
Numerical prediction of the fiber orientation 
in steady flows 

Francisco Chinesta* - Arnaud Poitou** - Rafael Torres*** 

* Materiaux Macromoleculaires 
Conservatoire National des Arts et Metiers 
292 rue Saint Martin, F-75141 Paris cedex 03 
chinesta@ lmt. ens-cachan.fr 
.. Laboratoire de Mecanique et Technologie 
ENS Cachan I C.N.R.S. I Universite Paris 6 
61, Avenue du President Wilson 
F-94235 Cachan cedex 
poitou@ lmt. ens-cachan.fr 
***Departamento de Mecdnica de los Medios Continuos 
Universidad Politecnica de Valencia 
Camino de Vera sin. 46071 Valencia. Spain 
rtorres@ gimn.upv.es 

RESUME. Cet article traite de Ia resolution numerique d 'equations qui decrivent l' ecoulement de 
suspensions de fibres dans un fluide newtonien (mise en forme de composites par extrusion). Ce 
modele met enjeu une equation de Stokes generalisee auxfluides anisotropes et une equation 
dite d'orientation qui est hyperbolique. Nous montrons que le systeme de Stokes se resout sans 
difficult€ par des methodes standard pour fluides incompressibles et ce papier traite essentielle­
ment de /'equation d'orientation. Nous comparons ici differentes techniques adaptees a priori 
aux equations hyperboliques (methode des caracteristiques, SUPG et volumes finis discontinus) 

ABSTRACT. Modelling fibers orientation induced by the flow of short fiber reinforced thermoplas­
tic involves a classical anisotropic Stokes flow problem and a hyperbolic 
orientation equation. This paper aims to achieve a comparison between different solution tech­
niques suited to the hyperbolicity of the orientation equation (viz. the method of characteristics, 
the SUPG method and the discontinuous finite volume method). 
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1. Introduction 

1.1. Framework 

As a consequence of the increasing use of composite materials, there has been 
much work on constitutive equations and computational mechanics for short fiber 
composites. Since these materials are generally made of a matrix and fiber reinforce­
ment, the mechanical properties of the conformed pieces depend greatly on the fibers 
orientation in the solid material. However, it turns out that this orientation is determi­
ned by the forming process, so that it is interesting to develop mathematical models 
for the flow during this conforming process and specific numerical strategies to solve 
the resulting equations. 

The resulting system of equations involves the coupling of an elliptic boundary va­
lue problem with a convection-type equation. The elliptic problem is associated with 
the momemtum equations whereas the convection equation describes the time evolu­
tion of the anisotropic viscosity tensor. The second problem presents two difficulties: 
it is non-linear and hyperbolic. Therefore, it is not possible to apply the common Ga­
lerkin formulation which is inefficient on convection problems. In this paper, different 
techniques to obtain numerical solutions of the steady convection equation are discus­
sed. 

1.2. State of the art 

Givler et al. [GN 82], and others, have studied the orientation process of a fiber 
which moves along a streamline from a boundary condition imposed at the inflow 
gates. The velocity field used in the construction of the streamlines was obtained by 
assuming that the fibers do not disturb the flow. However, this model becomes inade­
quate when the flow is strongly affected (flow contractions). 

Lipscomb et al. [LIP 88] simulate the flow with a finite element method which can 
be applied to complex domains. However, they assume the Evans hypothesis and im­
pose the local alignment of the fibers with the velocity. Similar results are presented by 
Chiba et al. [CHB 90], who also assume the Evans hypothesis, and use an alternating 
direction implicit method to solve the momemtum equations. 

There are also two-dimensional simulations coupling the motion and the orien­
tation equations. Ausias [AUS 91] solves the two-dimensional coupled model with a 
finite element discretization of the motion equations, and with an integration of the 
orientation equations by the method of characteristics. Allan et al. [ALT 92] study 
the coupled model by means of the uncoupled fixed point strategy. The fourth order 
orientation equation is solved by the method of characteristics and the finite diffe­
rence method is used to solve the momentum equations. Rosenberg et al. [ROS 90] 
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uses the method of characteristics to simulate non-recirculating flows of dilute fibers 
suspensions. 

Poitou et al. [POI 93] solve the two-dimensional steady state coupled model with 
an uncoupled strategy (fixed point), and use a SUPG finite element formulation to 
integrate the orientation equation. Convergence problems are detected for complex 
geometries. Chinesta et al. [CHI 95] analyze numerically the orientation in several 
recirculating flows. For general flows, they obtain the local alignment of the fibers with 
the flow, whose stability is proved numerically. Souloumiac [SOU 96] simulates the 
kinematic-orientation coupled model by means of an uncoupled fixed point strategy. 
To solve the orientation equation, he introduces the strain gradient tensor variable, 
and a Lesaint-Raviart technique (discontinuousGalerkin) for its discretization. Poitou 
et al. [POI 98] give a theoretical result concerning the uniqueness of the orientation 
equation solution in the steady state recirculating flows. This result makes it possible 
to use the method of characteristics in general flows, even with recirculating parts. 

In this paper, section 2 introduces the governing equations. It describes the fixed 
point algorithm which has been used, leading to a classical anisotropic Stokes flow 
problem. Section 3 focuses on the orientation equation. It emphasizes the problems 
associated with the singularities and those related to the closed vortices in steady state 
regimes, and describes the three different techniques which are compared in this paper, 
viz. the method of characteristics, the SUPG method and the finite volume disconti­
nuous method. Section 4 gives the results obtained on significative examples. 

2. Mathematical modelling 

The main feature of the anisotropic flow model related to the short fibers sus­
pensions is the kinematic-orientation coupling. Kinematics depends directly on the 
orientations field, as the fibers orientation process is a function of the flow kinematics. 
The mathematical modelling of the anisotropic suspensions is achieved by a spatial 
homogenization and a statistical average procedure within a representative volume 
[BAT 70, HIN 75, HIN 76, HAN 62, MES 97]. 

2.1. Governing equations 

- The momentum equation, without inertia and gravity contributions, has the 
following form 

Div g = Q [I] 

where g denotes the stress tensor. 

- The incompressibility condition is 
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Div ]1. = 0 [2) 

with ]1. the velocity vector. 

- The orientation equation, can be written, (i) neglecting the brownian effects, 
(ii) assuming that the particules have a quasi-infinite aspect ratio and (iii) using a 
quadratic closure approximation for the fourth-order orientation tensor 

Da oa 
D~ = 0~ + (]1. Grad) g = Grad(]L) g + g (Grad(]L))T - 2Tr(g g) g [3] 

where g_ represents the second-order orientation tensor, Grad(Q) the velocity gradient 
tensor, and !l. the deformation rate tensor. 
The eigenvaiues of the orientation tensor correspond to the probability to find the 
fibers in the direction of the corresponding eigenvectors. 

- If the ambient fluid is Newtonian and if one chooses a quadratic closure ap­
proximation for the fourth order orientation tensor, then the anisotropic constitutive 
law can be written as 

[4] 

where L denotes the identity tensor, 1-' is the effective viscosity and Np represents a 
non-negative scalar parameter (Np ~ 0) depending on the fiber aspect ratio and the 
fiber volume fraction. 

- The consistency conditions imposed on the orientation tensor are finally 

g=gT 

Tr(g) = 1 
with the eigenvalues Ai of the orientation tensor g verifying 0 $ Ai $ 1. 

[5] 

In the three-dimensional general case we obtain nine coupled partial differential 
equations with nine scalar fields as unknowns: the five independent components of 
the orientation tensor, the three components of the velocity vector and the pressure 
field. In the two-dimensional case, which will be treated in this work, we have two 
components of the orientation tensor, two components of the velocity vector and the 
pressure field. 

To represent the orientation state we use the fact that an eigenvalue of the orien­
tation tensor corresponds to the probability of finding the fibers in the direction of 
the corresponding eigenvector. In this form we will represent the orientation state in 
a point by means of an ellipse whose semiaxes correspond to the eigenvalues of the 
orientation tensor in this point and their directions correspond to their eigenvectors. 
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Instead of the second order orientation tensor, we can use the solution of the orien­
tation equation (3) given by [MES 97] 

Fao FT 
a= ---
= Tr(F g° FT) 

[6] 

where g0 represents the initial orientation (boundary conditions in the steady state 
case), and F is the deformation gradient solution of the convection problem 

DF 7ft = Grad(y_) F 
[7] 

F(~EL)=£: 

where the inflow boundary is denoted by r-

f_ = {~E80::f,y_T(~)!!(~)<0} [8] 

and !! is the unit outwards vector, normal to the boundary at the point ~· 

Obviously, this strategy to evaluate the orientation tensor can not be used in the 
recirculating parts of the flow. In this case, both the deformation gradient and the initial 
orientation state are a priori not defined. 

2.2. A fixed point strategy 

The determination of steady state solutions for this kind of constitutive relation 
presents similar difficulties to those found for viscoelastic fluids and more generally 
for all fluids with memory. Actually, the condition of steady flows is local only in eu­
lerian variables. This is the reason why we use a velocitiy formulation. But in this case 
the constitutive relation is not local in space since it includes history effects. If some 
streamlines of a steady state flow are closed, the situation is qualitatively complex, 
because the initial conditions, that are essential in every problem depending on the 
history and which correspond to the boundary conditions on the inflow boundaries in 
eulerian variables, do not exist in this case. Due to this fact, we look for an orientation 
tensor periodic in time when one follows a particule along a closed trajectory. 

We search for a numerical solution of a problem with zero traction on r 1 and with 
imposed velocity!!. = !!.g on r2. The boundary r2 is subdivided into r- and fa. 
Through r- the material is introduced into the domain and we impose an orientation 
tensor g0 and a velocity vector % ::/: Q). The fluid leaves the domain through f 1 
without any orientation condition being imposed. On the boundary f 0 = f 2 - f _ we 
assume !!.g = Q (no slip condition) and no orientation condition is required. 

The problem is then defined by: Find (y_, g, g) satisfying 

- Kinematic admissibility: 
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Q = 1/.g on r2 
DivQ= 0 inO 

[9] 

- Static admissibility: 

grr=.Q onft 
Div(g) = .Q in 0 

[10] 

- Constitutive relation: 

g = -pf: + 2p {g + Np Tr(gg) g} 

~ -Grad(Q)g- g(Grad(Q))T = -2Tr(gg)g [ 11 J 

g = g0 on r-

For the solution of the coupled problem we introduce a fixed point algorithm and 
sucessively solve the following two steps until convergence: 

Problem 1. In a first step, if the orientation tensor~ is known, the problem to be sol­
ved is expressed as a constrained minimization problem: 

Find Q E U, so that J (Q) reaches a minimum 

[12] 

Problem 2. In a second step, if the velocity field is known, the steady state orientation 
problem results in a convection-type problem, which can be expressed as: 

Find g, with g = gT andTr(g) = 1, verifying 

(1!. Grad) g - Grad(Q) g - g Grad(Q)T = 

= - 2 Tr(gg(1!.)) g in 0 [14] 

[15] 
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The initialization of the algorithm is carried out using the newtonian solution Np = 
0. The efficiency of this fixed point scheme can be enhanced by using the following 
strategy: we calculate first the coupled solution for a low Np value and then increment 
Np step by step. The initialization of the fixed point algorithm at each step is carried 
out with the coupled solution of the previous one. 

Velocity solver. 

Problem 1 can be written: 

Find Q E U such that 

fo Tr (g () dO = 0 

'VQ* E V 

with 

and 

V = { Q* E R2, Q* E (H1{0))2 , Q* = Q on f2} 

where H 1 (0) denotes the standard Sobolev space. 

[16] 

[17] 

[ 18] 

The discretization of the problem is carried out by the finite element method. In 
order to satisfy the Babuska Brezi's condition, the velocity is interpolated by P2 tri­
angles and the pressure by consistent Pl triangles. If n is the number of nodes used in 
the velocity approximation and m in the pressure approximation, the discretization of 
the variational formulation leads (before imposing the velocity boundary conditions) 
to the algebraic equation system 

,4(g) V + BT P = Q 
B V = Q 

[19] 

where A(g) is a matrix 2n x 2n depending on the fiber orientation field, B is a matrix 
m X 2n, and V, p denote the nodal velocities and pressures respectivelY. 

If we know the fiber orientation, then A (g.) is a symmetric and positive definite ma­
trix. The symmetry is a consequence of the-differential operator symmetry. To prove 
the positivity, the inequality Tr(~ g) > 0 must be verified, where the extra-stress 
tensor ~ is determined by the constitutive equation 

[20] 

from which 

Tr (~g) [21] 
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and we can notice immediately that the equality is obtained only if Tr(.!e) 0 (i.e. 
g = ~). -

The problem is solved by an augmented Lagrangian method [FOR 83]. 

Orientation problem. 

Problem 2 is hyperbolic, and in consequence appropriate discretization techniques 
must be used. Moreover the orientation equation exhibits some specific difficulties 
associated with the existence of singularities and discontinuities in the solution. The 
main results concerning the steady recirculating flows have been presented in [POI 98], 
and now we will focus our analysis on the non-recirculating flows. 

In some flows we can find characteristics along which Grad(!!.) = Q, and as a 
consequence 4 = Q. Along these characteristics there are no orientation effects and 
the fiber orientatim1remains invariant and keeps the initial value imposed on the inflow 
boundary. On the other hand, on characteristics located in the neighbourhood of the 
previous one, generally 4 f. Q, so the fibers rotate along these characteristics, which 
gives rise to a singularitY, To illustrate this phenomenon, we can take as an example a 
rectangular domain (.x, y) E [0, 0.1] x [0, 0], on which we consider a Poiseuille flow 
defined by the following velocity field: 

v~ v~(y) = y(O.Ol - y) 
Vy = 0 

[22] 

If we impose on the inflow boundary (.x = 0) an isotropic orientation ~0 = ~), 
the orientation evolution for different characteristics is represented in Fig. 1. We can 
notice that the time required for the fiber to align along the trajectories depends on the 
coordinate y. If we assume that the length of the domain is unbounded, and take into 
account two streamlines (the first one withy = 0.005, Grad(!!.) = Q and 4 = Q; and 
the second one withy= 0.005 + t:, Grad(!!.) f. Q and 4 f. Q), then if t: is a-very-small 
parameter, we can conclude that: - - -

[23] 

where ..\;(.x, y) are the eigenvalues of the orientation tensor at the point (.x, y). 

However, we can prove the continuity in the orientation tensor, with respect to 
(x,y). More precisely, it is easy to note that 

V "'( > 0, and Xc > 0, 31] so that 'r/.x $ Zc 

[24] 
lsup;l..\;(.x,y=0.005)I- sup;l..\;(.x,y=0.005+q)ll < 'Y 
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. · ... ~,,,,, ........................ ~-------~~"':::!:;~-~-~-
• • • • 0 • • • • • • 

0()C)~~~~~~~~''''''''' o·o:oooooooooo.oo.ooooo 
OO.OCJO&i?t?t?.d?~~/./////// . . . . . 

. ·b?~//////'../,.....-.......... ~~--~~~ . . . 

Figure 1. Orientation solution for a Poiseuille flow 

The position of the singularity is a priori known in the preceeding example. Thus 
we can expect that the effects of the singularity could be removed by means of a local 
remeshing. However, the difficulty increases when the position of these singularities 
is unknown. 

The only discontinuities in the orientation solution result from the orientation dis­
continuities on the inflow boundary. Due to the hyperbolic character of the equation, 
these eventual discontinuities are propagated inside the domain. 

3. Orientation solver 

3.1. The method of characteristics 

In this section, the velocity field is assumed to be given and we wish to solve the 
orientation equation (Problem 2) 

(!1. Grad) g =Grad(!!.) g + g (Grad(!!.))T - 2Tr(gg) g 

with an orientation condition on the inflow boundary 

glr_ = go 

[25] 

[26] 

Even for a given velocity field, this equation is non-linear due to the tenn Tr(g g) g. 

The characteristics are detennined by 

dt dx dy 
l = Vr = Vy 

[27] 

which are the streamlines for the steady state regimes. 
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If we define the tensor g as 

g = Grad(Q) g + g (Grad(Q)f - 2Tr(gfD g [28] 

by applying the method of the characteristics to the orientation equation (Eq. 3), we 
will obtain 

dt 
1 

dz dy 

Vy 

and taking into account the initial and/or the boundary conditions, we will have 

z = z(t); y = y(t); g = g(t) 

[29] 

[30] 

A fourth order Runge-Kutta scheme with control step has been used in the integra­
tions. At each point where we want to know the orientation, the characteristic must be 
reconstructed until it reaches r _, from where we must follow the flow in integrating 
the orientation equation from the boundary condition until returning to the starting 
point. 

3.2. SUPG finite elements formulation 

If we want to be able to use a fully coupled (kinematics-orientation) Newton-type 
algorithm, we need to use a eulerian formulation of the orientation equation. A pos­
sible technique for the discretization of the variational formulation of the orientation 
equation is the finite elements method. However, due to the non-linear hyperbolic cha­
racter of this equation, the Galerkin formulation can not be applied. We use a SUPG 
formulation (streamline upwind Petrov Galerkin) combined with a Newton-Raphson 
algorithm for the treatment of the non-linearity. 

3.2.1. Variationalformulation 

The orientation equation in the two-dimensional case consists of two independent 
scalar equations which in a steady state regime, are expressed in the cartesian system 
of coordinates as 

[31] 
v ~+v~ ,., ax Y oy 

where g is defined here by 

g = Grad(Q) g + g ( Grad(Q)) T 2 Tr(gg) g [32] 



Prediction of fiber orientation in steady flows 365 

This equation is satisfied in the domain 0 c R2, whose boundary is denoted by 
an. The orientation on the inflow boundary is given by 

[33] 

with 

r_ = {!:E80: !l!! < 0} [34] 

The Newton-Raphson method enables us to obtain the linearization of the set of 
equations (31) 

Vx 
8~:" + vy 

8~~" - :~~~ dan - :~~~ da12 = - Rl(an, a12) 

Vx 
8~:12 + vy 8~y'a - g~~~ dan - g~~~ da12 = - R2(an, a12) 

with the components of the residue vector R, R1 and R2. defined by 

v~+v~ x 8x Y 8y 

R2 = Vx 8g~a + Vy 8g~a c12(an, a12) 

[35] 

[36] 

If we take into account the flow incompressibility, the variational formulation of 
the problem (Eq. 35) is 

and 

3.2.2. Discretization 

The discretization is carried out with a weighted residual technique, over the trian­
gularization Tj of finite elements. A linear C 0 approximation is used for the interpo­
lation of the second-order orientation tensor components. The test functions dafi are 
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interpolated in each triangle according to 

~* ~*lN ~*aN ~*3N va;j = vaii 1 + va;j 2 + va;j 3 [39] 

and N j are obtained in a SUPG formulation from 

- (3h 8Ni 8Ni 
N j = Ni + 211.!1.11 ( v~ 8z + Vy 8y ) [40] 

where Ni are the standard shape functions and his the average length of the element in 
the convection direction. In a SUPG formulation of the convection-diffusion equation, 
(3 is a function of the Peclet number. In our case we consider (3 = 1. 

3.3. Discontinuous finite volume formulation 

Another scheme well adapted to the convection equations is the discontinuous 
finite volume method. We consider a conforming P 1 triangulation and for each node i 
the cell Vi formed by the mid point of the element edges joining at node i, as well as 
the barycentre of all the elements containing the node i [PIR 89]. In this way we relate 
the generic function !h, which is a piecewise polynomial of degree one and continuous 
over the triangulation, to a function A with a constant value in each volume Vi 

ihlv• = ~~il iJh(~) dO [41] 

The discontinuous Galerkin method allows us to write for each cell Vi 

= { [auh]QT.!! dS + { cu dO 
lav:. lv· 

where av~ represents the inflow boundary of the cell vi and [!h] represents the jump 
of the function !h across the inflow boundary av~ 

[fh](~) = limt-+o+(/h(~+EQ(~))- /h(~-f.!L(~)), 'v'~e8V~) [44] 
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3.3.1. Aspects related to the Newton method 

In this case, as for the upwind scheme of finite elements, the convergence of the 
fixed point algorithm is a difficult matter since: 

I. The convergence rate depends on the arbitrary initial orientation considered. 
2. In the first step of the iteration algorithm, an extremely small correction para­

meter is required in order to insure convergence. 

For this reason, we propose a globally convergent Newton's scheme to solve the 
non-linear orientation equation. This method converges towards the minimum of the 
residual, but it sometimes stops at a local minimum. In this situation, we propose a 
strategy with physical and heuristic basis, assuming that there is only one fiber orien­
tation solution with physical sense. Thus, when the globally convergent Newton's me­
thod reaches a minimum with non-zero residual (local minimum), the eigenvalues of 
the orientation tensor in each node are calculated, and when their values do not verify 
the conditions 

supAi < 1 
in/ Ai > 0 

[45] 

then the orientation at the node is substituted by the isotropic orientation L/2, and the 
minimization process is started again. -

3.3.2. The deformation gradient variable 

The previous method may be applied to solve the convection problem associated 
with the deformation gradient F, Eq.(1), in order to obtain the orientation tensor from 
Eq. (6). -

In this case the system is linear, and from Eq. (7) we obtain the following system 
of convection-type scalar equations 

V 8Fu 
z 8z 

V 8Fa1 
z 8z 

V 8F,3 
z 8z 

v 8Fn 
z 8z 

+ V 8Fp 
II lhi 

+ v !!.fu 
II lhJ 

+ v ~ 
II l!JI 

+v ~ II 811 

(GradQ)uFu + (Grad11.h2F21 
(GradQ)21Fu + (Grad11.)22F21 

(Grad11.)uF12 + (Grad11.)12F22 
(Grad11.)21F12 + (Grad11.)22F22 

[46] 

We can notice that the two first equations are decoupled with the two last ones. 
Moreover, the two resultant problems are identical except for the boundary conditions 
on f _ (F(~ E f _) = l). This fact and the linear character of the problem simplify 
notably the numerical sOiution. 
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The discretization scheme in this case takes the form 

1 - T 1 -- (Flkh] Q n. dS - (GradQ)u Flkh dO -
8V! V• 

v vi [471 

v vi [481 

fork= 1 and k = 2. 

This strategy can not be applied to treat steady state vortex flows, where neither 
the deformation gradient F nor the initial orientation rl are defined. 

4. Results and discussion 

In Table 2, we compare the numerical and the theoretical solutions of the orien­
tation in the middle point of the outflow boundary for a Poiseuille flow between two 
parallel plates when we impose an isotropic orientation at the inflow boundary. These 
results are obtained by using the discontinuous finite volume method to solve the 
orientation equation with the second order orientation tensor as unknown variable. 
The theoretical solution of this problem is shown in Fig. I. Obviously, we find a non­
physical orientation of the fibers on the characteristic line with zero deformation rate, 
and this non-physical effect is due to a numerical diffusion in the normal direction 
of the characteristics, and also to the non-consistent interpolation of the second order 
orientation tensor. The SUPG formulation in finite elements gives us similar results. 

1500 0.5 0.0 0.9349 0.00380 
3400 0.5 0.0 0.9290 -0.0023 
12600 0.5 0.0 0.8925 -0.0045 

Figure 2. Poiseuille flow: orientation in the mid point at the outflow boundary 
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Figure 3. Numerical solution: formulation with the orientation tensor as unknown 
variable 

We can also see in Table 2, that this diffusion can not be removed by reme­
shing, because it is not justified to use so many degrees of freedom to solve such a 
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simple problem. To understand the problems associated with the orientation interpo­
lation, we can consider the interpolation of two orientations defined at two points 
by (al 1 = 1, ab = 0) and (a~1 = 0, a~2 = 0). The standard interpolation 
at a mid point located between the previous ones, gives us the isotropic orientation 
(au = !, a12 = 0). Thus, from a perfect alignment of the fibers in both cases, we 
obtain an isotropic interpolated orientation. We can conclude that the fiber orienta­
tion probability is modified by the interpolation of the second order orientation tensor. 
More physical solutions are obtained by the interpolation of eigenvalues and eigen­
vectors, that gives us the alignment of the fibers in the direction making 45° with the 

d. . ( - 1 - 1) x- 1rect10n au- 2,a12- 2 · 

It is easy to prove that interpolations of the deformation gradient do not change the 
orientation probability in the preceeding way. If we solve the equation that governs the 
evolution of the deformation gradient in order to calculate the orientation, we obtain 
the results shown in Table 4, where the discontinuous finite volume method is used 
to solve the convection problem associated with the strain gradient variable. Another 
advantage of using this variable is that then the convection problem is linear, and no 
iteration scheme is required. 

g 0.5 0.0 
F 0.5 0.0 

anum 
u 

0.9349 
0.5048 

anum 
12 

o.oo380 I 
0.07325 

Figure 4. Poiseuille flow: orientation in the mid point at the outflow boundary 

However, for more complex geometries, the difficulty increases even when we 
use the deformation gradient as variable. Fig. 3 shows the orientation solution in a T 
domain with the second order orientation tensor as a variable and 5300 dof. Since 
the orientation condition imposed on the inflow boundary is the local alignment of 
the fibers with the flow, and since this orientation is a local solution of the orientation 
problem, we can conclude that the local alignment of the fibers with the flow is the 
solution at each point in the domain. This solution is shown in Fig. 5. As we can notice 
from the comparison of Figs. 3 and 5, the problems associated with the interpolation 
of g subsist, and they are propagated due to the convective character of the equation. 

If we look for the error associated with solutions obtained with different meshes 
from the theoretical solution (local alignment of the fibers with the flow), we can prove 
that the error decreases slowly with the remeshing. 
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Figure 5. Reference solution: local alignmentofthefibers with the flow 
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Figure 6. Numerical solution: formulation with the deformation gradient as unk­
nown variable. Zoom in the neighborhood of the corner 

Moreover, if we change the variable of the model, taking into account the better 
interpolation properties of the deformation gradient, the problems still remain. In this 
case, the singularities located in the comers of the boundary introduce a distortion in 
the fiber orientation that is convected by the flow, and the singularity persists with 
remeshing. Fig. 6 shows the solution in the comer neighborhood with 15100 do f. For 
this reason, the convergence rate to the reference solution is very slow, and it is not 
possible to avoid the singularities with the introduction of extra-boundary conditions 
due to the singularity of the deformation gradient in the boundaries with zero velocity. 
However if we work with the variable l!. these problems may be removed by imposing 
local alignment of the fibers with the boundary, which also improves the convergence 
rate of the non-linear iteration scheme. 
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S. Conclusions 

Different discretization techniques well adapted to the convection problems have 
been analyzed, and we have pointed out their limitations for the resolution of the 
orientation field in certain flows with industrial interest. From this analysis, we can 
conclude, like many authors working in the field of hyperbolic equations, that the 
method of characteristics is the most accurate for this type of problems [POI 98]. 
After [POI 98] this method may also also applied in the case of steady recirculating 
flows. In the same work we have shown that SUPG or discontinuous finite volumes 
techniques fail to give even approximated solutions in recirculating flows, and now 
other problems associated with the functional approximations, the treatment of the 
non linearities, and the existence of singularities in the fiber orientation solution, are 
pointed out. Another difficulty concerns the use of fully coupled schemes to solve 
the coupled model kinematic-orientation, which usually requires the use of a eulerian 
formulation of the orientation problem. With regard to the other techniques, we must 
continue with the study of the limitations in order to identify those that are inherent 
and those that could be removed with an appropriate remeshing or with better models, 
interpolations and discretization techniques. 
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