-viscosity viscoelastic fluid, which lead to a strong
attraction of the swimmer towards the wall (see Figures 7(a) and (b)). On the
other hand, this effect reduces the wall contact force on the swimmer’s head
and prevents the swimmer from further reorienting its angle away from the
wall. This result is consistent with our previous finding on the wall attraction
of a pusher squirmer in a viscoelastic fluid (Li et al., 2014). This large negative
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Figure 7. Polymer stretching around a near-wall swimming (a) kicker and (b) burrower of A = .2
in a viscoelastic fluid at De = 1 and α = 0. The local fluid viscosity around a near-wall swimming
kicker of A = .2 in (c) an inelastic shear-thinning fluid at Cu = 1 and (d) shear-thinning
viscoelastic fluid at De = 1 and α = .1 are shown.
Note: White and grey curves in (c) and (d) are the contour lines of βe = .55 and .75, respectively.

Figure 8. Time sequence of the polymer stretching around a near-wall swimming kicker of A = .2
in a shear-thinning viscoelastic fluid at De = 1 and α = .1.

angle lead to slower swimming speed. The undulatory motion of the kicker
in an inelastic shear-thinning fluid locally reduces the effective viscosity of the
fluid, creating a low viscosity fluid region around the flagellum and leading
to an enhanced swimming speed (see Figure 7(c)). The fluid viscosity on the
wall side is much more reduced due to the strong shear rate in the gap region.
Therefore, the wall attraction due to fluid elasticity and the shear-thinning effects
lead to a strong speed enhancement for an undulatory swimmer as shown in
Figure 5(d). The distribution of effective viscosity in a shear-thinning viscoelastic
fluid around the kicker, calculated using Equation (5), is similar to an inelastic
shear-thinning fluid (see Figure 7(d)). On the wall side, the shear-thinning effect
in a viscoelastic fluid is stronger than the inelastic shear-thinning fluid. On
the other side, the size of the low-fluid viscosity region around the kicker is
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smaller in a viscoelastic fluid. Both these effects lead to the speed enhancement
of the swimmer as seen in Figure 6(c). Another reason for the stronger speed
enhancement of a kicker in a shear-thinning viscoelastic fluid may be related to
the effects of fluid elasticity. The polymer stretching around a kicker swimming
near a wall is a highly dynamic process (see Figure 8). The undulatory motion
of the head and the tail of the swimmer away from the wall strongly stretches
the polymer molecules. As the swimmer swims along the wall, its entire body
interacts with the polymer molecules stretched by its head. This interaction
can lead to an attraction of the swimmer towards the wall which increases its
swimming speed.

5. Summary and discussion

We have numerically investigated the near-wall motion of an undulatory swim-
mer of finite length in Newtonian and non-Newtonian fluids. In a Newtonian
fluid, three types of near-wall swimming modes are observed for the kicker
depending on the amplitude of the undulatory flagellum. The kicker of small
amplitude is stably attracted to the wall and its speed is enhanced along the
wall. In this type of swimming mode, both the head and the tail of the swimmer
are in close contacts with the wall and the swimmer has a small negative angle
towards the wall. This result is consistent with the observations of the near-
wall swimming sperm (Elgeti et al., 2010). The swimming speed and the power
consumption are greatly increased by the wall attraction. At larger amplitudes,
the kicker first escapes from the wall. The hydrodynamic interaction between the
swimmer and the wall reorients the swimmer back towards the wall. It may then
swim in a cyclic trajectory. The swimmer is weakly attracted to the wall with its
distance from the wall on the same order as the swimmer size. This attraction is
observed in simulation results of Smith et al. (2009). The kicker escapes the wall
for large enough initial scattering angle. Cyclic trajectories are observed for the
burrowers studied in this work. These results show that both the flagella contact
with the wall and the hydrodynamic interactions are crucial in determining the
near-wall behaviour of an undulatory swimmer.

Non-Newtonian fluid rheology affects both the wall attraction and the swim-
ming performance of the swimmer near the wall. Shear-thinning viscosity of
the fluid slightly enhances the wall attraction, mainly by reducing the scattering
angle of the swimmer. It greatly increases the swimming speed by creating a
low-viscosity fluid region around the swimmer. This mechanism is the same as
swimming in the bulk fluid. The effects of fluid elasticity are more complex. In a
constant-viscosity viscoelastic fluid, it enhances the wall attraction by generating
a strong polymer stretching region near the head of the swimmer and inhibits the
swimmer’s reorientation. As a result, the swimmer’s head is strongly attracted
to the wall and swims slowly with a high inclination angle along the wall.
In a shear-thinning viscoelastic fluid, the combination of the fluid elasticity
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and shear-thinning viscosity generates the strongest speed enhancement for
the kicker. In this case, both the reduced viscosity near the swimmer and the
interaction between the swimmer and the polymer molecules contribute to
the speed enhancement. This strong speed enhancement is closely related to
the undulation pattern of the near-wall swimmer and is not observed for the
burrower. Cervical mucus has been shown to have both shear-thinning viscosity
(Hwang et al., 1969) and elasticity (Wolf et al., 1977). Our results suggest that
these properties lead to fast swimming motion of sperms near a wall in a shear-
thinning viscoelastic fluid.

In the current study, the swimmer is modelled as a finite-length flagellum
with a prescribed travelling wave form. The effects of non-Newtonian fluid
rheology and wall contact on the undulation kinematics are not considered.
Gagnon et al. have showed that the beating kinematics of a C. elegans in a
shear-thinning fluid is the same as in a Newtonian fluid (Gagnon et al., 2014).
The fluid elasticity, on the other hand, strongly influences the beating pattern
of Chlamydomonas flagella (Qin, Gopinath, Yang, Gollub, & Arratia, 2015). The
beating shapeofChlamydomonasflagella can also bemodifiedby thewall contact,
while the beating shape of a sperm is relatively less affected (Kantsler et al., 2013).
The experimental results show that the swimming speed of the C. elegans in
a Newtonian and shear-thinning fluid is the same (Gagnon et al., 2014). The
present numerical results, on the other hand, predict a speed enhancement in
the shear-thinning fluid. The difference may be due to the limit on the power
consumptionof the swimmer in experiments,which is not included in thepresent
simulations. Further studies are required to include these effects, which could
have important roles on the near-wall behaviour of a swimmer.
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