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ABSTRACT. This article reports on the efficiency of a co-located diffuse approximation method 

coupled with a projection algorithm for the solution of two and three-dimensional 

incompressible flow equations. Three typical examples show the accuracy of this meshless 

method. 

REsUME. Cet article propose de montrer l'efficacite d'une methode de collocation basee sur 

/'approximation diffuse et couplee a un algorithme de projection pour Ia resolution des 

equations des ecoulements incompressibles dans des domaines hi- et tri-dimensionnels. Trois 

exemples classiques montrent Ia precision de cette methode sans maillage. 

KEY WORDS: diffuse approximation, meshless method, incompressible fluid flow, projection 

algorithm. 

MOTS-CLES : approximation diffuse, methode sans maillage, ecoulement incompressible, 

algorithme de projection. 

Nomenclature 
D studied domain 

I functional 

N number of mesh points 
p line vector of monomials 
pT P-transpose 

p dimensionless pressure 

Re Reynolds number 

dimensionless time 
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( L1 t) 

u,v,w 

-+ 

dimensionless time step 

dimensionless velocity components 

V dimensionless velocity vector 

X current point 

x,y,z dimensionless Cartesian coordinates 

Greek symbols 

v 

cr 

co 

vector of estimated derivatives 

a-transpose 

scalar field 

kinematic viscosity 

practical aperture of the weighting function 

weighting function 

dimensionless stream function 

1. Introduction 

Finite element methods [TA Y 81], [COM 82] and control-volume based finite 
element methods [PRA 85], [MAS 94] are generally used in the numerical solution 
of fluid flow problems in regions with arbitrary shaped boundaries. For problems in 
which the position of large solution gradients is known a priori, such as those 
involving boundary layers, localized grid refinement can be used. In many situations, 
however, adaptive procedures for finite element meshes are necessary. This is the 
case in problems with moving boundaries or discontinuities for example. These 
procedures are time consuming and introduce numerous difficulties associated with 
the large number of remeshings. In recent years, in the field of computational 
mechanics, a new class of methods have been developed which do not require a 
finite element mesh. These meshless methods only require sets of discretization 
nodes which could be generated by several techniques such as random shooting or 
octree-based methods. It is worth mentioning here that CAD data structures can also 
be used. Nayrolles et al., [NAY 91] have presented a method called the diffuse 
approximation which was then used by the same authors to develop the diffuse 
elements method. Belytschko et al., [BEL 94] have proposed the element-free 
Galer kin method. An overview of these meshless methods can be found in the paper 
by Belytschko et al., [BEL 96]. These methods remain however relatively unpopular 
in the field of computational fluid dynamics. Sadat et al., [SAD 96] were the first to 
use the diffuse approximation to solve two-dimensional fluid flow problems. They 
used the vorticity-streamfunction formulation and found that the method is quite 
accurate and behaves well. However, streamfunction-vorticity methods are not 
readily extended to three dimensions. The purpose of this article is therefore to detail 
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a primitive-variable diffuse approximation method for the calculation of 
incompressible fluid flow. As the enforcement of the conservation of mass is the 
primary challenge for CFD algorithms, we first present in the next section the 
projection algorithm that we used. The diffuse approximation based collocation 
method is then described. Three numerical examples are finally considered to show 
the accurcy of the method in 2D and 3D domains. 

2. Solution Procedure 

Projection methods are now widely used for obtaining a steady-state solution to 
the momentum and continuity equations [DAT 96], [ABD 87]. These procedures 
have proven to work well in finite element formulations. In this work, we used an 
equal order projection algorithm [COM 82] whose basic methodology can be 
summarized as follows. 

The momentum and continuity nondimensional equations that govern the laminar 
flow of a constant propery fluid in a two- and three-dimensional domain are: 

av - - 1 z­
-+V.VV=-V V-Vp 
at Re 

--> 
VV=O 

[1) 

[2] 

The pressure gradient IS written as sums of estimated (*) and correction (') 
values: 

Vp = Vp*+Vp'= Vp 0 + Vp' [3] 

where the subscript (n) indicates known values from the previous step of calculation 
n. 

These two components are associate~ with the two corresponding components of 
the velocity vector: 

- - -
V=V*+V' [4] 

At each new time step (n+1), we write Equation [1) as: 

- - -
V*+V'-Vn 1 2- - -
---~:::::-V V*-V VV*-Vp -Vp' 

(At) -Re n· 0 [5] 



828 Revue europeenne des elements finis. Volume 7 - n° 7/1998 

We first solve Equation [5] for V * by writing: 

[6] 

Since V * does not respect continuity, we can find the pressure correction p' that 

project V * onto the divergence free space yn+I by writing: 

V' 
--=-Vp' 
(At) 

Taking the divergence of Equation [7], we obtain: 

vz ,_- VV' 
p- (At) 

where: 

VV' VV"+1 -VV* 

(At) (At) 

At this stage, continuity is enforced by writing: 

We thus obtain the pressure correction equation: 

vz ,_ VV* 
p- (At) 

[7] 

[8] 

[9] 

[10] 

[11] 

Equation [11] is the Poisson equation for the pressure correction whose boundary 
conditions are: 

dp' 
-=0 
dn 

[12] 
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at a wall boundary and 

p'=O [13] 

at a boundary where the pressure is known. 

Finally, we use p' to compute the pressure field; the velocity correction obtained 
from Equation [7] is then used to compute the new velocity field: 

pn+l =p*+p' [14] 

-yn+l = V*+V' [15] 

This solution algorithm may be summarized as follows (for the calculation of the 
steady state solution by a false transient procedure): 

I. Initial pressure and velocity fields are defined. 
2. The momentum are solved to update the provisonal velocity field, 

Equation [6]. 
3. The pressure correction equation is solved, Equation [11]. 
4. The veocity corrections are calculated, Equation [7]. 
5. The pressure and velocity fields are updated, Equations. [14], [15]. 
6. Increment time step and repeat steps 2-5 until convergence. 

If the really transient solution is sought for, the algorithm is modified as follows : 

6. Steps 2-5 are repeated until convergence. 
7. Increment time step and return to step 2. 

A convergence criterion of 0.01% or less change in all nodal values has been 
selected to check convergence. 

The mass conservation was also monitored. At step 6, relaxations factors could 
be used for each variable to avoid oscillatory behaviors for high Reynolds numbers. 

In a 20 domain, The flow pattern may be conveniently visualized by computing 
the streamlines from the equation: 

a
2
"' a

2
"' au aw --+--=---ax2 az2 az ax [16] 

with appropriate boundary conditions. 

This Poisson equation is solved a posteriori once the solution for the velocity 
field has been obtained. 
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3. Diffuse Approximation Based Collocation Method 

Let us consider a scalar field <1> : R" ~ R whose values <1>; are known at the 

points X; of a given set of N nodes in the studied domain DER". The diffuse 

approximation gives estimates of <I> and it's derivatives up to the order k at any 

point X ED. 

The key idea is to estimate the Taylor expansion of <1> at X by a weighted least 

squares method which uses only the values of <I> at some points X; situated in the 

vicinity of X. 

We thus write: 

[17] 

where P(X;-X) is a vector of polynomial basis functions and a(X) a vector of 

coefficients which are determined by minimizing the quantity: 

N 2 
I(a)= Lro(X,X; -X)[<l>; -PT(X; -X)a(X)] 

i=l 

[18] 

in which w : R n ~ R + is a rapidly decaying weight-function of compact support. 

Minimization of [18] then gives: 

A(X)a(X) = B(X) [19] 

where: 

N 

A(X) = Lro(X,X; -X) P(X; -X) pT (X; -X) [20] 
i=l 

N 

B(X)= Lro(X,X; -X)P(X; -X)<l>; [21] 
i=l 

By inverting system [19], one obtains the components of a which are the 

derivatives of <I> at X in terms of the neighbouring nodal values <1>;. 

In this work, the Taylor expansion is troncated at order k=2.We thus have: 
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(P(Xi -X))=( I ,(xi -x), (Yi -y) ,(xi -x)
2

, 

(xi -x)·(Yi -y), (Yi -y)
2

) 

[22] 

[23] 

for the two-dimensional case and: 

(P(Xi -X)>=(I ,(xi -x), (Yi -y), (xi -x)
2

, (xi -x)-(yi -y), 

(Yi -y)
2 

,(zi -z), (xi -x)·(zi -z), (Yi -y)·(zi -z), (zi -z) 2
) 

[24] 

T 8<1> 8<1> I a 2 ct> 8<1>2 I a 2 ct> 8<1> act> 2 8<1>2 I a 2 ct> T 

(a) = (ct>,-a ·-;:-·-2,-2 'a ::~.. ,-2,-2 ,-a ,-a a '::~..a ,-2,-2 > 
X VJ . ax Xvy . 8y z X z VJ z . az [25] 

for the three dimensional case. 

The square and symetric matrix A(X) is not singular if the number of the 
connected nodes at a given point is at least equal to 6 (in 2D situations) or 10 (in 3D 
situations). In this work, we used 9 and 27 points respectively. 

Although we tried several weight-functions, the results presented in this work 
were obtained with the following gaussian window : 

[26] 

[27] 

where the aperture cr is updated at each point in order to use the same number of 
neighbours in the approximation. 

We now turn to the solution of the partial derivatives equations of the previous 
section. We simply use here a collocation method. At each point of the 
discretization, the derivates appearing in the equation to be solved are replaced by 
their diffuse approximation thus leading to an algebraic system which is solved by 
the preconditioned biconjugate gradient method. The Dirichlet type boundary 
conditions are introduced in the same way as in the finite element method. The 
Neumann boundary conditions on the other hand are replaced by their diffuse 
approximation and then introduced in the algebraic system. 
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4. Numerical Results 

This section is devoted to the presentation of the numerical results obtained in 
three test problems, namely the two- and three-dimensional lid driven cavity and the 
flow in a two-dimensional channel with a rectangular obstacle. The computations 
were performed on a personal computer (PC) with an Intel Pentium II 300-MHz 
processor and 64 MB of RAM. 

4.1. Two-Dimensional Lid-Driven Cavity 

The first validation case is the well-known two-dimensional lid-driven cavity 
flow [GHI 82]. The presented results are obtained with two values of the Reynolds 
number Re based on the height of the cavity and on the speed of the moving wall, 
namely Re = 1,000 and Re = 10,000 

Figure 1. 2D lid-driven cavity: u and w velocity components along the vertical and 

horizontal midlines, Re = 1,000 

In order to show the spatial convergence of the method, we first show on 
Figure 1, the velocity componements obtained for Re=l,OOO with different NxN 
uniform grids. The others simulations were done with a NxN non-uniform grid with 
a concentration of nodes near the walls. The grid is obtained by the transformation: 
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where (x.,yr) correspond to the uniform grid NxN. 

The velocities along the midlines of the cavity are shown on Figure 2. It is seen 
that the results are in good agreement with those of Ghia et al., [GHI 82]. 

• [GHI 82] • [GHI82] 
--DA61*61 --DA 151*151 

0.5 0.5 

w 0 w 0 

-0.5 -0.5 

-I -I 
-I -0.5 0 0.5 -I -0.5 0 0.5 

u u 

(a) (b) 

Figure2. 2D lid-driven cavity. (a) Re = 1,000; (b) Re = 10,000 

CPU time requirement and the number of iterations on various grids are reported 
in Table 1 for Re = 1,000 (with a time step dt = 0.05 and an under-relaxation factor 
of 0.4 for each variable). Figure 3 shows the streamlines and the pressure 
distribution. They agree with the results of [NON 97], [GHI 82] very well. The 
values of the streamfunction at the center of the vortices obtained with a 151xl51 
grid are reported in Table 2. They agree very well with previously published results. 

grid size 31x31 61x61 101xl01 15lx151 

Iterations 1150 1129 1125 1126 

CPU (sec) 36 281 1571 6859 

Table 1. Performance comparison in terms of the number of iterations and CPU 

time requirement for Re = 1,000 
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(a) (b) 

(c) (d) 

Figure 3. 2D lid-driven cavity. Re = 1,000: (a) streamlines, (b) pressure contour 
(values from -0.5 to 1.4, step 0.025). Re = 10,000 : (c) streamlines, (d) pressure 
contour (values from -0.1 to 0.6, step 0.025) 
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Primary Bottom Bottom Bottom Bottom 
Re vortex Top left left 1 left 2 right 1 right 2 Reference 

-0.1184 2.30E-4 -3.52E-8 1.73E-3 -2.50E-6 DA 

-0.1175 2.22E-4 -4.33E-8 1.72E-3 -1.75E-7 [NON97] 

1,000 
-0.1179 2.31E-4 -1.14E-9 1.75E-3 -9.32E-8 [GHI 82] 

-0.1151 2.17E-4 1.63E-3 -1.20E-8 [SOH 94] 

-0.1190 2.41E-4 1.76E-3 -6.5E-8 [COM94] 

-0.1175 2.32E-4 1.77E-3 [NOB 96] 

-0.1162 2.28E-3 1.47E-3 -7.60E-7 3.28E-3 -l.79E-4 DA 

-0.1199 2.54E-3 1.58E-3 -9.55E-7 3.15E-3 -1.34E-4 [NON97] 

10,000 -0.1197 2.42E-3 1.52E-3 -7.76E-7 3.42E-3 -l.31E-4 [GHI 82] 

-0.1121 2.18E-3 l.37E-3 -4.07E-7 2.80E-3 -6.81E-5 [SOH 94] 

-0.1200 1.44E-3 1.44E-3 -4.48E-7 3.34E-3 -1.54E-4 [COM 94] 

Table 2. 2D lid-driven cavity: Values of the stream function at the center of different 
vortices inside the cavity 

4.2. Three-Ddimensional Lid-Driven Cavity 

The flow in a three-dimensional cubic lid-driven cavity is considered in this 
section for a Reynolds number Re = 1 ,000. 

• [NON 97] 
X [TAN 95] 

0.5 
--DA 

w 0 

-0.5 

-1 
-1 -0.5 0 0.5 

u 

Figure 4. 3D lid-driven cavity at Re = 1,000: u and w velocity components along 
the vertical and horizontal midlines, on the symmetry plane 
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Due to the symetry of the problem, simulations were conducted on the half of the 
cavity with a 41 x41 x21 non-uniform grid obtained by the same transformation as 
[28]. 

(a) 

(b) 

(c) 

Figure 5. 3D lid-driven cavity at Re = 1,000 : velocity vectors and pressure 
contours; (a) x-y midplane, (b) y-z midplane, (c) x-z midplane 
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The velocity profiles along the midlines shown on Figure 4 are in good 
agreement with those obtained previously [NON 97-TAN 95]. Velocity vectors and 
the pressure distribution in the three orthogonal midplanes are shown on Figure 5. 

The x-y midplane, parallel to the moving wall is represented on Figure 5a while 

Figures 5b and 5c are related to the y-z transverse midplane and the x-z vertical 

symetry plane respectively. These results agree also satisfactorily with the literature 

data. 

4.3. Flow in a Two-Dimensional Channel with a Rectangular Obstacle 

This part considers the calculation of laminar flow over a rectangular block in a 
channel (Figure 6). The Reynolds number is defined as: 

Re = U max (H- h) 
v 

[29] 

where (H-h) is the reference lenght and where the maximum inlet velocity Umax is the 
reference velocity . 

~ ] h=lmm l H=2mm 

....._____~ _____.I• L=4mm •IL.___....L.,____ ____...J 

La=l2mm Lb=24mm 

X 

Figure 6. Two-dimensional channel 

At the inlet channel a parabolic profile for u velocity is assumed and the 
velocities are set to zero at the walls. At the outlet, a zero gradient is applied for the 
velocity while the pressure is zero. 

The results obtained on a uniformly spaced 361 x21 grid are compared to the 
numerical results of [MEL 93] and to the experimental results of [TRO 85]. Figure 7 
compares predicted and measured u velocity profiles. For all positions, there is a 
good agreement between the results.The reattachment point is reported on Table 3. 
Again, a good agreement with published results is observed. 



838 Revue europeenne des elements finis. Volume 7- no 7/1998 

0.5 

0.5 

0 

2 

1.5 

X=lO 

1' [TRO 85] 
<> [MEL93] 

-oA 

0.4 

0.4 0.8 1.2 1.6 2 

u 

0.8 

Figure 7. Channel flow: u velocity profiles at different locations 

[MEL 93] [TRO 85] 

X, 7.9 7.1 

Table 3. Reattachment Length 

" [TR085) 
0 [MEL93) 

-DA 

1.2 1.6 2 

X=8 

DA 

7.55 
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5. Conclusion 

In the present work, the diffuse approximation method is presented and applied 

to the solution of fluid flow problems. This method provides solutions comparable in 

accuracy to standard numerical methods. Comparative results of test cases show 

good agreement and validate the applicability of the method. However, the work 

which has been reported is still exploratory and futher effort is needed to fully 

explore the limitations of the formulation. 
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