
A co eight node finite element 
based on a shell theory 

Comparison with the degenerated approach 

Olivier Polit* ** - Maurice Touratier* 

* LM2S- UPRES A 8007- ENSAM 151 Bd de l'hopital- 75013 Paris 
** Universite Paris X- JUT- Dep. GMP 1 Chemin Desvallieres 
F-92410- Ville d'Avray 

ABSTRACT. The development of ()l eight node shell finite elements based upon the Reissner­
Mindlin kinematics for geometrically and materially linear applications in structural 
mechanics is presented. Special attention is given ta the two ways of obtaining a shell finite 
element : shell theory and degenerated solid approach. We compare, with the same 
mechanical assumptions and the same finite element approximations, a new eight node semi­
thick shell finite element based on a doubly curved shell theory ( M2D) and an eight node finite 
element based on the degenerated approach ( MDG ). These two finite elements have the same 
five degrees of freedom (three translations and two rotations), use an explicit integration 
throughout the thickness and the same methodology to avoid shear and membrane locking. 

RESUME. Ce travail concerne le developpement d'elements finis ()l a huit nauds bases sur le 
modele de Reissner-Mindlin pour ['analyse lineaire des coques. Notre attention se porte plus 
particulierement sur ['utilisation d'un modele de coque a double courbure par rapport a 
l'approche classique 3D degeneree. Nous comparons un nouvel eLement fini base sur un 
modele de coque (M2D) et un elimentfini obtenu selon ['approche 3D degeneree (MDG), base 
sur les memes hypotheses mecaniques et les memes approximations eLement fini. Ces deux 
elements finis ant cinq degres de liberte par naud (trois translations et deux rotations), 
utilisent une integration explicite suivant l'epaisseur et fa meme mithodologie pour corriger 
les phenomemes de verrouillage. 

KEY WORDS : shell theory, degenerated approach, finite element, shear locking, membrane 
locking, linear static tests. 
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1. Introduction 

Shell finite element developments have received considerable attention in the 
literature for many decades and many papers have been published. Some survey 
papers are available, see for instance References [Wem89], [Yan90], [Ide81], 
[Gil91], and a list of books, monographs, conference proceedings in ReferPnce 
[Noo89]. 

This paper first deals with the choice of the shell model used to derive 
an efficient shell finite element. From a doubly curved shell theory, a new 
finite element is presented and compared with a finite element based on the 
degenerated solid approach using the same interpolations. In the literature, a 
discussion is always present about advantages and disadvantages of these two 
approaches for obtaining efficient numerical models (see for example References 
[Wem89, Gil91, Par89, Bue92]). These two C0 shell finite elements have eight 
nodes with fully standard degrees of freedom for geometric and materially linear 
studies. 

Since the eight node shell of Ahmad et al [Ahm70] [Coo74] where the de­
generated approach was first introduced, few papers exist on new eight nodes. 
In References [Bat86] and [Hua86], eight nodes are introduced which are found 
less suitable than the new nine nodes presented by the same authors in [Buc93] 
and [Hua86]. Many papers have been published on four and nine node elements 
(see for instance References [Par89], [Pin89], [Sim89] and [And93]). This may 
be due to the fact that locking is even more pronounced for eight node elements 
than for four and nine types, and that eight nodes do not pass the constant 
curvature patch-test [Mac92]. In addition, the reduced integration is sufficient 
to correct the weakness of four and nine nodes introducing spurious mecha­
nisms which must be controlled. Reduced integration does not in fact, permit 
completely avoiding the transverse shear locking for eight node finite elements 
[Hin86]. 

Objectives are to control the two numerical pathologies appearing when the 
shell becomes very thin : 

transverse shear locking which is also present in the case of plate struc­
tures, 

membrane locking which occurs only for some shell configurations called 
inextensional bending [Bel85], or non-inhibited pure bending [San89] from 
an asymptotic study of the response of elastic shells when the thickness 
tends towards zero. 

A definition of the locking is given in [Bab92] as a non-uniformity of the con­
vergence with respect to the thickness. The first attempt to avoid the locking 
phenomena in eight node shells has been proposed by Ahmad where reduced in­
tegration is used with a transverse shear correction factor. Other works on eight 
nodes based upon the degenerated approach are shown in [Bat86] and [Hua86]. 
In [Bat86], a mixed interpolation of tensorial components of the strains is in-
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troduced, while in [Hua86] assumed strain interpolations are required with a 
partial reduced integration. 

The originality of the present work is in the obtaining of a new eight node 
shell finite element with engineering degrees of freedom based on a doubly 
curved shell theory. It is based on a displacement variational formulation using 
difi'erential geometry, tensorial calculations and an explicit integration through­
out. the thickness. It seems there are no other published works on C0 eight node 
shell finite elements based on a curvilinear approach with standard engineering 
degrees of freedom. In addition, a comparison with an eight node finite element 
based on the degenerated approach using the same finite element approxima­
tion is conducted. This finite element approximation has been proposed in the 
assumed natural strain context. 

The next section allows us to present succintly some geometric features 
for shells and we introduce the shell models (kinematics and strain tensor) in 
the third section. Section four is dedicated to the finite element approximation. 
Finally these finite elements have been evaluated on standard tests : membrane 
tests, Scordelis-Lo roof (cylindrical panel), pinched cylinder and hemispherical 
shell. 

2. Geometric considerations 

To define geometric and mechanical properties of the shell, three different base 
vectors are introduced : 

i- global cartesian base vectors ( e1, e2, e3) used to define the geometry of the 
shell, 

ii- local curvilinear base vectors (al' az, 0:3) : the vectors (al' az) define the 
tangent plane of the shell middle surface while a3 is associated with the 
normal direction. These base vectors will be described later, 

iii- local orthonormal curvilinear base vectors (i;, £;, i;) : we prescribe i; = 
a3 . In this work, the definition of these base vectors is classic (see [Bat92], 
p. 237). 

A map f'o is introduced to define the shell middle surface S, and the shell 
thickness is given by the function e(et, ez). Therefore an arbitrary point of the 
shell is given by : 

For a point on the shell middle surface, covariant base vectors are usually 
obtained as follows : 
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(2) 

In equation (2) and further on, latin indices i,j, ... take their values in the 
set { 1. 2, 3} while greek indices a, (3, ... take their values in the set { 1. 2}. The 
sumnuttion convention on repeated indices and the classic notation ( ) .n = 
iJ( ) 
--are used. 
i)~<> 

For any point of the shell, covariant base vectors are now deduced as : 

(3) 

The mixed tensor 1n~ must also be introduced and is defined by the relation : 

(4) 

where fL = det(!L~) = 1- 2He + (e)2 K ; H = ~tr(b~) K = det(b~). 
Finally, the base vector change can be written under the following matrix 

relations : 

[ ~ ] = [T A] [ ~~ ] [TA] = [ ~:·§ 
~2 ~ 

] with 
a .t1 

(5) 
a .t2 a2.0 

[ ~ ] = [TG] [ ~~ ] [TG] = [ ~~·§ 
;;2-

] with 
g .t1 

(6) -'2 -g .t2 g .t2 

Introducing equation (3) into (6) and using (5), we obtain [TG] as a function 
of [T A] and curvature tensor components b~ : 

[TG] = __!:. ([TA] +e [TA] [Ibm]) 
fL 

with [Ib ] - [ -b~ b~ ] m - b2 -b1 
1 1 

3. Strain expression for the curvilinear shell model 

3 .1. Displacement vector 

The three-dimensional displacement vector is defined as follows : 

(7) 

(8) 

In this expression, ii is the displacement vector of any point of the shell, 
while v is the displacement vector of any point of the shell middle surface and 
iJ is the rotation vector associated with the normal fiber of the shell. 

The covariant components of displacement and rotation vectors with respect 
to the two curvilinear base vectors previously introduced can be expressed as : 
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fl;iJ/ = V;f 

!Jo.iin = fJcrf' 
(9) 

From the definition of the normal vector, it should be notice that. we have 
'1':3 = D3. 

3.2. Strain tensor 

The strain tensor can be defined by its covariant components using either iii 
or fi curvilinear bases as : 

(10) 

After some algebraic transformations, expressions of covariant components 
of the strain tensor can be written as : 

(11) 
where 

{ 

tJ n{3 
-1 
f 01.{3 
-0 "f n3 

= Val8- b0 13V3 

= ~a[}3 
= /3a + V3la + bJV, 

( 12) 

Covariant components f;.J of the strain tensor introduced in equation (10) 
can be derived from equation (11) by means of a classic tensorial transforma­
tion. 

3.3. Matrix expression of the strain tensor 

Matrix expressions of the strain tensor associated with the pure bidimensional 
shell model are now given. 

In-plane strains 
The matrix form of the in-plane strain components deduced from equations 

( 11) are computed with respect to the base vectors £i as : 

[t:] = [ :~~ l = [TT] [ ~~~ l 
"fl2 "fl2 

{13) 

Relation "fl2 = t:12 + t:21 is of course included in equation (13), and [TT] 
is the tensorial transformation matrix between the two curvilinear bases, see 
equation (10). Its expression is : 
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The second matrix in the right member of equation (13) can be written in 
t.he following form : 

where the matrices [G1] and [G2] are defined by : 

[ 

1 0 0 0] 
[G1] = 0 1 0 0 

0 0 1 1 

and the generalized strain matrices are : 

[ -o]T [ =0 =0 =0 =0 ] E = t 11 t 22 t 12 t 21 [ -I]T [ 1 E = l u 

Tmnsverse shear strains 

&2 
1 

0 
b1 

-1 

() l b~ 
-b~ 

(15) 

-1 
E 21 

A matrix expression for the transverse shear strains is derived from the 
above method. We obtain : 

(16) 

'th [G-o] T [ -o -o ] WI = "( 13 "( 23 

Expressions (15) and (16) will be very useful later during the finite element 
approximations of the shell models, and especially to help carefully interpolate 
membrane and transverse shear strains to avoid locking phenomena. 

3.4. About the degenemted approach 

The strain components for the degenerated approach can be derived using the 
matrix expressions obtained previously for the curvilinear shell model. 

For the degenerated approach, the displacement vectors i1 introduced in 
(8) differ from (9) only by the definition of the displacement vector v of a 
point of the shell middle surface. This displacement is expressed with respect 



An eight node curved shell finite element 117 

to the cartesian base vectors e;, while for the pure bidimensional shell model 
we use the curvilinear orthonormal base vectors f;. We therefore have for the 
dC'generated approach : 

v = ViEi (17) 

The matrix expression of the strain is then given by equations (15) and (16), 
using the expression of the generalized strain for the degenerated approach 
given by: 

[£0( = [ -0 e 11 
-0 e 22 

-0 e 12 e021 

{ 
-0 iia.V,-y 

[£1( = [ 
e o-y 

-1 -1 -1 -1 with -1 iia.iJ.-y e 11 e 22 e 12 e 21 e o-y 
-0 ii0 .(1 + ii:J. fi,,. g o3 

[D0
( = [ §0

13 
-0 g 23 

(18) 
This last expression (18) must be compared with equation (12) for the curvi­

linear shell model. Coupling due to curvature in EafJ0 and "Ya3° (see equation 
(12)) is evident while for the degenerated approach (see equation (18)) this 
coupling is included in the scalar products. 

4. Finite element approximation 

4.1. The weak form of the boundary-value problem for shells 

A shell is deduced from a middle surface S and a thickness e as defined above. 
V is the space occupied by the shell and 8Vp is its boundary part where loads 
are prescribed. 

Let a denote the Cauchy stress tensor, land F being respectively the pre­
scribed body and surface force vectors. Because the shell thickness is small in 
comparison with the other dimensions, the normal transverse stress is assumed 
to be zero. 

Using the matrix notation introduced in section 3., the principle of virtual 
power for a linearly elastostatic problem is given by : 

Find i1 E U so that : 

{ [D*]T[a]dV = { [u*]T[f]dV + { [u*JT[F]d8V, Vii* E U* (19) h h k~ 

where [u*J is the matrix notation of the virtual velocity vector il* and 
[D*] is the matrix notation of the virtual strain rate tensor components D;1 . 

[a] , [!] , [FJ are the matrix notations associated respectively with the Cauchy 
stress tensor, prescribed body and surface force vectors. The two functional 
spaces U and U* are respectively the space of kinematically admissible dis­
placements and the space of virtual velocities. 
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Then, if we let C;1 ~c1 be the elastic constants for an homogeneous material. 
and [CJ its corresponding matrix notation, we have : 

[!J'J = [C'] [ l~JJ ] with [!J'JT = [ !J' 11 ()'2'2 ()'12 (J'l:l !J'2:l l 

[CJ = [ [C,J 
[OJ 

[OJ ] 
[C-yJ (20) 

[D*JT = [ [c*JT b*JT ] with { [c:J: = [ ~'i; t22 ,;.2 
b J = [ /13 ~~h l 

In equation (20), [CJ is the matrix associated with the two-dimensional 
constitutive law which takes into account the assumption of zero transverse 
normal stress. 

Development of the left member of the functional defined in equation ( 19) 
can now be made by splitting this last equation into its in-surface strain and 
its transverse shear strain parts. It follows that : 

From equations (13) and (15), an explicit integration through the thickness 
of the shell can be performed, using second order series expansion for 1/ fl. 
Finally, the following integrated matrices are at most of the third order with 
respect to the thickness e and we denote : 

Je/2 (<E3)n 3 . 
[C,aJ = -- [C,J d<E w1th a= 0, 1, 2. 

-e/2 1-l 
(22) 

As for the in-surface strains above, an explicit integration throughout the 
thickness is performed for the transverse shear part and gives us the following 
matrices: 

(23) 

4.2. The discrete form of the boundary-value problem for shells 

To solve equation (19), finite-dimensional approximations of the spaces U and 
U* must be defined. We denote Uh and u•h these finite-dimensional sub­
spaces, where the superscript h refers to a discretisation of the middle surface 
which contains nelt finite elements, denoted by (Oe )e=l.n,,. 

Let liS now consider an element Oe of the middle surface's discretisation. 
The element has eight nodes (see Figure 1) and is mapped from the standard 
isoparametric quadrilateral element (denoted Oref) by a one-to-one and onto 
mapping. Problem (19) can be written in the following form. 
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Find 17h E Uh so that : 

n,1, n,,, n,:/1 

L:.>(a",il*h)1o, = Lf(u*h)1o, + L.':F(u*h)1ao, , va·h E u•h (24) 
e=l e=l e=l 

with 

a(i1".u*")lo, =ln. ([.tO•h( ([TGllC<OJ + [TG12C<l] + [TG21C<l] 

+ [TG22C<2]) [£0hj + [£ioh( [TG11C<2] [£1h] + 
[E0*h( ([TGllC<lJ + [TG12C<2] + [TG21C<2]) [£ 11t] + 
[£ioh( ([TGllC<l] + [TG12C<2] + [TG21C<2]) [£0h] + 
[G0*"( (lTA]T [C-rOJ [TA] +[TAr [C-rlJ [TA] [Ibm]T + 

[Ibm] [TA( [C-rlJ [TAJ) [G0"J) vadede 
(25) 

where [E0*"] (respectively [£Ioh]) has the same expression as [£0h] (re­
spectively [ E 1 h]) for the virtual velocity vector, and where it has been denoted : 

4 
ll 

3 

7 

~8 6 ~ 

5 

1 2 

Figure 1: The reference closed domain flref in isopammetric co-ordinates(~, ry) 

For each element, the geometry is deduced from the classic Serendipity 
interpolation as : 

(26) 
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where N, (~, 17) are quadratic Serendipity interpolation functions and .r 1 , (for 
example) is the first cartesian co-ordinate of the ith node of the element. The 
reduced co-ordinates are classically defined by ( C 17) E [ -1, 1]2, see Figure 1. 

According to the above notation, the reduced co-ordinates (~. rJ) can be 
st>en as a local curvilinear co-ordinate system (e' e) defined for each element. 
All the differential geometric entities presented in Section 2. are then deduced 
from equations (26). On each elementary domain fle and without loss of gen­
erality, metric and curvatures are supposed to be constant. Therefore, classical 
derivatives can be substituted for surface covariant derivatives in equation (12). 

Let [qle] be the local vector of degrees of freedom (dof) for an element flc. 
Since the C0 element has eight nodes, this vector is defined by : 

where the second lowerscript indicates the node number. The vector [ql* c] 
associated with the virtual displacement vector is defined in the same way. 

From equation (25), the elementary stiffness matrix denoted [Ke] is defined 
by: 

(28) 

Interpolations for in-surface displacement and rotation components with 
respect to the local orthonormal vectors f; are given by : 

8 

V0 h = L Ni(~, 1))Voi 
i=l 

8 

f3oh = LNi(~,ry)f3oi 
i=l 

(29) 

From equation (9) and using the above interpolations (29), any component 
of in-surface displacement or rotation Po h evaluated at a point (~K, 1/K) is given 
by: 

8 

Po h(~K, 1/K) = L N;(~K, 1/K) {Pt;(aaK·i;;) + Pz;(aaK·i;i)} (30) 
i=l 

It must be notice in equation (30) that scalar products are defined between 
local vector ao evaluated at the calculation point I<, and local orthonormal 
vector i;., calculated at nodes i. 

4. 3. Strain approximation 

In order to lighten expressions for strains, the superscript his henceforth omit­
ted and reduced co-ordinates(~, 17) are introduced as indexes for displacement., 
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rotation and strain components. We then have : 

(31) 

To avoid shear and membrane locking, the strain interpolation will he mod­
ified. Thus, we split strain into its classic bending, transverse shear and mem­
\)l'ane parts. 

4. 3.1. Bending strain interpolations 

Bending strain interpolations are directly deduced from the Serendipity inter­
polation of rotation components. Using matrix notations, the bending strain 
components may be written as : 

(32) 

where the matrix [BF] has a (4, 40) dimension and the following form : 

[BF] = ( [BFt] [BFs]] 

Each matrix [BF;] of a (4, 5) dimension is usually given by : 

In this matrix expression, the scalar product is between vector iia calculated 
at the integration points and vector 4 evaluated at the node i (see equation 
(30)). 

4. 3. 2. Transverse shear strain interpolations 

An efficient method for avoiding transverse shear locking has been presented 
in Reference [Pol94] and applied to an eight-node plate finite element. This 
method is extended here to shell structures. From equations (16), finite element 
approximation of the following matrix [G0] must be defined : 

(Go]= [ /'~(] = [ f3,+v3,,+biv,+b~v71 ] 
'Y 71 {371 + v3 ,71 + b2ve + b2v11 

(33) 

Hereafter, the methodology is briefly recalled. The first two steps permit 
defining the interpolation of v3 and the two others are then dedicated to the 
interpolation of the two transverse shear strain components. 
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• a quadratic interpolation for f3e, {3'1, ve, v'1 is used, hence a cubic interpo­
lation is chosen for V3 in order to have same order polynomia following 
the ~-direction for "(0e (resp. 1)-direction for -y 0 ,7) for all the functions 
present in equation (33). We then introduce four degrees of freedom (one 
at each mid-side node) to the eight initial ones : (v3,e)5, (v3,,1)6, (v3 ,~;)7, 

( v3,1))s. 

• constraining tangential shear strains to be linear along each edge of the 
element, these derivative degrees of freedom are expressed as functions 
of the standard ones given by equation (27). Interpolation for V:J is 
then deduced and will be useful when computing -y0

n following the strain 
substitution method. 

• to get consistent interpolation for transverse shear strain components, we 
must interpolate "(0 E ( resp. "(0 '1) in the polynomial space associated with 
the base { 1, ~. 1), ~1), 1)2 } ( { 1, ~. 1), ~1), e}) which is the common monomial 
term set of the polynomial bases for each displacement/rotation interpo­
lation in equation (33). Five points are then needed to interpolate trans­
verse shear strain components. The selected points, denoted I L, ... h for 
-y0 E and J 1 , ... J 5 for -y0 '1, are shown in Figure 2 according to numerical 
efficiency of the element response in the case of distorted meshes. 

• thus, 'Yo e {I;) and 'Yo '1 ( J;) for i = 1, 5 must be calculated using equa­
tion (33) from interpolation defined in equation (30) for in-surface dis­
placements/rotations and the above cubic one for V3. Values of the trans­
verse shear strain components on the whole reference domain are deduced 
using extrapolation functions. 

Finally, the matrix expression of the transverse shear strain components is 
given by : 

[G0
) = [BC] [PC] [qle] (34) 

with 

and 

In these expressions, h- 5 and J 1_ 5 indicate the points (see Figure 2) where 
transverse shear strain components are computed from equation (30) and cor­
responding interpolations defined previously. c~I' C1)J are extrapolation func­
tions given in Reference [Pol94]. 
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I I 
I I ~ 

J-t J3 
~-- ~-

Ju-13 ~ 

I Ls I Js 

ul 112 
f- - ~-
Jl J2 

r T 

Figure 2: Point locations where the shear strain components"(~, "(17 are evaluated 

- K..!S- -i!?--
I I ~ 
I I lu.J3 

- K'"j- -~ f--

I I 

Figure 3: Point locations where the membrane strain components 
0 0 0 0 ltd E~~· E1717 , E€'7' E 17~ are eva ua e 

4. 3. 3. Membrane strain interpolations 

The finite element approximation must now be defined also for the membrane 
strain components [E0 ] (see equations (15)). According to the notations intro­
duced in equations 31, we have : 

[_EO] = [ :~~~ l = [ ~~·.~ ~ ~~~~: l 
f €'7 V(. ,ry - b12V3 

E
0

ry(. Vry,(.- b21V3 

(35) 

As previously stated for transverse shear strains, membrane strain inter­
polations coming from the isoparametric approach have to be removed and 
consistently assumed in order to improve the shell finite element behavior. Ac­
tually, from the above sections it is easy to show that derivatives appearing in 
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equation (35) are incompleted second order polynomia, v3 being a third order 
one. Therefore, the only way to have the same polynomia for the interpolation 
of the vector f

0 is to choose the following set of monomial terms : { 1, ~, T/, ~ T/}. 
This polynomial base involves choosing four points to evaluate each mem­

brane strain component : two in the ~ direction and two in the 17 direction. 
Numerical plate membrane tests with distorded meshes indicate that the best 
choice is that given by the reduced integration points denoted by K 1, ... , K 4 

(see Figure 3). 
The interpolation of the membrane strain components can be written as 

the matrix product : 

with 

[E0
) = [BM] [PM] [qle] 

[PM] [qle] = [ f~~(Kt) . . . f~~(K4) Egry(KI) 

f~7J(KI) . . . f~1J(K4) E~~(I<I) 

. . . fg1)(1<4) 

fg~(K4) ( 

[ 

[C~ry] 

[BM] = f~l 
[OJ 

[OJ 
[C~17] 

[OJ 
[OJ 

[OJ 
[0] 

[C~17] 
[OJ 

[OJ l [OJ 
[OJ 

[C~1JJ 

and where [C~1]J = [ C~T/KI(~,T/) ... C~T/K4(~,ry) 

(36) 

In this expression, subscripts K 1_4 indicate the points where membrane 
strain components are evaluated (see Figure 3) and C~1]K are defined as fol­
lows: 

C~1]KI(~,1]) = (1- J3~)(1- J377)/4 
c~T/K2(~, 17) = (1 + J3~)(1- J3ry)/4 
C~1]K3(~, T/) = (1 + J3~)(1 + J317)/4 
C~1]K4(~, 17) = (1- J3~)(1 + J31J)/4 

4.4. About the degenerated approach 

The same finite element approximations have been used for the degenerated 
approach. From the generalized strain components given in equations (18), we 
construct an isoparametric approximation for the bending part, and an assumed 
strain approximation for membrane and shear parts. The methodology is the 
same as above for the finite element based on the curvilinear shell model. 

4.5. The other assumed strain 8 node elements 

A comparison for shear and membrane strain approximations can be made with 
the two other 8 nodes listed in Section 1.. These two elements are based on 
the degenerated approach. 

For the MITC8 element (see Reference [Bat86]), shear strain is defined from 
six point evaluations for each component, while membrane strain is based on six 
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point evaluations for the two extension components and four point evaluations 
for in-surface shear components. 

In Reference [Hua86], five point evaluations are used for the shear and 
membrane strain approximations. It must be denoted that the membrane strain 
is expressed in a local cartesian co-ordinate system and the interpolation used 
for the transverse displacement is isoparametric. 

From those remarks, differences in the way of approximating the strain are 
clear between our method and other eight nodes : we use a cubic transverse 
displacement interpolation with a tangential shear strain constraint on the 
edges of the element. Five point evaluations are then used for the shear strain 
approximation and four point evaluations for the membrane strains. 

5. Numerical Evaluations 

In this section, classic membrane and shell problems are taken from the litter­
ature so as to test this new shell finite element, denoted M2D. A third rotation 
is introduced in order to project the dof in the cartesian co-ordinate system. 
For each test, a comparison is presented between this finite element based on 
a doubly curved shell theory and the finite element based on the well known 
degenerated approach, denoted MDG. The stiffness matrix of these two finite 
elements are obtained using a 3 x 3 Gauss integration scheme. 

Above all, the eigenvalues have been computed in a plate configuration with 
a one element mesh and we have got seven zero eigenvalues. This finite element 
exhibits one spurious mode which is not communicable. 

The finite element presented in this work passes the membrane and bending 
(see reference [Pol94]) patch-test of reference [Mac85]. 

Two plate tests to evaluate the in-plane membrane strain finite element 
approximations, and three classical shell problems are presented in this Section. 

A remark can be made about the membrane behaviour of these shell prob­
lems (see Reference [Cha98]) : only the hemispherical shell is a membrane 
locking test named non-inhibited pure bending, where membrane strain is neg­
ligible in comparison with the bending strain. The two others (the Scordelis-Lo 
roof and the pinched cylinder) are inhibited bending tests and are good for eval­
uating the ability of a shell finite element to represent a complex membrane 
strain state. 

5.1. The straight cantilever beam problem 

This test is described in Figure 4. We compare the membrane approximation 
presented in this work with isoparametric ones. Results obtained for curved and 
degenerated finite elements are indicated in Table 1 and show good agreement 
with reference values given in Reference [Mac85]. 



126 Revue europeenne des elements finis. Volume 8- no 2/1999 

7 7 7 
!\•s• 

7 7 
c 

Figure 4: Straight cantilever beam problem : Lenght = 6.0 , width = 0.2 , e = 
0.1 , E = l.e7 , v = 0.3 ; mesh = 6 x 1 : (a) regular shape elements, 
(b) trapezoidal shape elements, (c) parallelogram shape elements ; boundary 
condition : clamped edge for x1 = 0 ; loading : unit forces at free end 

ISOPARAMETRIC present membrane strain 
approximation (MDG-M2D) 

Extension 
a) 
b) 
c) 

In-plane shear 

.2994 

.2994 

.2994 

a) .1062 
b) .0972 
c) .1059 

Reference value for the extension : 0.3 
Reference value for the in-plane shear : 0.1081 

.2999 

.2995 

.2996 

.1067 

.1048 

.1066 

Table 1: Straight cantilever beam problem for three meshes : a) rectangular el­
ements, b) trapezoidal elements, c) parallelogram elements ; value at the center 
point of the free edge for v1 (extension case) and v2 (in-plane shear case) 

5.2. Cook's membrane problem 

The description of this test is shown in Figure 5. Results are given in Table 2 
and show a better behaviour for our membrane strain approximation than 
for the isoparametric one in comparison with reference value from Reference 
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xl _...,. 

Figure 5: Cook's membrane problem : dimensions are indicated on the figure ; 
e = 1.0 , E = 1.0 , v = 0.333 ; different meshes (N = 1, 2, 4) are presented in 
the figure ; boundary condition : clamped edge for x 1 = 0 ; loading : unit force 
at free end 

N ISO PARAMETRIC present membrane strain 
approximation (MDG-M2D) 

1 17.22 19.14 
2 22.72 23.10 
4 23.71 23.72 
Reference value: 23.90 

Table 2: Cook's membrane problem ; value of v2 at the point C 

5.3. Scordelis-Lo roof 

This test is presented in Figure 6, and considering the symmetry of the problem 
only one quarter of the roof is analyzed (part ABCD). This is the first shell 
test and results are presented in Table 3 for the vertical displacement at the 
midpoint B of the free edge and at the center C of the roof. 

The behaviour of the two finite elements is identical for this test : at point 
B, the same value is obtained for the N = 2 mesh while at point C, it is for 
the N = 4 mesh. These values are in good agreement with reference values. 
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Convergence velocity is good compared to other kinds of finite elements ( 4 and 
9 nodes), see Reference [Bat92]. 

Figure 6: Scordelis-Lo roof problem : L = 6.0 , R = 3.0 , e = 0.03 , ¢ = 
40.0 , E = 3.e10 , v = 0.0 ; the mesh = 4 x 4 (N = 4} is presented in the 
figure ; gravity load = 0.20833 

N 

1 
2 
4 
8 

10 

dof -v3e1 at B v3e2 at C 
M2D MDG M2D 

24 .195 .343 .251 
84 .360 .359 .584 
312 .361 .361 .545 
1200 .361 .361 .542 
1860 .361 .361 .542 
Reference value at B : -.361e-1 
Reference value at C : .541e-2 

MDG 
.732 
.574 
.545 
.542 
.542 

Table 3: Scordelis-Lo roof problem ; value of v3 at the point B and C 

5.4. Pinched cylinder 

This test is shown in Figure 7, and considering the symmetry of the problem 
only one eighth of the cylinder was analyzed (part ABCD). 

Results are presented in Table 4 for the normal displacement at the cen­
ter C and for the axial membrane displacement at the point D on the rigid 
diaphragm. 
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From Table 4, one can see that convergence is less rapid than for the 
Scordelis-Lo roof test presented above. This is due to the loading which is 
a pointwise transverse force. Same values for the curved and degenerated shell 
approaches are reached for theN= 4 mesh at point C and N = 8 at point D. 

At point D (seeN= 2), we can observe that the DG element presents an 
oscillation for the membrane displacement while M2D has a monotone conver­
gence. 

rigid diaphragm support 

Figure 7: Pinched cylinder problem : L = 6.0 , R = 3.0 , e = 0.03 , E = 
3.e10 , v = 0.3 ; the mesh (N = 2} is presented in the figure ; unit point load 
at the two opposite points 

N 

1 
2 
4 
8 
10 

dof -v3e6 at C v2e8 at D 
M2D MDG M2D 

18 .009 .012 .064 
72 .121 .130 .443 

288 .171 .172 .470 
1152 .184 .183 .458 
1800 .183 .182 .458 
Reference value at C : -.182e-6 
Reference value at D : .457e-8 

MDG 
.101 
.737 
.427 
.457 
.457 

Table 4: Pinched cylinder problem ; value of V3 at the point C and value of v2 
at the point D 

5.5. Hemispherical shell 

This test is described in Figure 8. Considering the symmetry of the problem, 
only one quarter of the hemispherical shell has been analyzed (part ABCD). 
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The results obtained for the two finite elements are given in Table 5. The 
same value is reached for the transverse displacement at point A for the N = 8 
mesh. 

Some comments must be made on this test : the boundary conditions are 
minimum to avoid rigid body motions and, as above for the pinched cylinder, 
two pointwise transverse forces are defined. 

The convergence is different for the two finite elements but the convergence 
value is reached for the same mesh. Therefore, a finite element based on a 
doubly curved shell model gives as good a result as the classic degenerated 
approach. The M2D element therefore does not present a problem of rigid 
body motion representation as it can be read classically and does not show 
stronger membrane locking behaviour. 

On this test, some four nodes (see for example [Sim89] and [And93]) have a 
quicker convergence velocity than eight or nine node elements but they present 
a lower velocity convergence on the Scordelis-Lo roof, for example. 

Figure 8: Hemispherical shell problem : R = 10.0 , e = 0.04 , E = 
6.825e7 , v = 0.3 ; the mesh (N = 4) is presented in the figure ; point load 
= ±2.0 at the four opposite points 

5. 6. Helical shell 

This test is described in Figure 9 and has been firstly proposed by [Mac85] and 
is now considered as a reference shell test in [Bat92]. It allows, in the case of 
explicit integration through the thickness (see ( 22) and ( 23)), to control the 
efficiency of those integrations for the strain approximations. 
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N dof v1el at A 
M2D MDG 

1 29 .300 .942 
2 95 .050 .170 
4 335 .725 .790 
8 1247 .929 .931 
10 1919 .933 .934 
Reference value at A : .940e-1 

Table 5: Hemispherical shell problem ; value of v1 at the point A 

The results obtained by the two finite elements are given in Table 6. Two 
thicknesses (e = 0.32 and e = 0.0032) are considered and two point load 
directions are tested. Reference solutions are obtained from the beam the­
ory [Bat92]. 

Only one mesh results are presented (N = 2 x 12 with 576 dof) and results 
are in good agreement with reference solutions for the two shell finite elements 
and for the different thicknesses and load cases. 

Figure 9: Helical shell problem: L = 12.0, width= 1.1, twist= 90deg (root to 
tip), E = 29.e6 , v = 0.22 ; the mesh (N = 2 x 12} is presented in the figure ; 
point forces on A (in-plane and out-plane load} 

6. Conclusion 

The main basic feature of this work is in the development of a new eight node 
shell finite element (M2D) based on a doubly curved shell theory. From this 
work we can observe that : 
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type of load M2D MDG ref. values 
In-plane V3 at A 

e = 0.32 and F = l.e3 5.42 5.41 5.42 
e = 0.0032 and F = 1. 5211 5218 5316 

Out-of-plane v2 at A 
e = 0.32 and F = l.e3 1.75 1.75 1.75 
e = 0.0032 and F = 1. 1293 1291 1296 

Table 6: Helical shell problem ; value at the point A for the N = 2 x 12 mesh 

• the way to construct this finite element (M2D) is the same as for (DG) 
based on the degenerated approach, differences are in the way of defining 
the in-surface displacement vector. 

• results from (M2D) and (DG) elements are then of the same order for 
convergence velocity and accuracy for the four classic shell tests. 

There is in fact no reason to oppose the two approaches to obtain finite 
elements : the (M2D) element presents no problem of rigid body mode repre­
sentation, and (M2D) and (DG) elements present together the same transverse 
shear and membrane locking defaults. 

The methodology presented for plates (see Reference [Pol94]) to avoid shear 
locking is extended with success to shells, and in the same spirit, the tech­
nique used for the membrane strain gives good results for a reasonable ratio 
length/thickness. The membrane locking is controlled but we cannot say, as 
for the shear locking, that it has fully disappeared, because for a very thin shell 
the convergence velocity is slower. 

Finally, the shear locking has completely disappeared for plate and shell 
structures but it seems that membrane locking needs more work to be com­
pletely avoided. Future work is therefore directed towards the understanding of 
membrane locking and to an improvement of velocity convergence using curved 
or degenerated shell elements for the pinched cylinder and hemispherical shell. 
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