
Application of the finite element method to 
aeroelasticity 

Jean-Pierre Grisval - Cedric Liauzun 

Office National d'Etudes et de Recherches Aerospatiales 
B.P 72, F-92322 Chdtillon cedex 
Email: (grisval, liauzunj@onera.fr 
Web: www.onera.fr 

ABSTRACT This paper presents a multiphysic method for unsteady turbulent flows and fluid­
structure computations. This method is based on a Galerkin Least Square Finite Element 
formulation for both solid and fluid equations. The viscous effects are taken into account 
using Spalart-Allmaras and k-E turbulence models. The fluid boundaries motion is taken 
into account using an ALE formulation of the compressible equations. The fluid domain is 
then modeled as a hyperelastic material. For fluid-structure interactions problems, both solid 
and fluid equations are time discretized using an implicit time-stepping scheme based on the 
Newmark's one. Coupling between fluid and structure is achieved through non-matching 
interfaces. This numerical strategy is applied to a 2D airfoil buffeting simulation, to a 2D 
fluid-structure computation, and to a flutter analysis of a 3D wing. 

RESUME. Ce1 article presente une methode multiphysique de calcul d'ecoulements instation­
IWires turbulents, et d' etude de coup/age fluide-structure. Cette methode s'appuie sur une for­
mulation Elements Finis Galerkin Moindres Can·es des equations de Ia mecanique des so/ides, 
d'Euler ou de Navier Stokes. Les effets de Ia viscosite son/ pris en compte par l'utilistation 
des modides de turbulence Spalart-Allmaras et k-E. Le mouvement des frontieres du domaine 
fluide est pris en compte par f'ecriture des equations du probfeme fluide dans Wl rejerentie/ 
ALE. Le domaine fluide est alors considere comme un materiau hyperelastique. Pour !'etude 
des interactions fluide-structure, les equations du so/ide et du fluide sont discretisees en temps 
par un schema implicite derive de celui de Newmark. Un algorithme d'interfa(:age transmet 
les contraintes d'un probleme a !'autre a chaque pas de temps. Cette strategie numerique est 
appliquee a !'etude du buffeting d'un profil 2D, du coup/age fluide-structure pour Wl profil 2D, 
et duflottement d'une aile d'avion tridimensionnelle. 
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1. Introduction 

Aeroelasticity studies involving fluid-structure interactions problems and predic­
tions of unsteady airloads on wings play an increasing role in the aircraft design. With 
the increasing power of computers, several numerical methods have been developed to 
predict time responses of a wing or an airfoil to different excitations. This paper pre­
sents a numerical method for performing fluid-structure time simulations with turbu­
lent viscous flow models. This method is evaluated for unsteady viscous phenomena 
like buffeting, and for fluid-structure interactions. It is based on the Galerkin Least 
Square Finite Element formulation of both aerodynamic and structural equations. It is 
therefore able to handle unstructured meshes that are more useful to model complex 
geometries. In order to take into account the viscous effects, two turbulence models 
have been used: 

- the Spalart-Allmaras model, which is a one-equation model solving for the 
turbulent kinematic viscosity 

- the classical two-equation k-E model. 

Wall functions have been added to both turbulence models in order to reduce mesh 
size and CPU time, and to perform three-dimensional simulations with a reasonable 
number of mesh nodes. 

For fluid-structure interactions problems, the compressible Navier-Stokes equa­
tions are written in an ALE frame of reference to take into account the deformation of 
the structure embedded in the fluid domain. 

All simulations have been performed using the software Spectrum developed and 
commercialized by Centric Engineering Systems, Inc. It uses the numerical strategy 
presented above to solve the solid mechanics and the compressible Euler or Navier­
stokes equations. 

An outline of this paper follows: the second part presents a description of the 
numerical techniques relevant to fluid-structure interactions problems. The third part 
presents numerical results compared with experimental data. A buffeting simulation 
with 20 airfoils, and tluid-structure simulations with 20 airfoils and a 3D wing to 
predict flutter are treated. 

2. Numerical approach 

The numerical strategy developed to perform fluid-structure simulations involves 
the solution of several problems (also referred to as "staggers"): 

- unsteady flow around structure 

- turbulent eddy viscosity 

-deformation of the fluid mesh 

-dynamic analysis of the structural model 
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-coupling between fluid and structural problems 

Each of these problems is detailed in the sections below, followed by a description 
of the solution strategy applied to fluid-structure simulation. 

2.1. Fluid analysis 

The compressible Navier-Stokes equations written in a arbitrary Lagriagian-Eulerian 
frame of reference are used to model the fluid flow: 

where 

diff­U,t + W;,;U + Fi,i - Fi,i - 0 

F, " ( u, -w, I u + p { 

0 } 0; 
U; 

0 

'"" { } F; = T;jOJ 

T;jUj - q, 

[1] 

[2] 

[3] 

[4] 

U is the vector of conservative variables; F; and F;diff are the convective and diffusive 
fluxes in direction i, respectively; pis the fluid density; u = { ui} is the fluid velocity; 
etot is the total energy per unit mass; p is the pressure; O; = { o;1} is the Kronecker 
delta (0;; = 1 and 0;1 = 0 fori -::J:- j); T = [r;1] is the viscous stress tensor; q = { qi} 
is the heat flux vector; and w = { wi} is the mesh velocity. Moreover, the fluid is 
modeled as an ideal gas and the stress tensor is that of a Newtonian fluid. 

[5] 

where:, is determined by the Stokes law(>.+ 2pJ3 =0) and /J by the Sutherland's law. 
The heat flux is given by the Fourier's law: 

[6] 

Equation [ l] reduces to the compressible Euler equations by setting F;diff = 0. Both 
pure Eulerian and pure Lagrangian formulations can be recovered by setting w = 0 
or w = u, respectively. A change of variables is applied to [I] by using the so­
called "entropy variables", leading to a symmetric form of the Navier-Stokes equations 
[HFM 86]. 

[7] 
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where fj,, the chemical potential, is defined as 

fj,=e+p/p-Ts 

and s is the specific entropy. Written in terms of theses variables, the compressible 
Navier-Stokes equation [I) yields the symmetric convective-diffusive form 

- -
Ao V:t +A; V:;- (K;J V:J ),; = 0 

where: 

- A 0 is symmetric positive-definite 

- Ai is symmetric for i = 1, 3 
- -

- K = [KiJ] is symmetric positive-semidefinite. 

There are three major advantages to this system due to symmetry properties: 

-they contribute to the efficiency of iterative solution strategies, 

[8] 

-they are essential for the development of the stability terms of the GLS formu-
lation, 

- they are useful for mathematical analysis for stability and convergence. 

Spatial discretization ofthe Navier-Stokes equations is done using the Galerkin/least­
squares (GLS) finite element formulation [HFH 89]. Consider a physical domain 0 
with boundary r = 80 discretized with elements ne. The GLS formulation is 

r d"ff 
Jo (W · U,t - W,; · F; + W,; · F; ' ) dO 
+ Le J0 , .CW · r.CV dO 
+" r vegijw . AoV. dO L...te Joe ,t ,J 

= fr W . (F; - pidiff)n; dO 

[9] 

where W is the weighting function, n = { ni} is the outward normal, T is a sym­
metric positive-definite matrix (for more details, see [HFM 87]), giJ = [ox;/ o~J] is 
the jacobian matrix of the clement ne, and .C is the Navier-Stokes linear functional 
defined as: 

- a - a a (- a ) .C = A 0 - +A;--- K;J-
ot ox; axi axj 

[10] 

and ve is a positive coefficient depending on .C V. The first and the last terms of the 
variational equation [9] are the terms of the classical Galerkin formulation written 
in an integrated-by-parts form to guarantee flux conservation in the flowfield. The 
second integral term is the Least Square term that allows us to obtain an oscillation­
free solutions in advection-dominated regions [HFM 87]. The third integral term is 
a shock-capturing term to eliminate spurious oscillations near shocks and sharp gra­
dients [HM 86]. Stability and consistency of the resulting formulation imply a higher-
order spatial convergence. 

Time discretization is done using the Hilbert-Hughes-Taylor (HHT) algorithm 
[HU 87) based on Newmark's implicit scheme. This parameter-based semi-discrete 
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technique encompasses a wide range of implicit first- and second-order time-marching 
schemes such as backward Euler and trapezoidal rule. 

Both spatial and temporal discretizations of the finite element formulation lead to a 
nonlinear system of equations to be solved at each time-step. This system is linearized 
through a Newton-like algorithm, yielding a series of nonsymmetric linear systems of 
equations. Each system is solved using a matrix-free implicit iterative solver based on 
the preconditioned GMRES algorithm with a tolerance ranging from 10- 1 for static 
problems to 10-2 for dynamic problems [JOH 91]. 

2.2. Turbulence models 

In order to take into account the viscous effects, turbulence models arc added to 
the density-weighted Navier-Stokes equations, id est 

P,t + (pu;),i = o 
(pu;),t + [7Ju;uj + ('P+ ~pk)Jij] . = [(J.L + J.Lt)((u;),1 + (uj),i + ~Jij(ul),~)] . 

J J 

(f5etat),t + [7Ju;etat + (p + ~pk)u;] ,i = 

[(M + ",) ( (U,),J + (U, ),;+ ~J,,(U,J,,)u, + (• + ,,)i',. + (" + ,lf;.) k,l 
[11] 

where for any quantity cp, ({5 is the time mean value of cp, (/5 = Pf-, ""t = Cp ;;t, Prk 

is a modeling constant, and Pr1 is assumed constant. To close the system, turbulence 
models solve equations for the turbulent eddy viscosity J.Lt, and the turbulent kinetic 
energy k. 

Two turbulence models have been used in this study: the classical two-equation 
k-s model and the Spalart-Allmaras model. 

The k-s model is a "low Reynolds" model based on the Chien's formulation [CHI 82, 
LAU 74]. It solves a system of coupled partial differential equations within k-s. J.Lt is 

then computed from a relation J.Lt = J(y+)p~
2

. The variables k and care computed 
in down to the wall, thus requiring a very fine mesh near the no-slip wall. The first grid 
point away from wall should be such that y+ < 0.5. The partial differential equations 
within k-s are coupled. They are solved using a GLS formulation like the one for the 
Navier-Stokes equations. But the turbulence equations are uncoupled from the Navier­
Stokes equations and solved in a staggered fashion. The linearized systems from the 
turbulence equations are solved using a GMRES algorithm. 

The Spalart-Allmaras model [SPA 92] was developed by Boeing at the beginning 
of the 1990's to compute external turbulent flows. It is a one-equation model that 
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governs the kinematic viscosity, and assumes k = 0 in equations [ 11]. We can note 
that: 

- The model does not require the knowledge of any non local quantity like thi­
ckness of the boundary layer. It is then more useful for unstructured meshes than 
algebraic models like the Baldwin-Lomax model. 

- The kinematic viscosity is linear close to the no-slip wall. The model therefore 
requires less refined meshes than the k-E model to reach the same accuracy. Reaso­
nable solutions can be obtained with the first grid point as far away from the wall as 
y+ = 5 to 10 andy+ = 20 if only pressure is of interest. 

-The model is based on only one equation to solve. It is considerably less ex­
pensive computationally than the k-E model. Moreover the use of iterative solvers is 
easJer. 

In order to perform three-dimensional simulations with a reasonable number of 
mesh nodes, wall functions have been implemented for both turbulence models. In the 
wall function approximation, the fluid is assumed to follow the "law of the wall" in the 
finite elements adjacent to solid boundaries. In these elements, the flow is determined 
by Spalding's law [WHI 91]: 

+ + -KB ( KU+ 1 + (~~:u+)2 (~~:u+)3) y = u + e e - - KU - --- - ---
2 6 

[12] 

withy+ = pyu* / J.L; u+ = llull/u*; 11: = 0.41 et B = 5.0. The values of y and llull 
being known, the shear velocity is deduced from ( 12) with a Newton method. The wall 
friction is given by 

.2 u 
Tn = -pu llull [13] 

This approximation leads to having both a slip-velocity Dirichlet boundary condi­
tion to satisfy the condition of zero mass flux, and a friction Neuman boundary condi­
tion by specifying 

1 Fdiff n;df = 1 { 
r wall 

2 

r wall 

0 } Tn df 
Tn · U- Qn 

[14] 

where Qn is the heat flux at wall. 

2.3. Mesh movement 

The use of an ALE formulation calls for a strategy to deform the fluid mesh as 
the fluid domain boundaries move. Such motions can be either prescribed or they can 
result from deformations of solids immersed in the fluid domain. The mesh defor­
mation approach used in this study models the fluid domain as a hyperelastic mate­
rial (i.e., a rubber-like material) and uses a large-deformation neo-hookean formula­
tion ([SPE 93]). Displacements of mesh nodes are computed using a preconditioned 
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conjugate gradient algorithm with a tolerance usually of the order of 10-3
. Once the 

displacements are obtained, the mesh velocity at each node is computed using the 
formula 

[15] 

where dn (wn) and dn+l (wn+d are node displacements (velocities) at time tn and 
tn+l, respectively; and D..t = tn+l - tn. Equation [IS] leads to mass conservation 
in the fluid domain, as shown by Farhat et al. [FAR 95]. One should note that no 
mesh deformation technique (including the one used herein) guarantees mesh integrity 
for general boundary motions. Negative element jacobians can indeed occur when 
very large deformations or twisting motions are simulated. The hyperelastic model 
has however proven to be more robust in that respect than simpler strategies such as 
modeling the fluid domain with a network of springs (see [BAT 89] for an example of 
such techniques) or using a simple linear elasticity formulation. 

2.4. Structural analysis 

A large-deformation elasticity formulation is used to model the structural part of 
aeroelastic problems [SPE 93]. Structures can be modeled either with three-dimensional 
contmuum elements, or with structural elements such as shells, beams or trusses. 
Time-marching is performed with an implicit integrator based on the HHT algo­
rithm. This semi-discrete scheme is identical to the one used for the fluid equations, 
which simplifies the overall time-marching process when solving coupled aeroelas­
tic problems. Due to ill-conditioning that arises when the solid is discretized with 
non-continuum elements, a sparse direct solver is used to solve the linear systems of 
equations resulting from discretization of the variational formulation. 

2.5. Fluid-solid interface 

The interface region between the fluid domain and the solid domain is defined 
by: 

-a list of nodes and element faces on the fluid side; and 

- a list of nodes and element faces on the solid side. 

Since nodes on both sides of the interface do not need to match, a search algorithm 
is used to identify the solid face that contains each fluid interface node. Once this 
mapping is obtained, local fluid pressure forces are computed at each fluid interface 
node. They are then interpolated at the solid interface nodes. The resulting pressure 
load is used as a boundary condition to solve the structural analysis problem. One can 
note that this approach leads to a total fluid pressure force (i.e., the pressure integrated 
over the fluid side of the interface) being transferred to the solid side of the interface. 
Since the fluid mesh is usually finer than the solid mesh (which translates into having 
a finer fluid surface mesh at the fluid-solid interface), this interpolation strategy would 
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I Local pressures I __. Pressure forces at 
fluid interface nodes 

Pressure forces at 
solid interface nodes 

I Structural analysis I+-- I Pressure load I 
Figure 1. Fluid-solid inteifacing flowchart 

appear to be more accurate than interpolating the fluid pressure directly onto the solid 
interface nodes and then computing the local pressure forces on that surface using the 
solid discretization. 

In addition to pressure loading on the solid, a velocity boundary condition is ap-
plied at the fluid interface nodes. This boundary condition is: 

- u = w for a no-slip boundary condition; or 

- ( u - w) · n = 0 for a slip boundary condition. 

Finally, the solid displacement is interpolated at the fluid interface nodes and is 
used as a boundary condition when solving the mesh deformation problem. 

2.6. Solution strategy 

Studies carried out on two-dimensional problems have shown that the order in wich 
the different staggers are solved at each time step has an impact on the overall solution 
accuracy. Several remarks can be made about the results we obtained: 

-The flow field should be computed before turbulent fields at each time step. 

-For fluid-structure problems, the fluid mesh needs to be defined for the compu-
tational domain O(tn+l) when advancing the fluid solution from tn to tn+l· Conse­
quently, the mesh deformation problem should be solved before the fluid problem at 
each time step. 

- Since the solid motion is driving the fluid mesh deformation, the structural 
analysis problem should be solved before the mesh deformation problem. 
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Consequently, the most accurate procedure for fluid-structure problems is as follows: 
Loop over time steps 

- I. Solve the structural analysis problem using the fluid pressure at the previous 
time step as a boundary condition. 

- 2. Solve the fluid mesh deformation problem using the structural displacement 
as a boundary condition. 

- 3. Solve the fluid problem using the mesh velocity as a boundary condition. 

End loop over time steps 
Only one iteration is performed on the three staggers within each time step for com­
putational efficiency. 

3. Numerical examples 

3.1. Buffeting simulation 

The numerical strategy described in the previous part is applied to buffeting si­
mulations with a RA 16SC I airfoil in transonic flow. Experiments in a wind tunnel 
at ONERA show oscillations of the shock at a single frequency of about I 00 Hz for 
a Mach of 0. 73 and an angle of attack greater than 3 degrees. The amplitude of the 
oscillations is about 40% of chord. 
Numerical simulations have been led for the following free-stream conditions: 

-Moo= 0.73 

- Re00 = 4.6 X 106 

- Tioo = 290.0 K. 

The airfoil chord is 180 mm. 

Two numerical simulations at an angle of attack of 3 degrees are done to test the 
Spalart-AIImaras and k-E models without wall functions. The first simulation uses the 
Spalart-Allmaras model. The fluid domain is discretized with 17538 nodes and 17180 
wedge elements. Even though this is a two-dimensional problem, three-dimensional 
meshes made of one layer of elements together with appropriate boundary conditions 
are generated since the used software Spectrum has only three-dimensional capabili­
ties. The following boundary conditions are applied: 

- velocity and static temperature at the inflow 

- static pressure at the outflow 

- no slip velocity at the wall. 

A steady flow is first computed using a local time-stepping and a CFL set to 5. The 
solution converges at the 2001h time-step. A unsteady computation is restarted from 
the steady solution using a global time-step. The experimental frequency fo being 
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about I 08 Hz, the numerical time increment is chosen such that 

t:.t = 1
/ fo = 9.2 x 10-6 s 

1000 

The computation does not show any buffeting. The shock oscillations in global time­
stepping are rapidly damped. Similar results are obtained on finer meshes or at a grea­
ter angle of attack. The Spalart-Allmaras model developed for steady computations 
does not seem to be appropriate for buffeting simulations. 

The second computation using the k-E model follows the same strategy. The mesh 
is refined close to wall and contains 25396 nodes and 25014 elements (see figure 
2). The local time-step is determined by a CFL equal to 3. The steady computation 
does not converge (oscillations of residuals of pressure velocity and temperature). The 
computation is restarted with a global time increment chosen to have 4000 time-steps 
per period id est t:.t = 2.3 x 10-6 s. The results illustrated by figures 4 and 5 show 
that the shock oscillates between 35% and 60% of chord with a frequency of 95 Hz, 
that is of the order of the experimental data. The numerical frequency is computed 
with a poor resolution, that depend on the duration of the computation. Because of the 
great number of time-steps per period, a small number of periods could have been 
computed. Moreover, no correction on the mach or the angle of attack have been 
considered to take into account the wall effects in the wind tunnel. Those effects could 
have an influence on the shock oscillations. 

3.2. Buffeting of the DYVAS Airfoil 

The same computation is done with a 2D airfoil that is deduced from the 3D wing 
using similarity relations and corresponds to the section at 66% of wing. The similarity 
relations give the flow conditions: 

0.82 
2 X 106 

2.72° { 

M2Doo 

--+ Re3D 

O!tocal2D 

0.737 
1.165 X 106 

3.02° 

The k-E model with wall functions is used with a mesh of 14884 nodes and 14546 
elements. The first layer is 5 x 10-4 chord thick (figure 6). 

The first 1500 time-steps are computed with local time-stepping and CFL set to 3. 
The following time-steps are computed with a global time increment such that 

t:.t = 1
/ fo = 1.0 x 10-5 s 

2000 

where the experimental shock oscillation frequency is fo = 50Hz. 
The computed frequency of the oscillations of lift is 45 Hz, close to the experimental 
results (see figures 7 and 8). 
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Figure 2. Fluid mesh around RAJ6SCJ aiifoil 

For the next simulation with the same model, a pitching motion is imposed on the 
airfoil following the law: 

{ 
a(t) 
a(t) 

0:2Doo +aamplSin
2 (27rjt) 

0:2Doo + O:ampl sin(27r ft) 
for t < 1/(4!) 
for t ~ 1/(4!) 

where aampl = 0.2°. The law in sin2 allows a zero initial velocity. The unsteady 
simulation is initialized with a steady case for an angle of attack of a 2Doo. This case is 
computed for the frequencies f = 40 Hz and f = 60 Hz with a global time increment 
D.t = 10-5 s. The computed lift frequencies for the cases at 40 Hz and 60Hz are 
respectively 42Hz and 47Hz (figure 9). 

3.3. 2D fluid-structure simulation with NACA 64A010airfoil 

The objective of this numerical example is to perform the flutter analysis of a rigid 
NACA 64A010 airfoil (NASA Ames model described in [DAY 83]). The fluid flow 
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Figure 3. Turbulent (k-c) mach contours 
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Figure 4. Chord-wise Cp distribution 
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has the following free-stream conditions: 

-M= = 0.796 

- u= = 267.5 rn!s 

-T= = 28l.OK 

- P= = 1.339 x 105 Pa 
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0.015 0.02 0.025 0.03 0.035 
time (s) 

The fluid domain is discretized with 7,626 nodes and 7,344 wedges (see Figure 10 for 
a global view of the mesh). A steady flow is first computed solving the compressible 
Euler equations and using a first-order time-marching scheme with local time-stepping 
and a CFL number set to 5. Steady pressure contours near the airfoil are presented in 
Figure 11. Pressure distribution on the upper and lower surfaces of the airfoil toge­
ther with a comparison with the experimental data presented in [DAY 83] is shown in 
Figure 12. 

The solid domain is meshed with 604 nodes and 246 hexahedra (see Figure 13). 
The airfoil is modeled as a hypoelastic material with a very large Young's modulus 
(E = 0(1020

) Pa) to achieve nearly perfect rigidity. The airfoil is free to rotate around 
a specified elastic axis. However, this axis is constrained to move only in a vertical 
direction. A large deformation formulation is used to simulate the airfoil displacement 
and rotation. Proper boundary conditions are applied to the airfoil in order to perform 
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Figure 6. Fluid mesh around Dyvas airfoil 

a simulation equivalent to a two degree-of-freedom structural problem [BIS 62] of the 
form 

mz- Sii + kzz 
-Sz +Iii+ kaa 

L [16] 
My [17] 

where z is the vertical displacement; a is the rotation around the elastic axis; m is 
the total mass; S = m(xcg - Xaxis) is the static unbalance about the elastic axis; I is 
the mass moment of inertia about the elastic axis; kz is the translational stiffness; k 01 

is the rotational stiffness; L is the aerodynamic lift; and My is the pitching moment 
(My > 0 nose-up). kz and k01 are chosen to obtain natural translational and rotational 
frequencies fz = 1/Tz =60Hz and fa = 1/T01 =65Hz. 

Two test cases are considered to analyze the behavior the fluid-solid system under 
both stable and unstable conditions. Equivalent structural characteristics of both cases 
are presented in Table I. The airfoil chord is 0.5 m and the elastic axis is located at 
24.8% of chord. 
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Figure 7. Chord-wise Cp distribution 
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Figure 9. Unsteady lift 

Xcg m I kz ka 
(%chord) (kg) (kg ·m2

) (N/m) (N/rad) 
Case I 17.0 10.0 9.57 X 10 l 1.42 X lOb 1.60 X 104 

Case II 43.4 10.0 2.18 X 10-l 1.42 X 106 3.64 X 104 

Table 1. NACA 64AOJO airfoil. Parameters of equivalent mechanical models. 

Both problems are initialized with the steady flow in the fluid domain and with 
initial translational and rotational velocities of 10-4 m/s and 10-4 rad/s in the solid 
domain. A first-order time-marching scheme is used in both domains with a global 
time-increment !:1t = Ta/500. Figures 14 and 15 present the vertical displacement of 
the elastic axis and the angle of rotation for Cases I and II. One can note the influence 
of the center of gravity location on the stability of the fluid-solid system. 

3.4. 3D flutter analysis with the DYVAS wing 

Two-dimensional fluid-structure calculations for a NACA064AO 10 airfoil have de­
monstrated the validity of the approach described in the second part. Current study 
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Figure 10. Fluid mesh for inviscid computation 

now focuses on the DYVAS wing model (see [MOR 91] and references therein). 

A structural finite element model has been designed to accurately replicate the dy­
namics of the experimental wing for the first two modes that are the source of potential 
flutter. Structural characteristics such as shell thicknesses, section positions and mate­
rial properties (Young's modulus, density ... ) have been selected to obtain frequencies 
and shapes of the first bending and torsion modes at 23.4 Hz and 31.8 Hz, respecti­
vely. A system of beams and concentrated masses is used at the root wing to match 
the experimental modes. Vertical stiffeners between the upper and lower wing surfaces 
are added along several sections to ensure reasonable rigidity of the wing panels. The 
solid domain is meshed with about 1900 thin shell ele~ents (see Figure 16). 

The fluid domain around the undeformed wing has been discrctized with 36,200 
nodes and 186,000 tetrahedra. 

The computation of the three-dimensional fluid-structure problem is done in two 
steps: 

- I. First, the coupled static problem is solved to obtain a steady deformed state. 
The flow is inviscid and is initialized with a uniform field (rather than with the field 
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Figure 11. Inviscid steady pressure contoursFluid mesh for inviscid computation 

Figure 12. lnviscid steady pressure distribution on airfoil 
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Figure 13. Fluid and solid meshes in the airfoil vicinity 
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Figure 14. Vertical displacement of elastic axis 
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Figure 15. Rotation of airfoil 

Figure 16. DYVAS wing solid mesh 
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Figure 17. Fluid mesh around DYVAS wing 

corresponding to the flow around the undeformed wing) to avoid large mesh defor­
mations during the initial time steps. The mesh velocities are not being fed back into 
the fluid equations [I] to enhance the robustness of the computation. This has no im­
pact on the final solution since we are solving for a steady solution ( w = 0 at the 
steady-state limit). 

- 2. Once the convergence of the fluid-structure static problem is achieved, flutter 
analysis is performed: a small vertical force is applied at the wing-tip during the first 
4 milliseconds of the computation to excite the first bending mode. The wing is then 
let free to move. A global time-increment !:lt = 4 x 10-4 s is used throughout the 
simulations. 

An analysis of the wing displacements is performed using a Fourier transform 
identification method [PO 91]. One should note that the accuracy of the frequency 
and damping factor depends mostly on the signal duration. Due to large computation 
costs, only five to six periods have been computed for each case, which leads to a 
frequency resolution of 4 Hz only. An improvement of the frequency resolution to I 
Hz would require at least 12 periods. 

Two test cases are considered to analyze the behavior of the fluid-structure system. 
For each free-stream condition, the dynamic pressure is chosen so that the system is 
either in a stable or an unstable flutter configuration. The fluid flow characteristics and 
the main results obtained are shown below for both test cases. Wing-tip displacements 
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Figure 18. Wing-tip vertical displacement 
( M= = 0.60, P;= = 0.9 bar) 

0.15 0.2 

are presented in Figures 18 to 21. Frequencies and damping factors are given in Tables 
2 to 5. 

{ 

M= = 0.6 
Case 1: T= = 277.1 K 

a= 1.03° 
Stable case: P;= = 0.9 bar 
Unstable case: P;= = 2.0 bar 

Fnum Onum Fexp Oexp 

(Hz) (damping factor) (Hz) (damping factor) 
26.4 0.051 26.1 
30.3 -0.010 30.9 

Table 2. M= = 0.60, P;= = 0.9 bar 
Frequencies and damping factors 

0.056 
0.014 
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Figure 19. Wing-tip vertical displacement 
(Moe = 0.60, Pioo = 2.0 bar) 

Fnum O::num 

(Hz) (damping factor) 
29.0 0.176 
30.0 8.2 x w- 4 

Table 3. Moo = 0.60, Pioo = 2.0 bar 
Frequencies and damping factors 

{

Moo= 0.78 
Case II: Too = 265.7 K 

a= 0.79° 

Stable case: Pioo = 0.9 bar 
Unstable case: Pioo = 1.5 bar 

Fnum O:'num Fexp O:exp 

(Hz) (damping factor) (Hz) (damping factor) 
29.4 0.0627 28.2 
29.6 3 x w- 4 30.0 

Table 4. Moo = 0.78, Pioo = 0.9 bar 
Frequencies and damping factors 

0.057 
0.019 

(\ 

0.2 

575 
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Figure 20. Wing-tip vertical displacement 
(Moo= 0.78, P; 00 = 0.9 bar) 
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Figure 21. Wing-tip vertical displacement 
(Moo = 0. 78, P; 00 = 1.5 bar) 
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Fnum O:'num 

(Hz) (damping factor) 
29.7 -0.0175 
30.6 0.1130 

Table 5. M00 = 0.78, P;00 = 1.5 bar 
Frequencies and damping factors 
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One can note discrepancies between the computation and the experiments, espe­
cially on damping factors. As pointed out above, this is due to poor frequency resolu­
tion (about 4 Hz). In both cases, the method gives good results for the most damped 
mode. However, a signal of greater duration is required to properly separate both fre­
quencies and determine the second mode damping factor precisely. 

4. Conclusions 

A numerical strategy has been presented to perform aeroelasticity simulations. It 
has been evaluated for a wide range of applications like buffeting, response to pres­
cribed motion, and fluid-structure flutter problems. The numerical method is based on 
the Galerkin Least Square Finite Element formulation of both solid mechanical and 
compressible Euler or Navier-Stokes equations. The same time discretization based on 
an implicit Newmark's algorithm is then used for both problems. The fluid equations 
are written in a ALE frame of reference and the fluid mesh modeled as a hyperelastic 
material is able to deform to make fluid boundaries follow solid boundaries. To take 
into account the turbulent effects, equations from the Spalart-Allmaras model or from 
the k-c; model are solved in a staggered fashion with the Navier-Stokes equations. In 
order to reduce mesh size close to wall, wall functions are added to the turbulence 
models. 

All this strategy has been first applied on buffeting simulation with 2D airfoils. The 
Spalart-Allmaras turbulence model damps out shock oscillations on upper surface, 
whereas the k-c: turbulence model gives results close to experimental data, even added 
with wall functions. Those ones seem then to be a good numerical tool for future 3D 
simulations with a reasonable number of mesh nodes. 

The numerical method described above have been applied to inviscid fluid-structure 
simulations and to flutter analysis. Dynamic computation was restarted from a steady 
converged solution. Because of a great number of time-steps per period, it ran on 
workstation during only few periods, what leads to a poor frequency resolution of 
few Hz. But results allow us to validate the method for coupling fluid-structure pro­
blems. Future works could focus on similar simulations in turbulent flows using wall 
functions and parallelized algorithms. 
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