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ABSTRACT. This paper deals with the application of the asymptomatic numerical method (ANM) 
to problems involving nonlinear constitutive laws. We are interested in the deformation 
theory of plasticity which does not take into account the elastic unloading. We show how to 
obtain a quadratic form of the problem, what allows us to apply easily the perturbation 
techniques and to obtain the fastest algorithm. Three constitutive behaviors will be analyzed 
and some examples will be presented to assess the interest of the proposed algorithm as 
compared with the classical iterative method of Newton-Raphson. 
REsUME. Nous presentons ['application de Ia methode asymptotique numerique (MAN) aux 
problemes des structures regies par une loi de comportement non lineaire. Nous nous 
interessons a La theorie de deformation totale qui ne prend pas en compte La decharge 
elastique. Nous montrons comment obtenir une formulation quadratique du probleme, ce qui 
permet d'appliquer simplement une technique de perturbation et d'obtenir l'algorithme le 
plus rapide possible. Nous etudions trois lois de comportement et nous analysons quelques 
exemples qui montrent ['interet de notre algorithme par comparaison a Ia methode de 
Newton-Raphson. 
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1. Introduction 

In this work, we propose to solve problems involving nonlinear constitutive laws 
by an Asymptotic Numerical Method (A.N.M.). This latter associates the perturbation 
techniques to numerical ones like the Finite Element Method. It solves a large class 
of nonlinear problems with two main advantages: the first one concerns computing 
time which can be reduced significantly by comparison with the classical iterative 
methods because ANM needs less tangent stiffness matrix decompositions to describe 
the whole solution branch. The second advantage reports the reliability of this method 
because it is naturally based on an adaptative step which is computed a posteriori by 
analyzing the local nonlinearity of the response curve [COC 94l][COC 942]. 

Historically, the association of perturbation techniques to finite element method is 
due to Thompson and Walker [TH068]. Later, Yokoo et al. [YOK 76] have presen
ted an application of perturbation method to elastic-plastic structures, but with very 
small step length. Noor et al. [NOO 811] [NOO 80] [NOO 812] have used these tech
niques to build Rayleigh-Ritz approximation. A comparative study has been designed 
in favour of iterative methods [RIK 84]. 

To solve nonlinear problems, industrial codes usually perform incremental-iterative 
techniques which are based on a linearization of the governing equations [RIK 72] 
[CRI 83]. These latters are well-adapted to problems with different nonlinearities, but 
it is difficult to choose the size of the control parameter. If this latter is too small, it in
duces a large computing time; and if it is too large, the computation diverges. Despite 
of the adaptative step developed for these techniques, it remains difficult to obtain an 
optimal step length adapted for each problem (see a comparative study in [ZAH 97]). 

Asymptotic numerical method shows an alternative way for a class of nonlinear 
problems. The efficiency of this method is brought out in several applications for 
which governing equations are formulated in a quadratic framework. Indeed, these 
tests concern problems with geometrical nonlinear behavior in the framework of shell 
structures with moderate rotations [AZR 93], computation of bifurcation points and 
post-buckling analysis [BOU 94] [VAN 98], solving Navier-Stokes equations [HAJ 95] 
[TRI 96] [CAD 97]. A computing time study has been performed to compare cubic 
based formulation and quadratic one. This study advocates the quadratic formulation 
which permits to reduce CPU time significantly [ZAH 98]. 

Our group has extended the application field of ANM to problems which involve 
strong nonlinearity like in plasticity [BRA 95], viscoplasticity [POT 972] [DES 97], 
unilateral contact [ELH 98]. 
As these problems involve strong nonlinearity and some singularities, a technique has 
been proposed to overcome these difficulties and to put the problem into a quadratic 
form. This technique is based on three simple ideas : first, one regularizes the non
smooth equations [BRA 95]; second, one introduces differential relations when the 
problem involves power laws [POT 971]; last, one adds new variables to reduce the 
degree of polynomial relations. 

An alternative method to solve such problems is proposed by Ammar [AMM 96] 
which computes residual vectors directly and not from right hand sides obtained by 
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series terms. Its algorithm has been presented for large rotations of shells and it seems 
to be applicable for any kind of nonlinearity. 

The aim of this work is to show how to use the asymptotic numerical method for 
problems which require a nonlinear constitutive law. We shall use techniques given 
before to obtain a quadratic form of the governing equations allowing us to perform 
the same algorithm as in elasticity case [COC 942]. 

2. The classical representation of the A.N.M. 

To solve a nonlinear problem in the framework of asymptotic numerical method, 
we usually perform the procedure described below [COC 942]: 

-Choose a quadratic variational formulation like the Hellinger-Reissner one which 
is expressed in terms of displacement and stress fields as the basic variables. 

- Then expand both these variables and the load parameter into power series in 
the neighbourhood of an initial solution. These developments are then substituted into 
the variational problem to obtain a sequence of linear problems which have the same 
tangent operator. The nonlinear terms are reported on right hand side vectors. At this 
level, we have two equations at each order reporting the equilibrium condition and the 
elastic constitutive relation. 

The most important formulation widely used to compute practical problems is the 
displacement-based finite element method for its simplicity and its good numerical 
properties. So at each order, we substitute the constitutive equation into the equili
brium one. We then obtain, at a given order "p", only one equation with the displa
cement field as unknown. This equation is solved by the displacement-based finite 
element method. Next, the stress field is deduced from the displacement solution. 

Consider a three dimensional elastic problem with a geometric nonlinearity. Varia
tional formulation can be reported by these two equations: 

1 ts: o1(u) dv- >.Pe(ou) = 0 [1] 

S=D:1(u) [2] 

where [1] and [2] denote equilibrium condition and constitutive relation respectively. 
D is the elastic stiffness tensor, u lists the displacement field, >. is a load parameter and 
.APe denotes the work done by the external load. S is the second Piola-Kirchoff stress 
tensor and 1 is the Green-Lagrange strain which can be decomposed into a linear part 
and a quadratic one : 

1( u) =It ( u) + lnl ( u, u) = !Cv'u + tV'u) + !(tV'u V'u) 

0'1(u) =lt(O'u)+21nt(u,ou) 
[3] 

The perturbation techniques allow us to seek a part of the solution branch of the 
problem ([1] and [2]) by expanding the variables u, S and>. into power series with 
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respect to a parameter "a" which represents an additional unknown which is similar 
to the control parameter of the classical iterative algorithms. Indeed, we can write the 
variables in the following form : 

p p p 

u(a) = L:>;u; S(a) = L:a;S; .A(a) = L:ai.A; [4] 
i=O i=O i=O 

We can consider the parameter "a" as the projection of the pair ( u - u 0 , .A - ..\0 ) 

on the tangent direction (u1 , .AI) which corresponds to an arc length parameter for 
iterative methods. By substituting [4] into [1] and [2] and equating like powers of "a", 
we obtain a sequence of linear problems that we can write at a given order "p" in the 
following form : 

p-1 

Ap F + 1 L tsr: 2/nl(up-r, Ju) dv 
v r=1 

[5] 

p-1 

•Sp = D: bt(up) + 2/nl(uo, up)+ L /nt(ur, Up-r)} [6] 
r=1 

These equations involve two variables which are the displacement field up and 
the stress one Sp. By substituting [6] into [5], we obtain only one equation whose 
unknown is up. After discretization, this problem can be written as follow: 

[7] 

where [ K t] denotes the tangent stiffness matrix computed at the initial solution, {up} 
is the discretized displacement vector at order "p". The nonlinear terms are reported on 
F;1 vector; these terms hold displacements and stresses computed at previous orders. 
At this stage, the linear problems are well-posed and we can proceed to compute 
displacement vectors at each order until the given order "p". Thus, we obtain a part of 
the solution branch by decomposing only one matrix [ K t], which is the same for all 
the linear problems [7]. 

We have performed this method to reduce the CPU time when solving a given 
nonlinear problem. The choice of the optimal truncature order "p" of the series is 
studied in the application section. 

We have presented the classical asymptotic numerical algorithm to deal with an 
elastic problem for which the basic formulation is simply set in quadratic framework. 
When a strong nonlinearity due to the constitutive relation is required, how to apply 
the A.N.M. for such a problem? We will answer this question in the next section. 



ANM for Nonlinear Constitutive Laws 845 

3. Constitutive laws and regularization 

In this section, we will present some constitutive laws which can be easily adapted 
to the ANM algorithm. The elastic unloading is not considered in this study. Indeed, 
we use the deformation theory of plasticity (Hencky, 1925) which is convenient for 
the applications where the physical nonlinearity is more important than the effect of 
the irreversible process and the history of the loading. We propose to analyse three 
constitutive laws describing an elastic-perfectly plastic behavior, a Ramberg-Osgood 
model and a linear hardening model. 

Asymptotic expansions are not directly applicable to these laws. Firstly, we must 
regularize these constitutive relations which have some singularities like the abrupt 
change in the tangent modulus of the elastic-perfectly plastic case. Secondly, the resul
tant formulation is strongly nonlinear; to obtain a quadratic form, we must introduce 
additional variables. 

In the following, we shall show how to set each model into a quadratic form to 
make easier the implementation in the ANM context. 

3.1. Elastic-perfectly plastic behavior 

We now present a constitutive law based on an elastic-perfectly plastic behavior. 
This is an idealisation of the stress-strain response which can be valid for some prac
tical applications. In this case, we neglect material hardening effects and the elastic 
unloading. By considering the uniaxial behavior, this law can be written as follows: 

u 
lui< Uy f=-

E 
[8] 

u 
lui= Uy f= -+fp 

E 

where f, u, fP, E and u y denote the strain, the stress, the plastic deformation, the 
Young's modulus and the yield stress respectively. 

This stress-strain relation is singular at yield limit; so that the response curve of 
a structural problem can not be analytic with such a law. For this reason, we pro
pose to replace this relation by an another one which is analytic and well-adapted to 
asymptotic expansions [BRA 95]. We shall then replace the constitutive law [8] by an 
hyperbolic one written in the following form : 

'T} u2 
Et=u+ y u 

u2- u2 y 
[9] 

Note that this relation involves two branches as shown in figure (l) which relates 
the stress-strain response. The first branch corresponds to a stress which stands below 
the yield stress uy, it never passes over. For 'T} small, it is close to the elastic-perfectly 
plastic law [8] and therefore it is physically admissible. In the second branch case, u is 
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greater than u y and then it is physically not acceptable. In this new constitutive law, 1J 
is a regularization parameter. As shown in figure (1 ), this parameter acts on the slope 
of the constitutive curve. 

This constitutive relation can be generalized to the three-dimensional case in terms 
of the Green-Lagrange strain field 1 and the Piola-Kirchhoff stress field S. By consi
dering large displacements but small deformations, we can choose an additive de
composition of the strain field [GRE 65] [DAM 97]. This model can be written in the 
following form : 

1J u2 
E 1 = (1 + v) Sd- (1- 2v) PI+ 2 ~2 Sd [10] 

Uy- eq 

where E, v and uy respectively relate the Young's modulus, the Poisson's ratio and 

the yield stress. P = -~S :I is the equivalent hydrostatic stress, Seq = j~sd : Sd 

is the Mises equivalent stress, Sd = S + PI is the stress deviator and I is the unit 
matrix. 

To set this law in a quadratic framework, it is suffucient to introduce two new 
2 

scalar variables: seq = s;q and ( = a;::eq. The constitutive law is then described 
y 

by the following equations : 

• E 1 = (1 + v) Sd- (1- 2v) P I+ ( Sd 

• ( ( u~ - seq) = 7J u~ [11] 

• seq = s2 = ~ sd . sd eq 2 . 

3.2. Elastic-linear hardening model 

The elastic-perfectly plastic behavior is an idealization of the real material beha
vior because beyond the yield stress, there is generally a hardening effect. For this 
reason, we consider a more realistic model which takes into account a linear harde
ning behavior. As for the previous law, we have to regularize this latter to expand it 
into power series. 

One can remark that if we introduce the generalized thermodynamic force as a 
new variable [MAU 92], we can perform the same regularization adopted in the law 
studied before. In the elastic range, this force is equal to the stress field; but in the 
plastic range it remains constant and equal to the yield stress. For more detail about 
regularization procedure, refer to the appendix (1). 

In three-dimensional case, the relation which links stress field S to the generalized 
thermodynamic force A can be written as follows: 

h 7J u~ d 

S = A + E ( u~ - A~q) A [12] 
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We use then the same hyperbolic relation as in elastic-perfectly plastic behavior 
which relies the field A to the Green-Lagrange strain 1 : 

'TJ (12 
E 1 = (1 + v) Ad- (1- 2v) PA I+ 2 _ ~2 Ad 

(J'Y eq 
[13] 

h d P . ' . P - 1 A · I A2 - 3 Ad · Ad Ad - A P I w ere v enotes 01sson s ratio, A - - 3 . , eq - 2 . , - + A . 

To obtain a quadratic form of this law, we have to introduce two additional va-
2 

riables seq = A;q and ( = 
17

-:) ::.yeq . Finally, equations describing the nonlinear consti-
y 

tutive behavior can be written as follows: 

• E'Y=(1+v)Ad-(1-2v)PAI+(Ad 

• (((J';-seq)=TJ(J'; 

• seq = A;q = ~ Ad : Ad [14] 

• S=A+~(Ad 

3.3. Elastic-plastic behavior of the Romberg-Osgood model 

In this section, we are interested in a constitutive law based on the Ramberg
Osgood relationship [CHE 94] [ABA 95]. In three-dimensional case, this law is given 
by the following relation : 

3 [S J n-l E 1 = (1 + v) Sd- (1- 2v) PI+ -a _!!!_ Sd 
2 (J'y 

[15] 

where E, v, a, nand (J'Y relate the Young's modulus, the Poisson's ratio, the yield 
offset, the hardening exponent and the yield stress respectively. 

As the hardening exponent n is not an integer, this law is not analytic for null 
stress. That is why a regularization procedure is introduced in this model allowing 
expansions into power series. For this purpose, we can redefine the Mises equivalent 
stress in the following form : 

[16] 

where 'TJ denotes a regularization parameter. For 'TJ = 0, one returns to the initial consti
tutive law. 

At this level, the presented law is analytic, but a difficulty remains due to the non
integer exponent n. Braikat [BRA 95] used in his thesis an integer exponent and has 
limited the truncature order at 6. To avoid this limitation and to obtain a quadratic 
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framework, we introduce the following variables K and ( and we transform the power 
law into a differential equation [POT 971] [POT 972]. 

(S ) ... __ gd : gd + 'f/2 
2 3 [Seq]n- 1 =_3, [ 3 ]n-l 

K eq = 2 Q (J' y 2 2 (J' / 
[17] 

[18] 

These two variables are linked as follows : 

3 
K = -Q (n-1 

2 
[19] 

If we carry out a differenciation of this latter equation, we obtain a relation which 
is more convenient for the asymptotic expansions : 

[20] 

In this way, we obtain a general problem with a quadratic nonlinearity allowing us to 
use a similar algorithm as the one developed in elastic studies [COC 942] [ZAH 98]. 
Moreover, to keep the same initial slope as for non-regularized law, the first member 
of equation [ 15] must be multiplied by ( 1 + O'f/n). 

The global structural problem is then formulated by both equilibrium condition 
and the following equations which represent the constitutive relation and the two ad
ditional equations relative to the variables K and(: 

• E(1 + O'fJn) 1 = (1 + v)Sd- (1- 2v)PI + KSd 

3 
• (2 = -2 2 gd : gd + 'f/2 

(J'y 

e ( dK = (n- 1) K d( 

4. The Asymptotic-Numerical algorithm 

4.1. Problem to be solved 

[21] 

Since the constitutive laws are well-established, we are now interested in the va
riational formulation of the structural problem in view to apply the finite element dis
cretization. In three-dimensional framework, the equilibrium condition can be related 
by the following expression : 

1 tg : J, dv- APe(6u) = 0 [22] 
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where 67 is the virtual Green-Lagrange strain, .A denotes a load parameter and .APe(6u) 
is the virtual work done by external forces. These equilibrium condition and consti
tutive equations [11], [14] or [21] form the problem to be solved. For these three 
problems, we will use the identical algorithm as it has been performed in the elasticity 
case. 

4.2. Perturbation technique 

As the problem is well-posed and variables are specified, we expand the load pa
rameter .A and the mixed vector U into power series with respect to a path parameter 
"a" whom we take as an arc length parameter [COC 941]. The mixed vector holds the 
elementary variables which are represented by U = (u, S, (,seq), U = (u, S, (,~~;)or 
U = (u, S, A,(, seq) respectively for the elastic-perfectly plastic law, the Ramberg
Osgood model or the behavior with linear hardening. We search a part of the solution 
branch in the neighbourhood of a known solution (U 0 , .A0 ) : 

U(a) = Uo + aU1 + a2U2 + a3U3 +... [23] 

[24] 

[25] 

We substitute these latter equations into equilibrium and constitutive ones. Then, 
by equating like powers of "a", we obtain a sequence of "p" linear problems, where 
"p" is the truncature order of the series. At this order, equations relative to the additio
nal variables are substituted in the constitutive equation. Next, the stress is substituted 
into the equilibrium equation to obtain the unique equilibrium relation with the dis
placement field as the principal unknown. At order 1, the linear problem corresponds 
exactly to the linear prediction of the Newton-Raphson algorithm. At order "p", there 
is a right hand side vector F~1 which depends on all elementary variables related by 
the mixed vector U and which are computed at previous (p-1) orders. 

As compared to an elastic problem, the nonlinear constitutive relation leads to a 
tangent stiffness tensor noted Dt needed for computing the tangent stiffness matrix, 
and to residual terms at order p denoted by s;es. These quantities are detailed in 
appendix (2). 

4.3. Finite element discretization 

We have implemented this algorithm in a finite element code using an eight nodes 
solid element [ELA 97], which is straightforward because of the simplicity of the 
displacement-strain relation. This latter is not obvious when a shell model is consi
dered, because the relation linking global displacement to generalized stresses is ge
nerally complex. A simple way has been presented by Ammar [AMM 96] for elastic 
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shells with large rotations, it allows ones to estimate the right hand sides F;1 from 
residual vectors. In the present study, we have chosen a shell element [BUC94] al
lowing us to use a three dimensional constitutive law without condensation and a 
displacement-strain relation [3] which is quadratic. 

As shown in figure (2), the displacement field is related by the following expres
sion: 

[26] 

in which v represents the displacement of the mid-surface and w is the difference 
vector between the undeformed and deformed directors. (01 , 02 , 03 ) denote the curvi
linear, convected co-ordinates. 

Furthermore, this model introduces an additional strain ::Y which is linearly varying 
in thickness direction and chosen orthogonal to the stress field : 

[27] 

As we require no interelement continuity for the strain component ~33 , a bilinear 
polynomial is assumed for this variable: 

[28] 

where e.7] are the standard element co-ordinates. The extra-unknown parameters al, 
a 2 , a 3 and a 4 can be eliminated on the element level (see [BUC94]). 
Orthogonality condition leads to a compatibility equation written in the following 
form: 

[29] 

To obtain details of the implementation, readers can refer to [ZAH 97]. For dis
cretization, we use the classical eight nodes serendipity quadrilateral with reduced 
integration and five Gauss points throught the thickness direction. 

4.4. Continuation procedure 

As the series have a finite radius of convergence, we apply the continuation proce
dure proposed by Cochelin [COC 941] to describe the whole solution path in step by 
step manner. At each step, the maximal value of the path parameter 'a' is defined au
tomatically. Cochelin has proposed two ways to define the validity range of the series. 
The first one is based on the difference in the displacement at two successive orders 
which must stay inferior to a given value c- 1 : 

Validity range : amax = [30] 
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A second validity range definition is based on the residual vector whose increment 
must stay approximately below a given value t 2 defined by the user. It has been shown 
that these two validity range definitions can be considered as more or less equivalent 
provided the parameter t 1 or t2 is suitably chosen [ZAH 97]. In the present study, we 
limit ourselves to the step length defined by the relation [30]. 

5. Numerical results 

We present in this section the numerical simulations of the asymptotic algorithm 
for solving problems with nonlinear constitutive laws. The Newton-Raphson method 
will be considered as the numerical reference for all examples studied here. This me
thod is implemented in our code using the regularized laws presented in this work. 
Usually, the best iterative algorithms proposed by commercial codes use an adap
tative step length, even if these algorithms are not always reliable as compared with 
those using constant step length [ZAH 97]. However, the efficiency of these algorithms 
strongly depends on the chosen strategy and on the considered physical problem. For 
this reason, the reference algorithm in this study has a constant step length. We shall 
compute several tests with different step length using an arc-length strategy. 

We present three simple but significant examples, where the nonlinear material 
behavior effect is relevant. The first one is the simple traction of a plate; the second 
one concerns a cylindrical shell which allows us to seek the optimal truncature order as 
regards to the computing time. The third example deals with a traction of a thick plate 
with a circular cut-out; in this case, we use a solid element to discretize the structure. 

5.1. Simple traction of a plate 

In this first example, we consider the simple traction of a plate with length L = 10., 
width l = 1. and thickness h = 1. 

In the case of hyperbolic law of elastic-perfectly plastic behavior, material data are 
given as follows: E = 105, v = 0.3, uy = 200. We first analyse the influence 
of the parameter TJ on the number of steps. Thus, in the figure (3) we report the 
load/displacement response for different values of TJ. We notice that the more TJ is 
large, the more the load/displacement curve is smoothly varying. This tendency has a 
direct influence on the step number of ANM algorithm. Indeed, we give in figure (4) 
different results concerning the influence of TJ as well as that of t 1 on the step number 
by using a truncature order 15. 

Information given by this study is : 
- For a fixed t1, the step number increases when the value of TJ decreases. This 

tendency is consistent because the non-linearity becomes stronger by approaching the 
singularity located at the stress limit. 

- For a given TJ, the step number increases when the value of t 1 decreases. This 
result is the same as in previous studies [ZAH 98] [ELH 98]. 
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- For f 1 = 10-2 and TJ = 10-2, we obtain the good curve until the stress limit from 
which we switch on the second hyperbolic branch that is not physiqually admissible 
because the stress passes over uy (see figure 5). To avoid this, it is sufficient to require 
an accuracy parameter ~'1 smaller than 10-2 . So we obtain good results when we 
choose the accuracy parameter E1 = 10-3

, whatever the value of TJ is. Indeed, the 
relative residual obtained at the end of the computation is less than 10-5 . So, to obtain 
a displacement of 5% ofthe plate length, only 3 steps are needed when TJ = 10 and 9 
steps when TJ = 10-2 • 

Now, by considering the computation by Newton-Raphson method, we notice 
that the number of tangent stiffness matrix decompositions is larger than the asymp
totic one. Indeed, we have undertaken 3 computations with different values of arc 
length noted "s" and a required relative residual of 10-3 . To obtain 18 points in the 
load/displacement curve, it is necessary to take s = 2 which implies 34 tangent stiff
ness matrix decompositions. When s = 10, we only obtain 4 points on the whole 
curve : 3 points on the first linear curve and only one point on all curve left ( TJ = 10-2 ). 

Now, consider the same application with the Ramberg-Osgood model. The ma
terial caracteristics are: (E = 105, v = 0.3, a = 0.5, n = 3.5 and uy = 200.). 
Concerning TJ, this parameter is only introduced to avoid a division by zero at the star
ting point; we then adopt TJ = 10-2 • To compare the asymptotic numerical solution 
to the Newton-Raphson one, we have performed 3 computations with different arc 
lengths and a relative residual required of 10-3 . The ANM computation is performed 
with a truncature order of 15 and fl = 10-4 . On figure (7), we have reported the step 
number and the decomposition number of tangent stiffness matrix Kt for the three ite
rative computations. So, to obtain 19 points on the curve, iterative algorithm needs 43 
decompositions of Kt whereas the ANM solution gives a continuous solution curve 
with a good residual nearly equal10- 5 by requiring only 8 steps. 

If we consider the elastic-linear hardening model with material constants (E = 
105 , v = 0.3, uy = 200 and the hardening modulus h = 104), we obtain the same 
conclusions as previously. Indeed, in figure (8) and figure (9), we report the load I 
displacement response and the decomposition number of Kt when Newton-Raphson 
algorithm is used. To obtain only 8 points on the curve, 41 Kt decompositions are 
needed within the iterative algorithm and only 10 steps when ANM is used with E1 = 
10-4 , TJ = 10- 2 and a truncature order 15. 

5.2. Plastic buckling of a cylindrical shell with two holes : computation time analy
sis 

We consider a cylindrical shell with two diametrically opposed rectangular cutouts 
which are placed in the middle between the two ends (figure 10). It is subjected to a 
uniform axial compression (elastic study [NOO 811][RIK 84]). Due to the symmetry 
of this set-up, only one octant of the structure will be considered in the computational 
model. It is discretized with a regular mesh involving 1830 degrees of freedom. 

In this study, we consider the Ramberg-Osgood model (E = 71122.5, v = 0.3, 
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a= 0.5,n = 3.5,uy = 71.1225,77 = 10-2 )andtheelastic-perfectlyplasticbehavior 
(E = 71122.5, v = 0.3, Uy = 100,17 = 10-1). 

A crucial information to analyse the efficiency of ANM for a given application is 
the ratio between the computing time to evaluate the right hand sides and the one nee
ded to evaluate and to decompose the tangent stiffness matrix [AZR 93] [COC 941] 
[ZAH 97]. If this ratio is sufficiently small, the optimal truncature orders are large 
and the ANM is efficient for the considered class of problems. This information is 
presented in figures (11) and (12) as well as the steps number and the total relative 
time denoting the ratio between the CPU time and time needed for a simple Newton
Raphson prediction. 

This study allows us to establish the optimal truncature order of the series. We 
use an accuracy parameter based on the displacement criterion (E1 = 10-4). The 
computation stops when the deflection of the node M reaches 10 mm for the power 
law and 8 mm for the hyperbolic one, which corresponds to a displacement just after 
the maximal load point (see figures 13 and 14). 

We observe that the optimal truncature order is 10 for the two laws, while it is 
established at 15 in the elastic case [ZAH 97] [ZAH 98]. This tendency is consistant 
because in both elastic and plastic cases, the tangent stiffness matrix has the same size, 
but in the plastic case, the r.h.s. are more intricate because of the material nonlinearity, 
which leads to an additional computation effort. 

Another interesting remark concerns the step number. Indeed, this latter decreases 
when the truncature order increases in the hyperbolic law case, which is consistant 
because a large truncature order improves the validity range of the ANM solution. But 
in the power law case, the step number increases from order 15. This can be due to the 
weak regularization of the power law which induces small divisors in the perturbation 
technique. 

The time ratio of pnt / K t is practically the same for the two laws because in the 
two cases, we decompose a matrix having the same size and we compute a vector pnt 

requiring the same computation effort. By comparing this ratio with the one obtained 
in the elastic study, at order 10 for example, we notice that a plastic step requires only 
an increase of 16% as compared with an elastic step for the same problem. 

5.3. Traction of a thick plate with a circular cut-out 

We consider in this example a square thick plate (100x100) with a circular cut-out 
(R = 40) and a thickness of 20. Due to the symmetry of the problem, only one octant 
of the structure will be considered in this study. 

We consider the Ramberg-Osgood model with the following caracteristics (E = 
105

, v = 0.3, a = 0.5, n = 3.5, uy = 200., 17 = 10-2). The mesh described in figure 
(15) involves 1080 solid elements and 4836 d.o.f. 

This test is performed to assess numerical results of the proposed algorithm for a 
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problem requiring solid elements. A comparison with Abaqus code is performed: this 
latter uses the same constitutive law without regularization and an algorithm with an 
adaptative step. To obtain a displacement of 5 mm of the point B (figure 15), Abaqus 
needs 14 steps and 40 decompositions of the tangent stiffness matrix with a relative 
residual of 10-3 at each step end. The same computation involves 18 steps that is to 
say 18 decompositions when asymptotic numerical method is used with a truncature 
order 15 and an accuracy parameter of 10-5 . In this case the relative residual stays 
below 10-5 . Response curve is described in figure (18). 

6. Concluding remarks 

We have presented in this work an Asymptotic Numerical Method for solving pro
blems using nonlinear constitutive laws. We have limited ourselves to the deformation 
theory of plasticity which is convenient for some practical applications where the loa
ding history is not important. We have shown that it is possible and easy to implement 
a nonlinear constitutive law. Furthermore, by judiciously introducing additional va
riables, we can use the same algorithm as in the elasticity [COC 942] [ZAH 97]. This 
algorithm remains reliable and optimal because it applies the same continuation pro
cedures as for the elastic case [COC 941]. 

We have also discussed the CPU time by analyzing the number of tangent stiff
ness matrix decompositions. We have compared the results obtained by A.N.M. to 
those found by iterative Newton-Raphson method. This study advocates the asymp
totic numerical method. The three considered examples show that we must choose a 
sufficiently small value of the accuracy parameter ~:: 1 (below IQ-3 ) depending on the 
problem to be solved. 

This choice allows us to avoid a bad residual and to follow bad solutions when the 
elastic-perfectly plastic and elastic-linear hardening behaviors are used. 
With a weak increasing of the required memory, we have formulated the problem wi
thin a quadratic framework allowing us to quicken the algorithm. Indeed, the example 
of cylindrical shell with 1830 d.o.f. shows that the computation of an asymptotic step 
in plasticity requires only 16% more computing time than one obtained in the elastic 
study. 

The optimal truncature order is about 10. For the same example, the elastic study 
gives a larger optimal truncature order of 15. The difference between the two tests 
is not surprising because in both cases, we have a tangent stiffness matrix with the 
same size to be decomposed, however in nonlinear law case, the right hand side pnl 

requires more computing time. 
For the class of problems considered in this work, A.N.M. is proved more effi

cient than the Newton-Raphson method. Indeed, less tangent stiffness matrix decom
positions are needed; furthermore, A.N.M. is reliable and easy to use because the 
asymptotic steps are automatically adapted depending on the local nonlinearity of the 
response path. 

Finally, note that all algorithms which improve the validity range of the asymp-
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totic representation like Pade approximants can be easily adapted in the present case 
[NAJ 98]. 
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7. Appendix 1 

In this section, we will present how to regularize the elastic-linear hardening model studied 
in this paper. First, we can define the plastic strain tP and the generalized thermodynamic force 
A as follows [MAU 92] : 

[31] 

where E and h denote respectively the Young modulus and the hardening one. The admissible 
stresses are such that JAJ ::; Uy and the constitutive relations are expressed as: 

A =Uy 

A= -uy 

if 

if 

if 

[32] 

At this level, we obtain the same equations as for the elastic-perfectly plastic behavior. So, 
we propose to regularize this law by an hyperbolic relation which links the plastic strain tP to 
the generalized thermodynamic force A. This relation can be written as : 

2 
E Ep = T/ Uy A 

u~- A2 
[33] 

When A is computed, we can deduce the stress u by using the relation u = A + h tP. In 
this way, by comparison with elastic-perfectly plastic law, we perform the same regularization 
procedure and we have an additional equation which links the stress field to the generalized 
thermodynamic force A. The constitutive equations can be summarized as follows : 

[34] 

h '7 (]'2 

u = A + E ( u~ - YA 2) A [35] 

We can generalize this law to the three-dimensional case by using the Green-Lagrange strain 
field 1 and the Piola-Kirchhoff stress fieldS. This leads to relations [12] [13]. 

By introducing two new variables, the constitutive relations can be easily written in the 
quadratic form 14. 

8. Appendix 2 

In the preceding sections, we have developed the asymptotic numerical algorithm for pro
blems involving nonlinear constitutive laws. By comparison with the elastic case, we have re
placed the elastic stiffness tensor D by the tangent modulus one Dt to compute the tangent 
stiffness matrix Kt. Furthermore, because of these nonlinearlaws, stress field involves, at order 
'p', residual vector S~es. This latter leads to additional terms in the right hand side F;1

• In the 
present section, we give for each law the expression of Dt and s~es. 
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8.1. Regularized elastic-perfectly plastic law 

At order I, we can write the constitutive relation in the following form : 

s1 = Dt : 11 [36] 

One can show easily that this equation is provided from the expression detailed below: 

s1 = c1 11 + c2 ( 11 : I) I+ c3 ( 11 : sg) sg [371 

s1 = [c1 ~+C2 I®I+C3 sg®sg] : 11 [381 

where~ is the fourth-order identity tensor and c1' c2 and c3 are constants defined as follows: 

E c1 = ---,.-
1 + v + (o 

E(v+ ~) c2 = -,-----,....--:--;----"'---,-...,. 
{1-2v)(1+v+(o) 

03 
_ -3 (o E 
- (1 + v + (o)[(1 + v + (o)(O'~- sgq) + 3 (o sg: sg] 

At order 'p', the constitutive relation is expressed as: 

Sp = Dt : 'Yp + s;•• [39] 

Matrix Dt is the same at each order; however, residual stresses are expressed at order 'p' as 
follows: 

s;··= l+:+(o (c4 [t?sg:sg+(~(rs;_r): sg] -t9] sg-l+:+(o ~(rs;_r 
where 

3 (o 
C4 = (1 r )( 2 eq) I' gd . gd + v + .,o 0' y - s0 + 3 -.o 0 . 0 

[ 

p-1 p-1 ] _ 1 3 (o d. d eq 
{) - 0'2 _ Seq - 2- L Sr · Sp-r + L (r sp-r 

Y 0 r=1 r=1 

8.2. Regularized elastic-plastic law of the Ramberg-Osgood model 

In the case of the present law, we obtain the same expressions as in equations [36] and [39] 
but with different values of the constants c1' c2 and c3 : 

C
1 

= E (1 + cnn 
1 + v + ~'>o 

c2 = (3 v + ~'>o) c1 
3 (1- 2 v) 

C 
_ -K c1 

3- d d 
1 + v + ~">o + K S0 : S0 
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where 

y _ 3 ( n - 1) "o 
\- 2u2 1"2 

0 '>0 

At order 'p', residual stresses are written in the form below: 

s;•• = 1 +: + Ko [ Cs [ !9 sg : sg + (~ KrS~-r) : Sg] - !9] sg - 1 +: + Ko ~ KrS~-r 
where 

K 
Cs = d d 1 + v + "o + K S0 : S0 

{) _ ~ (p- r)(n- 1)- r /" 3 (n- 1) 1\;Q ~ Sd. Sd _ (n- 1) Ko ~ /" /" 
- L..J ,..

0 
'>p-rKr + 4 (1'2 (2 L..J r • p-r 2 (2 L..J V'>p-r 

r=l p '> 0 0 r=l 0 r=l 

8.3. Regularized elastic-linear hardening law 

For the present law, we have performed the same regularization procedure as with the 
elastic-perfectly plastic material. The constitutive law is related by the following equations: 

• Ei=(1+v)Ad-(1-2v)PAI+(Ad [40] 

• S=A+~(Ad [41] 

Equation [40] allows ones to write, at order 'p', this relation: 

Ap = Dt: /p +A;e• [42] 

This expression is identical to that met in the elastic-perfectly plastic case. Dt lists exactly 
the Dt matrix of equation [39]. A;es has the same expression of s;es reported by equation [39] 
where S is replaced by A. 

To obtain the tangent modulus matrix, we use relation [41] which gives S as a function of 
A: 

h 3 (o h d d h (o -res 
Sp = (1 + E(o) Ap + E (u

5 
_ 5~q) (A0 : Ap)A0 - 3 E (Ap: I)I + SP [43] 

where 

s;e• = ~% (rA;_r + E ( ut- 5~q) [ 
3 

2(o %A~ : A;_r +% (rs;~r] Ag [44] 

We can rewrite equation [43] in the following form: 

Sp = A : Ap + g;;es [45] 

where A is a fourth-order tensor. 
By substituting equation [42] into [45], we obtain the constitutive relation expressed as: 

[46] 
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Figure 1. Simple traction: regularized elastic-perfectly plastic law with different va
lues ofTJ 
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Figure 3. Regularized elastic-perfectly plastic law: load-displacement curve of a loa
ded node, with different values of TJ, for simple traction of a beam 
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Asymptotic numerical method (order p=15) 

Et , 10. 1. 0.1 0.01 
10 ·:.! Step number 2 4 6 ** 

Residual (log10) -3.9 -4.3 -3.9 ** 
10 -;j Step number 3 5 7 9 

Residual (log10) -5.6 -5.4 -6.9 -5.7 
10 -'1 Step number 3 6 9 11 

Residual (logto) -7.1 -6.4 -7.6 -6.6 
10 "5 Step number 4 7 11 14 

Residual (log10) -7.2 -7.3 -7.4 -7.2 
10 -0 Step number 4 9 13 17 

Residual (logto) -8.1 -7.4 -8.0 -7.6 
Newton-Raphson method 

s = 2. Step number 16 18 18 18 
Nb decomp. Kt 58 58 47 34 

s = 5. Step number 7 7 7 7 
Nb decomp. Kt 27 27 23 16 

s = 10. Step number 4 4 4 4 
Nb decomp. Kt 19 18 16 14 

Figure 4. Regularized elastic-perfectly plastic law: influence ofry and t: 1 on the num
ber of tangent stiffness matrix decompositions. The quality of the approxi
mation of the solution is measured by the decimal logarithm of the relative 
residual norm vector 
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Figure 5. Regularized elastic-perfectly plastic law: load-displacement curve for 
simple traction of a beam; comparison between iterative solution and ANM 
one 
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Figure 6. Regularized Ramberg-Osgood model: load-displacement curve for simple 
traction of a beam; comparison between iterative solution ( s= 10) and ANM 
one 

Newton-Raphson 
s = 1. s=5. s= 10. 

Step number 187 38 19 
Number of decomp. Kt 320 87 43 

Figure 7. Regularized Ramberg-Osgood model, simple traction of a beam: analysis 
of the number of tangent stiffness matrix decompositions with respect to the 
imposed arc length with Newton-Raphson algorithm (the maximal relative 
residual allowed is 10-3 ) 
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A.N.M. solution -

0.1 
Displacement 

N.R. reference 

0.15 
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Figure 8. Regularized elastic-linear hardening law: load-displacement curve with 
different values of TJ for simple traction of a beam; comparison between 
iterative solution (s=JO) and ANM one 

Newton-Raphson 
s =I. s = 5. s = 10. 

Step number 80 16 8 
Number of decomp. Kt 241 72 41 

Figure 9. Regularized elastic-linear hardening law, simple traction of a beam: ana
lysis of the number of tangent stiffness matrix decompositions with respect 
to the imposed arc length with Newton-Raphson algorithm (the maximal 
relative residual allowed is 10-3 ) 
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Geometry: 
L= 200. mm 

R= 100. mm 

h = I. mm 

s = 80. mm 

t = 79.5 mm 

Material: 

E = 71122.5 Mpa 

v=0.3 

Figure 10. Deformed configuration of cylindrical shell under axial and uniform pres
sure P=981. N/mm 

Truncature order 5 8 10 15 20 30 
Step number 44 24 21 20 20 22 

Fnl evaluation 0.24 0.45 0.61 1.09 1.70 3.25 Kt decomposition 

Total relative time 54.56 34.80 33.81 41.80 54.00 93.50 

Figure 11. Plastic buckling of cylindrical shell with two holes. Computing time in 
ANM: regularized Ramberg-Osgood model ( Computer used: HP 9000 K 
200) 

Truncature order 5 8 10 15 20 30 
Step number 56 32 27 23 22 21 

Fnl evaluation 0.24 0.45 0.61 1.09 1.71 3.26 Kt decomposition 

Total relative time 69.44 46.40 43.47 48.07 59.62 89.46 

Figure 12. Plastic buckling of cylindrical shell with two holes. Computing time in 
ANM: regularized elastic-perfectly plastic law ( Computer used: HP 9000 
K200) 
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Figure 13. Regularized Ramberg-Osgood model: load-displacement curve for cylin
drical shell; deflexion of the point M is limited at 10 
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Figure 14. Regularized elastic-perfectly plastic law: load-displacement curve for cy
lindrical shell; deflexion of the point M is limited at 8 
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c 

[(_1 
Figure 15. Plate with a circular cut-out: geometric description 

Figure 16. Plate with a circular cut-out: deformed configuration 
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L 

Figure 17. Plate with a circular cut-out: geometric description 
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Figure 18. Load displacement curve at points A, B and C. The current load is F = >. P, 
with P = 0.18 




