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ABSTRACT
Wave energy converter (WEC) devices harness the renewable
ocean wave energy and convert it into useful forms of energy,
e.g. mechanical or electrical. This paper presents an advanced
3D computational framework to study the interaction between
water waves and WEC devices. The computational tool solves
the full Navier–Stokes equations and considers all important
effects impacting the device performance. To enable large-scale
simulations in fast turnaround times, the computational solver
was developed in an MPI parallel framework. A fast multigrid
preconditioned solver is introduced to solve the computationally
expensive pressure Poisson equation. The computational solver
was applied to two surface-piercing WEC geometries: bottom-
hinged cylinder and flap. Their numerically simulated response
was validated against experimental data. Additional simulations
were conducted to investigate the applicability of Froude
scaling in predicting full-scale WEC response from the model
experiments.
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1. Introduction

Ocean waves present a vast energy resource that has largely remained untapped.
According to the Electric Power Research Institute (Jacobson, Hagerman, &
Scott, 2011), the total recoverable wave energy along the U.S. shelf edge is 1170
TWh/yr, which is 30% of the nation’s total electricity demand. Drew, Plummer,
and Sahinkaya (2009) lists the benefits of harnessing wave energy compared
to other energy resources. Among all the renewable energy resources, ocean
waves have the maximum energy density and the least environmental impact.
Seasonal variability follows the electricity demands. Power can be generated for
90% of the time in contrast to 20–30% in solar and wind devices (Drew et al.,
2009). In order to leverage these benefits, substantial research and development
effort is still warranted towards making wave energy converter (WEC) devices
economically viable and commercially competitive. Folley (2016) details themain
reasons behind the slow progress of WEC technology: (1) WEC technologies
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that exist today have a wide range of design and operating principles, each
making a different demand on the numerical modelling technique; (2) being
a relatively new field, there is little consensus on a modelling technique for a
given WEC design; (3) field data for WECs are scarce because very few have
actually been deployed in oceans making it extremely difficult to validate and
calibrate a modelling technique. Therefore, in the absence of comprehensive
field data, it is crucial to have accurate modelling tools that are applicable to
‘real-life’ scenarios and capable of making correct predictions of WEC response
under realistic conditions. Such tools can then be reliably used to explore a broad
range of design space.

In the current work, we present an advanced computational framework that
solves the full 3D Navier–Stokes (N-S) equations in multi-phase flows and
accurately computes the interaction between waves and WEC devices. Because
no simplification is made in the hydrodynamic equations, all important effects
influencing the fluid–structure interaction (FSI) are resolved; hence, a wide vari-
ety ofWECdevices can be simulated. In the presentwork,wehave focused on two
devices: bottom-hinged pitching cylinder and flap-typeWECs. A clear advantage
of bottom-hinged devices is that in the event of a storm they can be made to sink
and lay at the sea bottom until calmer conditions prevail (Flocard & Finnigan,
2010), protecting them from extreme wave forces. These devices are designed to
operate at nearshore intermediate depths. According to Flocard and Finnigan
(2010), nearshore locations offer many advantages: WECs are protected from
extreme waves otherwise present in deep oceans; maintenance/installation costs
are smaller than in deep seas; compared to shoreline devices, nearshore locations
offer higher wave energy density and have negligible visual and environmental
impact. We present simulations of bottom-hinged WECs that pierce the water
free surface. Flocard and Finnigan (2012) experimentally observed that surface-
piercing WEC devices capture 15% more wave power than fully submerged
ones. That was attributed to a concentration of wave energy near the water free
surface. It is estimated that about 95% of the wave energy is contained within a
zone located between the water free surface and a water depth of a quarter of the
wavelength (Drew et al., 2009).

The numerical method employed in the current work is similar to the FSI
framework presented by Pathak and Raessi (2016a). In the present study, a
new multigrid preconditioned pressure Poisson solver is introduced, which
reduces the turnaround of large-scale parallel simulations significantly. The
organisation of the paper is as follows. An overview of WEC design techniques
is delineated in Section 2. Section 3 presents the governing equations. Their
numerical implementation is provided in Section 4. In Section 5, the numerical
framework is applied to two different types of WECs, where present simulations
are compared against published experimental data-sets. The simulations are
further used to investigate the applicability of the Froude scaling in predicting the
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response of WEC devices in the full scale from the model experiments. Finally,
the work is concluded in Section 6.

2. WEC design techniques

Significant engineering time and effort is required for finalising a WEC design
before deploying a full-scale WEC prototype in the ocean. This step requires
exploring various design spaces and the impact of different design parameters
on the power output. Commonly used tools for WEC design development
have traditionally been: (1) wave tank experiments with geometrically scaled
WEC models and (2) computational tools that are based on the potential flow
theory. We shall discuss the range of validity and limitation associated with both
approaches.

2.1. Experiments

Wave tank experiments withWECdevicemodels employ Froude’s theory, which
was originally formulated to compute drag on ships. According to this theory,
the total resistance on the ship is composed of wave drag (inertial) and viscous
drag (Lewis, 1988):

RT(total) = RR(wave)+ RF(viscous) (1)

First, the total drag RT ,model at a model scale is measured. The viscous resistance
RF,model is estimated using an empirical relation. The residual RR,model is found
by subtraction, RR,model = RT ,model − RF,model, and then scaled as:

RR,full = RR,model · λ3 (2)

where λ is the geometric Froude length factor. The viscous resistance RF,full is
computed using the same empirical relation as in the model scale. The total drag
at the full scale is then predicted as:

RT ,full = RR,full + RF,full (3)

The approach can be justified by considering the N-S equations. Hughes
(1993) shows that all the terms in the N-S equations are in similitude under
the Froude scaling with the exception of the viscous term. In other words, effects
like diffraction and radiation (even nonlinear) can be accurately represented by
Froude scaled model experiments.

A basic assumption in the above procedure is that the total force is a linear
superposition of independent inertial and viscous forces which follow their
individual scaling laws. However, this approach may not always work. For
illustration, we consider the work of Sarpkaya (1986), who studied the force on
a cylinder due to an oscillating flow. The inertial and viscous drag coefficients,
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Figure 1. The inertial coeffcient Cm as a function of the Keulegan–Carpenter (KC) number at two
β values, corresponding to a Froude length factor of 4.9.
Note: Adopted from Sarpkaya (1986).

represented, respectively by Cm and Cd , were computed as functions of two
quantities: the Keulegan–Carpenter number KC = UmT/D and β = D2/νT .
Here Um is the maximum relative velocity between the oscillating flow and the
rigid body, D is the cylinder diameter, T is the time period of the oscillating
flow and ν denotes the kinematic viscosity. The total force was assumed to be
a linear combination of drag and inertial forces (Morison, Johnson, & Schaaf,
1950; Sarpkaya, 1986),

F = 1
2
ρLDCd|U |U + 1

4
πρD2LCm

dU
dt

(4)

where L represents the length of the cylinder, ρ is the fluid density and U =
Um cos (2π t/T). The total force experienced by the cylinder was measured at
various KC and β . CoefficientsCd andCm were computed using Fourier analysis.
Figure 1, adopted fromSarpkaya (1986), showsCm for twovalues ofβ andvarious
KC numbers. Suppose the geometric length factor is λ in the Froude scaling, then
time scales as

√
λ, whileKC remains invariant andβ scales asλ3/2. In the example

shown in Figure 1, λ = 4.9, which means that β = 1035 at the model scale will
correspond to β = 11240 at the full scale. For small KC (KC < 6), Cm is a
constant with a value of about 2.0 for both values of β . Consequently, Froude
scaling of the inertial forces is valid in that range of KC number. However, at
higher KC numbers, Cm at the two scales become significantly different. For
example, at KC = 10, Cm = .81 at the model scale (β = 1035) and Cm = 1.81 at
the full scale (β = 11240). A Froude scaling of the inertial forces measured at the
model scale will result in an error of 135%. This example demonstrates that at
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higher KC numbers, viscous effects start affecting the inertial forces and the two
are no longer independent. It then becomes difficult for model scale experiments
to make reasonably accurate predictions at full scale.

2.2. Potential flow theory

We now consider computational tools for WEC analysis, which are based on
the potential flow theory and can be categorized into two groups: (1) frequency
domain models and (2) time domain models. The time domain models can
be further classified as: (1) Cummins theory-based methods, (2) perturbation-
based methods and (3) fully non-linear methods. A detailed discussion of these
methods can be found in Folley (2016) and Li and Yu (2012). Here, we provide
a brief summary.

2.2.1. Frequency domainmodels
Frequency domain models are the simplest of all and employ the linearised
potential flow equations and boundary conditions. A popular commercial code
using this approach isWAMIT (Lee &Newman, 2013). Here, the hydrodynamic
force is assumed to be a linear superposition of incident, diffracted and radiated
waves. The linear assumption is valid for small amplitude waves and small
device motion. For higher waves and larger device motion, e.g. at resonance,
the hydrodynamic components start interacting and linear superposition does
not hold anymore. Frequency domain models do not support nonlinear terms.
They cannot, therefore,model power take off (PTO) damping strategies designed
for maximum power extraction that are complex and highly nonlinear.

2.2.2. Time domainmodels
Time domain models provide a framework to include the nonlinear terms. The
simplest models in this category are based on the Cummins method (Cummins,
1962), where the hydrodynamic forces are considered to be linear. These models
can simulate more realistic irregular waves, which is a significant improvement
over frequency domain models that can handle only monochromatic waves. The
complexity of the time domainmodels can be enhanced by applying perturbation
theory. Here, the velocity potential, pressure and the free surface elevation are
expressed as perturbation series in wave steepness, ε, up to the desired order.
Perturbation-based models require wave steepness to be small, ε << 1, and the
WEC device to have small motions about its equilibrium position.

These limitations are overcome by the fully non-linear potential flow (FNPF)
models (Koo & Kim, 2004), through boundary conditions applied on moving
surfaces. These models, however, cannot model wave load due to wave breaking
around structures that can significantly impact the performance and survivability
of a WEC device. In want of a natural dissipation mechanism (viscosity) in the
FNPF models, instabilities arising due to large local deformation of water free
surface around moving structures may lead to simulation breakdown.
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2.2.3. Limitations of potential flow theory
A significant limitation of the models based on the potential flow theory is
the assumptions of inviscid and irrotational flow. These assumptions are not
generally true for WEC devices that have to undergo large motions to capture
a significant portion of wave energy. Potential flow models rely on a quadratic
expression borrowed fromMorison et al. (1950) to estimate the drag force:

Fd = −1
2
ρLDCd|Ur |Ur (5)

Substantial experimental data are needed to carry out Fourier analysis to compute
the drag coefficient Cd . Sarpkaya (1976) showed that at high KC numbers
(KC ∼ 15), the coefficients computed using this approach could not reproduce
the measured forces. To achieve a good agreement, additional terms had to be
added to Equation (5) by Sarpkaya (1976), and Fd was expressed as:

Fd = −1
2
ρLDCd|Ur |Ur − 1

2
ρDLU2

mηCL cos (3θ − φ) (6)

Here, the coefficients in the additional term, namely, φ, η and CL, are computed
based on experimental measurements. Equation (6) is not a general expression
and is valid only in the neighbourhood of KC = 15. Moreover, at high KC
numbers, as mentioned before, the viscous effects start interacting with inertial
forces, causing significant deviation from the potential flow predictions.

2.3. Computational fluid dynamics

Computational fluid dynamics (CFD) solvers consider the full N-S equations
and therefore can model effects like viscous layer separation, wave breaking
and overtopping that may significantly affect the performance of WEC devices.
CFD simulations are computationally demanding compared to the potential flow
solvers, but recent advancement in computational power andhardware resources
has made large-scale CFD simulations feasible.We next present a brief summary
on CFD methods that solve FSI involving a water free surface. A detailed dis-
cussion on such methods can be found in Haeri and Shrimpton (2012) and Li
and Yu (2012). We start with body conformal methods in which the mesh is
generated around the structure. Arbitrary Eulerian Lagrangian schemes fall into
this category (Farhat, Geuzaine, & Grandmont, 2001). As the structure moves,
remeshing is performed in each time step in the entire domain;meshing becomes
difficult for arbitrarily complex shaped geometries. Additionally, projecting the
solution to the new mesh (remapping) incurs significant overhead cost (Haeri &
Shrimpton, 2012). Computationally expensive remeshing/remapping operations
can be avoided by using the Immersed boundary (IB) and the fictitious domain
(FD)methods, which employ fixed grids. IBmethods introduce the effect of solid
boundary either by adding a forcing term in the N-S equations (Peskin, 1977)
or by imposing a velocity boundary condition in the vicinity of the structure
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boundary (Mohd-Yusof, 1997). In the body conformal and the IB methods, the
hydrodynamic forces on the structure are computed by explicit integration of
pressure and shear around the immersed surface. Hu and Joseph (1992) showed
that any scheme employing explicit integration in FSI problems will become
unstable if mass of the moving structure is less than the virtual (added) mass of
the surrounding fluid accelerated by it. Instabilities arising due to the explicit
integration were observed by Fekken (2004) and more recently by Calderer,
Kang, and Sotiropoulos (2014). To ensure numerical stability, Hu and Joseph
(1992) suggested that the equations of fluid flow and structure motion be solved
alternately till a convergence criterion is met. This approach is computationally
expensive because each call to the flow solver is time consuming and convergence
usually requires several such calls. This iterative procedure can be avoided with
the combined weak formulation suggested by Hesla (1991). The method was
further developed by Glowinski, Pan, Hesla, and Joseph (1999) who called it the
fictitious domain method. Later, Patankar, Singh, Joseph, Glowinski, and Pan
(2000) and Patankar (2001) made the method fast using conservation of linear
and angular momentum. Patankar’s approach was then implemented in a finite
volume framework by Sharma and Patankar (2005).

In the present work, we have used the fast fictitious domainmethod of Sharma
and Patankar (2005). However, in contrast to the Lagrangian description of the
moving structure in their work, we have used a fully Eulerian framework. A fully
Eulerian approach offers a number of advantages over a Lagrangian approach,
which were presented in Pathak and Raessi (2016a). Discretisation of surface-
piercing WECs on an Eulerian mesh involves cells with three phases (solid,
water, air), which are resolved using the 3D three-phase interface reconstruction
method of Pathak andRaessi (2016b). Including the air phase in the simulation of
WECs (and in the solution of the N-S equations) is important; it has been shown
by Iafrati, Babanin, and Onorato (2013) that air is responsible for significant
energy dissipation during wave breaking via formation of complex dipoles. The
water/air flow in the presence of a movingWEC is characterized by high density
ratios, which can pose numerical challenges. In this work, a consistent mass and
momentum transport scheme (Pathak & Raessi, 2016a; Raessi & Pitsch, 2012)
is used to treat such large density ratios and to avoid non-physical interfacial
deformation.

3. Governing equations

The two fluids, fluid 1 and fluid 2, interacting with the solid, rigid structure, are
assumed to be Newtonian and incompressible. In order to track the three phases
in our Eulerian grid, we define two volume-of-fluid (VOF) scalars f and ψ as,

f (�x) =
{
1 �x ∈ fluid1
0 �x /∈ fluid1

(7)
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ψ(�x) =
{
1 �x ∈ solid
0 �x /∈ solid

(8)

The density and viscosity at any point in the computational domain are defined
as,

ρ = f ρl + ψρs + (1 − ψ − f )ρg (9)
1
μ

= f
μl

+ 1 − f
μg

(10)

Here, ρl , ρg denote the densities, and μl , μg the dynamic viscosities of fluid
1 and fluid 2, respectively. Density of the solid structure is denoted by ρs.
Equation (10) is applied only on the fluid portion.

The flow field is solved using the continuity and momentum equations:

∇ · �U = 0 (11)
∂

∂t
(ρ �U)+ ∇ · (ρ �U �U) = −∇p + ∇ · τ + �FB + �FST + �FS (12)

Here, �U represents the velocity vector. In Equation (12), �FB, �FST and �FS denote
the body force (gravity), the surface tension force and the FSI force, respectively.
The pressure and stress tensor are denoted by p and τ , respectively.

The volumes of fluid 1 and the solid phase are tracked by solving the transport
equations of the VOF functions f and ψ :

∂f
∂t

+ �U · ∇f = 0 (13)

∂ψ

∂t
+ �U · ∇ψ = 0 (14)

At the boundaries of the computational domain,with the exceptionof thewave
inlet boundary, we impose no-slip and no-penetration boundary conditions:

�U · t̂s = 0 (15)
�U · n̂s = 0 (16)

A zero pressure gradient is imposed on all domain walls, including the wave inlet
boundary.

∂p
∂ns

= 0 (17)

Here, n̂s and t̂s are the normal and tangential unit vectors to a domain boundary.
The waves are introduced into the computational domain by imposing velocity
and surface elevation conditions obtained from the Stoke’s theory (Dean &
Dalrymple, 1991; Fenton, 1990) at the wave inlet boundary, which is detailed
in Section 4.
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4. Numerical implementation

The governing equations are discretized using the finite volume method. The
discrete equations are solved on a staggered grid where the pressure and VOF
scalars are defined at cell centre, while the velocities are defined at cell faces.
A detailed explanation of the solution procedure can be found in Pathak and
Raessi (2016a, 2016b). In the present work, however, we have used a faster and
highly scalable Poisson solver, which is a significant improvement over the Jacobi
preconditioned conjugate gradient algorithm used in Pathak and Raessi (2016a).
We first provide a brief outline of the solution procedure:

(a) By employing the two-step projection method (Chorin, 1968; Pathak &
Raessi, 2016a), Equations (11) and (12) are solved in the entire computa-
tional domain after setting the FSI force �Fs to zero.

(b) The velocity thus yielded is subjected to conservation of linear and an-
gular momentum in the solid region, which is used to obtain rigid body
translational and rotational velocities.

(c) The rigid body velocity is imposed inside the solid region. This step is
equivalent to applying the FSI force �Fs.

4.1. Consistent transport of three-phasemass andmomentum

Figure 2(a) shows the computational domain for modelling a surface-piercing
WEC device as an example. Numerical solution of such problems requires the
three-phase (liquid, gas, solid) cells to be resolved. A novel VOF-based method
detailed in Pathak and Raessi (2016b) is used to perform interface reconstruction
and compute mass fluxes in the three-phase cells.

For proper numerical treatment of the fluid flow involving large density ratios,
we transport mass and momentum using a consistent scheme. The scheme was
first developed by Rudman (1998) and later adopted in three-phase flows by
Pathak and Raessi (2016a). Here, the mass and momentum are transported
on fine and coarse grids, respectively, as illustrated in Figure 2(b) where the
coarse grid is shown with bold lines and the fine grid with thin. As an example,
the momentum control volume U is formed by the fine grid cells immediately
adjacent to the face on which U resides. The mass flux at the right face of this
control volume is computed on the fine grid and is bounded by the shown red
box. Since the same mass flux is used to transport both mass and momentum,
a tight coupling is established between the two transports. In high density ratio
flows, if the mass and momentum are not transported in a consistent manner,
the interface may suffer from severe deformations on account of numerically
propagated errors (Pathak & Raessi, 2016a; Raessi & Pitsch, 2012).
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4.2. Fluid–structure interaction

To capture the FSI, we use the fast fictitious domain method of Sharma and
Patankar (2005), which enforces rigidity in the computational cells containing
the solid phase. The fictitious domain method involves two stages:

(a) At a time leveln+1, the velocity �Un+1 yielded by theN-S solver is subjected
to linear and angularmomentumconservation (in the solid region) , which
yields the rigid body translational and rotational velocities, denoted by �Us
and �ωs, respectively, as shown below,

Ms �Us =
∫
ψ

ρs �Un+1dv (18)

Is �ωs =
∫
ψ

�r × ρs �Udv (19)

Here,Ms andρs are themass anddensity of the rigid structure, respectively.
The volume is denoted by v, and �r denotes the distance of an infinitesimal
volume dv from the centre of mass of the rigid body. The moment of
inertia Is is computed by:

Is =
∫
ψ

ρs[(�r · �r)I − �r ⊗ �r]dv (20)

The integrals in Equations (19) and (20) are computed using the 3D
geometric toolbox developed by Pathak and Raessi (2016b). A detailed
description of the above calculations can be found in Pathak and Raessi
(2016a).

(b) In the next step, the rigid body velocity is computed as follows and imposed
in the solid region.

�URBM = �Us + �ωs × �r (21)

This step is equivalent to applying a FSI force �Fn+1
s in the solid region as:

�Fn+1
S = ρs

�t

( �Un+1
RBM − �Un+1

)
(22)

4.3. The pressure Poisson solver

The discretisation of the pressure Poisson equation (23) leads to a system of
linear equations, Ax = b, where the divergence of �U∗ and �FST/ρ acts as the
source term b, and pressure p is the variable x.

−∇ ·
(∇pn+1

ρn+1

)
= − 1

�t
∇ · �U∗ − ∇ ·

( �Fn+1
ST
ρn+1

)
(23)

Two popular methods for solving a large system of linear equations, Ax =
b, are: (a) the preconditioned conjugate gradient method (PCG) and (b) the
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multigrid method. The number of iterations taken by PCG to converge to a fixed
tolerance increases with the condition number (κ) of matrixA and the mesh size
(�x) (Volker, 2013). In particular,

Niters ∼ O(√κ) and Niters ∼ O(1/�x) (24)

In multiphase flow applications, condition number κ is a strong function of the
density ratio and tends to acquire large values for high density ratio problems
(Duffy, Kuhnle, & Sussman, 2012). Compared to the PCGmethod, the multigrid
method showsmuch faster convergence rate primarily because it can dissipate ef-
fectively the low frequency residuals on coarser multigrid levels (Briggs, Henson,
& McCormick, 2000). The number of iterations taken by the multigrid method
is independent of mesh resolution, unlike in the PCG method. This property
makes the multigrid method highly scalable and parallelisable.

The multigrid method, however, may fail to converge if the source term b is
oscillating at a high frequency (Ernst & Gander, 2012). In multiphase flows, such
condition arises when the free surface is undergoing large deformation. Figure
3 shows an example where a small filament is formed when the water slams
against a moving structure. This results in a high frequency oscillation in the
source term, which is shown by labels bounded by blue. The example has been
taken from Pathak and Raessi (2016a, Section 4.4), where the free roll decay of a
rectangular barge was studied.

The PCG method is capable of effectively dissipating such highly oscillat-
ing residuals, but its convergence rate is slow due to the slowly decaying low
frequency residuals. Tatebe (1993) for the first time combined the CG and the
multigrid methods to propose a multigrid preconditioned scheme (MGPCG)
that is superior to either method. MGPCG inherited the best properties of MG
and PCG methods, which are:

(a) Faster convergence independent of mesh resolution, which leads to scal-
able and parallelisable algorithm.

(b) More robustness, especially in problems involving a highly oscillating
source term, similar to the example shown in Figure 3.

Tatebe (1993) showed that a multigrid preconditioner of CG reduced the con-
dition number (κ) of matrix A by clustering the eigenvalues around a particular
value. As a result, the number of iterations taken by CG to converge reduces
significantly.

We adopted Tatebe’s method in the present work, with a few modifications
that are listed below:

(a) The Bi-CGSTAB (Vorst, 1992) was used as the base solver. Although the
computational cost is twice that of the CG in each iteration, we found
Bi-CGSTAB to be more efficient in reducing the residuals.
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Figure 2. (a) A surface-piercing device pitching in response towaves. The triple point (contact line
in 3D)where all three phases, air/water/solid,meet is also shown, alongwith (b) amagnified view,
where the three-phase interface reconstruction and the numerical discretisation are illustrated.
Note: The mass flux at the right face of the U momentum control volume is bounded by red.

(b) The multigrid preconditioner was adopted from BoxLib’s library
(Bell et al., 2012), that uses Bi-CGSTAB at the coarsest multigrid level. The
time spent on Bi-CGSTAB at the coarsest level is insignificant because far
less number of cells reside on the coarsest level compared to the regular
grid.

The multigrid used in the present work employs a symmetric smoother, RBBR
Gauss–Seidel. The restriction operator was regular averaging; the prolongation
was its transpose, i.e. piecewise constant interpolation. This particular com-
bination of various components of the multigrid complies with the criteria
set forth to act as a preconditioner and ensures convergence (Duffy et al.,
2012; Tatebe, 1993). On rare occasions, the bottom Bi-CGSTAB is known to
breakdown on account of some coefficients becoming very close to zero. Such oc-
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Figure 4. The momentum control volumes near the wave inlet boundary B.
Note: The wet control volumes are prescribed a velocity according to the Stokes’ second-order wave theory.

currences are identified and the RBBR smoother is utilized at the coarsest level. In
Section 5.5.1, the performance of the new MG preconditioned Bi-CGSTAB
(MGPBi-CGSTAB) method in handling FSI problems will be assessed.

4.4. Wave generation

The wave generation method used in the present work has been adopted from
Jacobsen, Fuhrman, & Fredsøe (2012), and is briefly described here. Consider
the boundary B, shown by hashed symbols in Figure 4, that acts as a wave inlet
to the computational domain. The computational domain (wave tank) lies on
the right side of this boundary. The bold and thin lines represent the regular and
fine grids, respectively. In the current solver, there is one layer of ghost cells on
both fine and coarse grids. The volume fractions of the cells to the right of B
are computed by the flow solver. On the left, the volume fraction in each fine
grid ghost cell is computed based on the analytical free surface elevation and its
intersection with the cell. The analytical curve is from the Stokes’ second-order
wave theory (Fenton, 1990). The velocity control volumes (CVs) for velocity
components u and v have been shown in red and blue, respectively, in Figure 4.
The Stokes’ theory is used to prescribe the velocity in wet momentum CVs, and
a zero velocity is set in dry CVs. The prescribed velocities at the wave inlet B act
as a time-dependent boundary condition in the solver.
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5. Results

In this section, we assess the performance of the computational solver in simu-
lating two different geometries of bottom-hinged WEC devices: a cylinder and
a flap. The experimental data-set published in Flocard and Finnigan (2010),
Flocard and Finnigan (2012) and Wei, Rafiee, Henry, & Dias (2015) are chosen
as the benchmark solutions. First, numerically generated waves are validated
against theory and experiments.

5.1. Inlet wavemaker

The numerical waves generated using an inlet wave boundary condition are
validatedwith the Stokes’ second-orderwave theory, and experiments performed
by Flocard and Finnigan (2010). Following the experimental conditions (Flocard
& Finnigan, 2010, Figure 5), the ‘target’ waves have a height of H = 6.3 cm and
a period of T = 1.25 s. The wave height is the distance between the wave crest
and trough. The simulation used a mesh size of �x = 5mm which equates
to 12 cells per wave height. This validation test was run without a WEC, which
would otherwise disturb the wave field. Figure 5 shows the numerical free surface
elevation compared against the theory and experimental data-sets. Thenumerical
waves require a few periods to reach steady state, after which they are very
accurate, and agree well with both theory and experiment. Figure 5(b) shows
a magnified comparison between the results. The maximum difference in the
numerical and experimental wave heights is less than .2�x, which corresponds
to .02H.

5.2. Free pitch decay of a cylinder

The experiments conducted by Flocard and Finnigan (2010) were designed to
evaluate the power capture of a pitching cylinder point absorber. The experi-
ments were conducted in a wave flume with a width of 1.0m. The cylinder had
a radius of R = .1m, a height of .725m and was constrained to rotate about
a shaft located 6 cm above the wave tank floor. Free pitch decay experiments
were conducted to determine the natural frequency of the cylinder: the cylinder
was released from a pitch angle of θ = 30◦ in still water, and oscillated until
equilibrium. The natural frequency of the cylinder can be calculated through the
spectrum of the recorded time history. A water depth of .85m was used in the
numerical simulations in order to fully submerge the cylinder. Mesh resolutions
of 20 and 40 cells per diameter (CPD) were employed. As seen in Figure 6, the
response at the two resolutions is reasonably close and shows good agreement
with the experiment. The 40 CPD results were deemed accurate enough to justify
this resolution for simulating the pitch response of the cylinder in waves, which
will be presented in Section 5.3.

Figure 7 shows snapshots of the 40 CPD pitch decay simulation at key points
in time. Half of the water is made transparent for cylinder’s visibility. A plane
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Figure 5. The free surface elevation at a distance of 1.5 wavelengths away from the wave inlet for
(a) the full simulation time, and (b) the steady-state response.

located one radius below the tip of the vertical cylinder shows a non-dimensional
vorticity field,

ω∗
z =

(
(∇ × �U) · k̂

)
D/Ūcyl (25)

where Ūcyl is the mean velocity of the cylinder tip during its first half period
(Ūcyl = .7m/s). A large vortex forms behind the cylinder initially, and as the
cylinder changes direction after .7 s, the vortex scatters into smaller eddies. As
the cylinder rises from its initial position, a large cavity is formed on the water
free surface (see image at t = .5 s). The free surface deformations lead to small
breaking waves and air entrapment, which are eventually dispersed.
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Figure 6. Free pitch decay of a cylinder released from a 30◦ angle from the vertical.

5.3. Interaction of a cylinder-typeWECwith waves

In the experimental work of Flocard and Finnigan (2010), the cylinder’s pitch
response and power capture were measured when subjected to regular waves for
a variety of wave heights and frequencies. These waves are well approximated by
the Stokes’ second-order theory. Wave conditions of H =6.3 cm and T =1.56 s,
and a water depth of .7525m (Flocard & Finnigan, 2010, Figure 5) were chosen
for the numerical simulation. The numerical wave tankwas 32m (9wavelengths)
long. The PTO torque was modelled by a linear term:

τPTO = −CPTOθ̇ (26)

where CPTO = 10Nms/rad. Figure 8 shows the simulated cylinder pitching in
response to thewaves at different times. The extreme andmean cylinder positions
in an oscillation period are depicted. Only half the width of water is shown for the
cylinder’s visibility. The non-dimensional vorticity field is shown on a plane one
radius below the tip of the cylinder when it is at its mean position. The velocity
used in the non-dimensionalisation of the vorticity field, Equation (25), was the
root-mean square (RMS) of the cylinder’s tip velocity, oscillating at steady state.
A bias can be observed in the distribution of vortices: for waves travelling from
left to right, the vortices are concentrated upstream of the cylinder. The vortices
dissipatewhen the cylinder attains themaximumpitch, as seen in Figure 8(c), and
reappear when the cylinder pitches back (Figure 8(d)). The evolution of vortex
structure is repeated after each time period, which is also visible in similar vortex
patterns in Figure 8(a) and (d) that are one period apart. The simulated pitch
response in time is quantitatively compared with the experiments in Figure 9.
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There is a clear asymmetry in the experimental results, where the positive pitch
angle is approximately 8◦, while the negative pitch angle is approximately −6◦
(see Figure 9(b)). The numerical result on the other hand is nearly symmetric.
From Figure 9, it seems that there is a constant shift between the experimental
and numerical results. To further investigate this discrepancy, we study a later
work by Flocard and Finnigan (2012), which presents extensive experiments on
pitching cylinders. In that work, a pitch asymmetry response amplitude operator
RAOθasym was introduced to classify the asymmetry of the cylinder under various
wave conditions:

RAOθasym = (θmax + θmin)D/ai (27)
where D is the diameter of the cylinder, and ai is the amplitude of the incoming
waves. RAOθasym is mainly a function of the wave frequency fi, the natural fre-
quency fn of the cylinder, and the wave amplitude ai (Flocard & Finnigan, 2012).
RAOθasym is almost zero when fi matches fn (resonance), which is the case in the
present simulation, and generally increases in magnitude as |fi − fn| increases
(Flocard & Finnigan, 2012, Figure 5(b)). The experimental results reported in
Flocard and Finnigan (2010), shown in Figure 9, exhibitRAOθasym,exp,2010 = .22.
The present numerical result yields RAOθasym,num = .04. However, the experi-
mental results reported in Flocard and Finnigan (2012), which were conducted
under nearly identical conditions as in Flocard and Finnigan (2010), exhibit
RAOθasym,exp,2012 = .04, the same value that was obtained in our numerical
simulation. In fact, Flocard and Finnigan (2012) reported that RAOθasym = .22
is only achieved when the wave frequency and natural frequency of the cylinder
are highly disparate, which is not the case in this test problem. Unfortunately,
the pitch angle history was not reported by Flocard and Finnigan (2012), and,
therefore, a comparison with that work was not possible. Keeping the above
discrepancy in mind, the 2010 experiment is still useful for validation because it
presents the temporal data for the pitch. If RAOθasym, exp, 2012 is used to adjust
the 2010 experimental data, then, the numerical and experimental results show
excellent agreement (Figure 10).

The instantaneous power extracted by the power-take-off system is PPTO(t) =
CPTOθ̇

2. Regardless of the above discrepancy in the pitch angle symmetry, the
2010 experimental and the numerical results show an excellent agreement in θ̇ ,
and therefore in PPTO (not shown here).

5.4. Froude scaling of the cylinder’s pitch response

The experiments presented by Flocard and Finnigan (2010, 2012) were con-
ducted at the model scale. Froude scaling corresponding to a geometric length
scale of λ = 33 was used to design the cylinder and the wave tank. The
experiments were intended to predict the WEC device response at the full scale.
With our numerical simulations, we investigated the accuracy with which such
predictions can be made. We chose the numerical set-up and wave character-
istics presented in the previous test case. But this time we turned off the PTO
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Figure 8. Snapshots of a cylinder-type WEC pitching in response to waves with a height H =
6.3 cm and a time period T = 1.56 s.
Notes: The non-dimensional vorticity field evolution is shown along a plane at a depth of R = 10 cm below the tip
of the cylinder at its mean position. Positive denotes a counter clockwise vorticity.

damping to allowhigher device velocity relative to the surroundingwater.Higher
relative velocity translates to a higher KC number and an increasing likelihood
of deviating from Froude scaling.

Two simulations, one at model scale and another at full scale (Froude length
ratio 1:33), were performed. The pitch responses are shown in Figure 11. The
device assumes steady-state oscillations with an amplitude of 12◦. The responses
obtained at the model and full scales exactly overlap on each other, indicating
the validity of Froude scaling. For further insight into the test case, we plotted
in Figure 12 the x and z (streamwise and vertical) components of the cylinder
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Figure 9. Response of a pitching cylinder interacting with waves of H = 6.3 cm and T = 1.56 s.
The pitch angle is reported for (a) the entire simulation duration, and (b) the steady-state
response.

velocity against the corresponding wave velocities. The point on the cylinder
located at the mean water level was selected for plotting the device velocity.
Analytical expressions from the Stokes’ second-order theory were used to plot
the wave velocities. The maximum magnitude of the relative velocity between
the device and the wave, | �Udevice− �Uwave| is considered the characteristic velocity
Um in the expression for the KC number, KC = UmT/D. Following the above
approach, it is found that for the present simulation, KC = 4.18. Furthermore,
the above simulations verify, for the first time, that the Froude scaling is valid for
pitching cylinders in response to waves at KC = 4.18 (or smaller). The validity
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Figure 10. The numerical pitch response of the pitching cylinder is compared with the
experimental data of Flocard and Finnigan (2010) that is shifted to reflect RAOθasym,exp,2012
reported in Flocard and Finnigan (2012).

Figure 11. Pitch response of a cylinder at model and full scales is plotted at the model scale.
Notes: Since the Froude length factor λ = 33, the full scale time was reduced by a factor of

√
33 tomake the results

at the two scales comparable. The model scale wave characteristics are H = 6.3 cm and T = 1.56 s.

of Froude scaling at higher KC numbers needs to be verified for this problem.
We shall now briefly explain the importance of KC number on the validity of
Froude scaling.
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Figure 12. Velocity at a point on the pitching WEC device compared against the Stokes’ second-
order wave velocity.
Note: The point chosen on the device is located at the mean water level.

5.4.1. Discussion on KC number and Froude scaling
Sarpkaya (1976), in a pioneering work, established that the viscous drag force
on a cylinder due to oscillating surrounding fluid flow was a function of KC and
β . Under Froude scaling, the KC number remains invariant, but the Reynolds
number (and hence β) changes. As a result, viscous effects scale differently than
the other (inertial) forces. When viscous effects become important, one would
find significant differences between the total force predicted by the Froude-scaled
measurements performed on the model scale and the total force actually acting
at the full scale. Then, the experimental results at themodel scale cannot be relied
upon to correctly predict the response at the full scale. Sarpkaya (1986) showed
that for various β values, viscous forces start becoming significant relative to
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the inertial forces above KC = 10. The KC value of 10 is often cited (Caska &
Finnigan, 2008;Wei et al., 2015) and used forWECdevices of various geometries
as the point at which the Froude scaling breaks. It is important to note that in
Sarpkaya (1986), the rigid body was a fixed fully submerged cylinder exposed
to an oscillating cross flow. The effects present in that problem include only
the diffraction and the viscous drag. The RMS of the total force was given by
Sarpkaya (1986):

Cf (r.m.s) =
(
3
8
C2
d + π4C2

m

2(KC)2

) 1
2

(28)

where Cd and Cm were the coefficients of drag and inertia, respectively. It
can be seen in Equation (28) that the contribution of the inertial term drops
sharply as the KC number increases and at KC = 10, the viscous force becomes
dominant. In contrast, the problem studied in the present work (as well as
in Caska & Finnigan, 2008; Wei et al., 2015) involves a moving object and
therefore includes a radiation effect in addition to the diffraction and the viscous
effects. As a direct consequence, Equation (28) is not necessarily valid here
and the assumption that KC = 10 corresponds to a transition to the viscous
regime is a subject of further investigations. Themodel and full-scale simulations
presented above demonstrate that such a transition point is above KC = 4.18.
The simulations show that for KC ≤ 4.18, the Froude scaling holds, and the
model scale experiments can be safely used to extrapolate the WEC behaviour
at the full scale. Further research is warranted to identify a KC number above
which transition to viscous regime occurs for a cylinder pitching in response to
waves.

5.5. Pitch response of a flap-typeWEC

In this section, we simulate the pitch response of a flap-type WEC in water
waves. The particular test case was borrowed from Wei et al. (2015), which
presented results from the experiments conducted in the wave tank facility of
the Queen’s University, Belfast, Ireland. Figure 13 shows the schematic of the
numerical wave tank used in the present simulation. The computational domain
size is 28.8m× 4.608m× 1.152m. The water is .691m deep near the wave inlet
boundary located on the left end of the computational domain. The tank floor is
not flat andwater becomes shallowermoving away from thewave inlet. TheWEC
is a cuboid of size .12m× 1.04m× .48m, and is located in the centre of the tank
7.92m away from the wave inlet. The tip of the flap WEC is protruding the still
water level by .1m. The WEC is free to pitch about the circular hinge shown in
Figure 13. Themass andmoment of inertia of theWEC are 33 kg and 1.84 kgm2,
respectively, and the centre of mass is .16m above the circular hinge. A three-
dimensional view of the computational flap, the structure onwhich it ismounted,
and the tank floor are shown in Figure 14. The water waves are generated
by imposing a velocity and surface elevation according to the Stokes’ theory
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(Dean&Dalrymple, 1991) at thewave inlet. The steady-state wave characteristics
areH = .12mandT = 2 s. The simulationwas performed using a uniformmesh
that resolves the flap thickness with 10 cells.

Figure 15 shows snapshots of the flap pitching in response to the water waves.
Small secondarywaves reflected off the flap are visible in the t = 7.5 and t = 7.9 s
images. The pitching angle is plotted in Figure 16, where the simulated result is
compared with the experiments. During the transient period, t < 5s, an initial
forward devicemotion (negative pitch) can be seenwhen thewaves reach the flap,
which is not very well captured by the simulation. That can be attributed to the
wave generation methods used in the experiments and simulation, which result
in different transient regimes during the initial phase of the problem, a period
that is hardly of interest in wave energy conversion. As the time progresses, the
simulation shows very good agreement with the experimental pitch data.

Wei et al. (2015) reported experimental data obtained from multiple water
height probes. To take a closer look at the free surface dynamics near the WEC,
we chose probes 05 and 12 located .9m in front and .9m behind the WEC,
respectively. The free surface elevations at these probe locations are plotted in
Figure 17. At probe 05, the incident wave interacts with the waves radiating away
from the flap, which results in a ‘double trough’. This effect is captured accurately
by the simulation. The small ripples radiating away from the flap can also be seen
in the inset provided in Figure 17(a). The simulation is also able to capture the
asymmetry in surface elevations about the mean water level.

The results presented in this section demonstrate that the two-way interaction
between the waves and the pitching flap is captured very well by the solver. The
solver accurately predicts the WEC’s pitching motion in response to the water
waves as well as the effects of the flap motion on the free-surface dynamics.

5.5.1. The performance of MGPBi-CGSTAB pressure Poisson solver
Here, we assess the acceleration provided by theMGPBi-CGSTABmethod that is
introduced in this study to solve the pressure Poisson equation. The test problem
chosen for this purpose was presented above. The simulation included ∼42
million cells and was run on 75 processors. Figure 18 shows the residual history
for the MGPBi-CGSTAB and the Jacobi preconditioned conjugate gradient
methods. The multigrid preconditioner effectively dissipates the low frequency
errors resulting in much faster convergence and shorter run time as evident in
the figure. The acceleration factor achieved with MGPBi-CGSTAB is about 24X.
The runtime advantage of MGPBi-CGSTAB over PCG becomes even more for
large-scale problems with more computational cells due to high scalability and
parallelism of the multigrid method.

6. Summary and conclusion

The computational framework presented in this work solves the hydrodynamic
equations in the most generalized fashion, capturing all important effects im-
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Figure 15. Snapshot of a flap-typeWEC pitching in response to waves travelling from left to right.
Note: Water waves have a height of H = 12 cm and a time period of T = 2 s.

Figure 16. Pitch response of a flap-type WEC in water waves of H = 12 cm and T = 2 s.



200 A. PATHAK ET AL.

Figure 17. The free surface elevation at (a) probe location 05, and (b) probe location 12.

pacting the dynamics of a WEC device. However, the accuracy of the CFD
simulations comes with the burden of high computational costs in order to run
at a mesh resolution carrying minimal discretisation errors. With this in mind,
the present solver was developed in an MPI parallel environment. The pressure
Poisson solver, the computational bottleneck, was accelerated by implementing
a multigrid preconditioned Bi-CGSTAB solver, which demonstrated 24X speed-
up compared to the Jacobi preconditioned conjugate gradient solver for present
simulations. Special numerical schemes were employed to resolve three-phase
configurations and handle large density ratios between individual phases.

The computational solver was applied to two different geometries of bottom-
hinged pitching devices: cylinder and flap-type WECs. The simulation results
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Figure 18. The decay history of the residuals due to the multigrid preconditioned Bi-CGSTAB
method and Jacobi preconditioned conjugate gradient (PCG) method.
Note: The wall times spent by the two methods are shown in parentheses.

showed excellent agreement with published experimental data. The experiments
were conducted at model scales and were intended to predict, by Froude scaling,
the response of the full-scaleWECs in the ocean. Additional simulations demon-
strated the validity of Froude scaling on pitching cylinders when KC ≤ 4.2.
Further computational studies are needed to determine the KC value, at which
Froude scaling breaks.
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