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ABSTRACF. We present a new a posteriori error estimate for strongly heterogeneous elasticity 
problems. This new approach is based on a simple modification of the well known residual 
estimate, but with the nice property that it is correctly dimensionalised with respect to the 
physical data. 

RESUME. Dans ce travail on presente un nouvel estimateur d'erreur a posteriori pour des 
problemes d'elasticite avec coefficients elastiques fortement heterogenes. La nouvelle 
approche, qui est une variation de l'estimateur par residu, a la propriete d'etre co"ectement 
dimensionne par rapport aux donnees physiques. 
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1. Introduction 

Recent accidents have clearly demonstrated that reliable a posteriori error esti
mates and mesh adaption techniques were imperatively needed when computing large 
scale structures. From the theoretical point of view, this problem can be solved either 
by using consistent residual estimates (see [BAB 78]) or by solving local auxiliary 
equilibrium problems (see [BAB 93], [ZIE 87], [LAD 91]) at the element level. 

The literature on a posteriori error estimation for finite element is very vast, for 
example see the excellent and recent survey work [AIN 97] and the extensive biblio
graphy cited therein. 

The purpose of this paper is to describe and study a new version of a local a pos
teriori error estimates. This estimate uses a weighted measure of element and inter
face residuals, and can be proved to be correctly dimensionalized with respect to the 
physical data, and to be uniformly valid with respect to material heterogeneities. For 
simplicity, the technique is introduced and analyzed for a simple Poisson type equa
tion discretized by triangular or tetrahedric finite element grids and then extended and 
tested numerically to elasticity problems. 

This work is organized as follows. In section 2 we present the model problem, its 
finite element discretization and some technical results. In section 3 we present the 
error estimate and prove its robustness. In section 4 and 5 we generalize our approach 
to the elasticity problem and present some numerical examples. Finally in section 6 
we outline some conclusions and open problems. 

2. Model problem and notation 

2.1. The continuous problem 

Let n be a bounded domain of!Rn (n= 2 or 3), with Lipschitz continuous boundary 
r = rv urN, rv nrN = 0. Let f E V(n) and g E H- 112(rN) be given data. We 
then consider the following model problem 

[P] 
{ 

-div(~~:V'u~: 

au 
K-= an 

f 
0 

g 

inn, 
on rv, 

Here the scalar coefficient K is supposed to be piecewise constant. In the simplest 
case this means that the domain n is split into two subdomains nl and n2 with inter
face r 12 (see Figure 1) and that we have 
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with 11:1, 11:2 > 0. 

Figure 1. The domain !:1 

The standard weak formulation of the problem [P] (see [CIA 78]) is then: Find 
u E H such that 

a(u,v) =< F,v > ,Vv E H, [I] 

where 

H { v E H 1 
( n) I v = 0 on r D } , 

a(u, v) r 11:1 'Vu. 'Vv + r 11:2'Vu. 'Vv, 
Jn, ln, 

< F,v> r fv + r gv. 
Jn lrN 

This space is endowed with the natural energy norm 

llvlln=~. [2) 

2.2. Finite element discretization 

Let h be a positive discretization parameter, and consider a triangulation Tt. of 0, 
that is a partition of 0 into non degenerate triangles T (resp. tetrahedra in dimension 
3), with diameter bounded by h, and such that each pair of elements T1 and T2 of Tt. 
are either disjoint or share a vertex, an edge or a complete face. We denote by hr the 
diameter ofT, by PT the diameter of the circle (resp. sphere) inscribed in T and we 
set 

hr 
ur=-. 

PT 

We assume that the family of triangulations (Tt.)h is shape regular, i.e., there exists 
a constant u, independent of h, such that 

, VT E Tt.. [3] 
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On each element T we then introduce a local finite element space I!l'k(T) of po
lynomial functions defined on the element T and with degree less than or equal to k. 
With this notation, we define the finite element space Hh by 

Then the approximate problem of [ 1] is: Find uh E Hh such that 

[4] 

In what follows we use the following notation 

a -< b {:=::::> a :::; Cb 

a b {:=::::> a ~ b and b ~ a , 

where the constant C is independent of h and '"" 

2.3. Edges and vertices 

For any T E Th we denote by £(T) and N(T) the set of its edges (faces) and 
vertices, respectively, and set [VER 96] 

£h,n = U £(T). 
TETh 

We split £h,n into 

with 

£v={EE£h,n/ECfv}, 

Given an E E £h,n we denote by N(E) the set of its vertices. ForT E 'Th and 
E E £h,n we define their neighborhoods (see Figure 2) 

WT u T' 
' WE= u T' 

' 
£(T)n£(T' );t0 EE£(T') 

WT u T' 
' WE= u T'. 

N(T)n.Af(T' );t0 N(E)n.Af(T' );t0 
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Figure 2. WT and WT, respectively 

Remark. Condition [3] implies that hT/hE, T E T,., E E £(T), and hT/hT'· 
T, T' E T,., N(T) n N(T') f 0, are bounded from below and from above by 
constants which only depend on O". 

2.4. Bubble functions 

For each element T E T,. we can define the element bubble function bT by 

n+l 

bT = (n + 1t+1 II >..T,i. 

i=l 

Above AT,j(M) denote the j barycentric coordinates of the point MinT. Simi
larly, to each edge (face) E E £h,n, we can define the edge (face) bubble function 

with T EWE. 

n 

bE= nn II AT,i, 

i=l 

The above definition of bE assumes that, for example if n = 2, in each triangle of 
WE, the edge E is associated to the vertices with local numbers 1 and 2. 

By construction, we have the following properties of the bubble functions bT and 
bE. 

Lemma 1 LetT E T,. and E E £h,n be arbitrary, then 

suppbT C T, 

suppbE C WE, 0:SbE:S1, 

maxbT(x) = 1, 
xET 

maxbE(x) = 1. 
xEE 

[5] 

[6] 

Moreover, using standard discrete norm equivalence arguments, we can prove (see 
[ARA 97]) 
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Lemma 2 The following estimate holds for any local function f E IP'k_ 2(T) and 
g E JPlk-l(E) 

h brf
2 llfii6,2,T' 

fe bEl llgii6,2,E, 

h IV(brfW -< hi-2 h !2, 

J IV'(bEgw -< h£/ fe g2, 
TEWE 

J lbEgl2 -< hE fe g2. 
TEwE 

Like a non trivial extension of a local projection (see [ARA 97], [BER 95], [CLE 75], 
[NEP 97], [SCO 90]) we obtain 

Lemma 3 There exists a projection operator Rh : H --t Hh such that for all v E H 

llv- Rhvllo,2,T -< hrlvh,2,wTnn, 

llv- Rhvllo,2,E -< h1/2lvh,2,tiiEnn, , Vi= 1, 2 

where T E Th, E E EN U Eh. 

3. A posteriori error estimates 

3.1. Construction of the estimate 

[7] 

The purpose of this section is to propose a local explicit evaluation of the error 
between the exact solution u of our original problem [P] and the approximate solution 
uh of the finite element problem [4]. This error estimate should be easy to compute, 
should only involve the data and the approximate solution uh. and its efficiency should 
be independent of the choice of the physical parameters K;. As classically observed 
in the literature (cf. [AIN 93], [BAB 93]) the dual energy norm of the residual gives a 
good indication of the error. The challenge is then to obtain an explicit local approxi
mation of this norm, uniformly valid with respect to the coefficients K;. 

For this purpose, on each edge (face) E E Eh separating the elements T1 and T2 , 

we first introduce weighting factors a(T;, E), i = 1, 2, such that 

[8] 

[9] 
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where KT, denotes the restriction of the physical coefficient K to the element T;. A 
good choice of coefficients is 

which obviously satisfies 

Next, we introduce the piecewise projections fr and 9E of right hand sides f and 
g on each element or edge (face) subspace JP>k- 2(T), T E TJ. or JP>k_ 1(E), E E Eh,n 
defined by 

£ fq , Vq E JP>k-2(T), fr E JP>k-2(T), 

lgq ,VqEJP>k-t(E),gEEJP>k-t(E). 

Thus we define the weighted element residuals TJR,T by 

[10] 

[ 11] 

Observe that the value of TJR,T scales exactly like the solution energy norm when 
changing the physical scales or units. Above, we have used the standard notation for 
jumps in normal derivatives 

With this notation we can prove 

Theorem 4 The following error estimate holds 

h }1/2 
+ L ~IIYE-YII5,2,E 

EE£N KT 

[ 13] 
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and 

T}R,T -< 

[14] 

Proof 
As usual, the proof is split into three parts: an algebraic manipulation of the resi

dual, the derivation of the upper bound [13], and of the lower bound [14]. 

Step 1: residual transform 

By construction of the continuous and discrete problems [I] and [4], and after 
integration by parts on each element T, we can write for any v in H 

a(u- uh, v) = r fv + r gv- a(uh, v) 
ln lrN 

r fv + r gv - ( r "l \luh . \lv + r 11:2 \luh . \lv) 
ln lrN ln, ln2 

L 1 (! + Kriluh)v + L r (g- II:Onuh)v 
TET, T EE£N JE 

[ 15] 

Then using the fact that a( u - uh, Vh) = 0, Vvh E Hh and the partition of unity 
[8], we obtain 

a(u- uh, v) 
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Step 2: upper bound 

Let us now take Vh = Rh v. Using [2], [7] and the Cauchy-Schwarz inequality, the 
residual [16] can be bounded by 

+l:l: l: 
i EE£12 T,EwEnl1, 

{ 
h2 h } 1/2 

2 T 2 E 2 ::S L 1JR,T + L -llh- fllo,2,T + L -[[gE- g[[o,2,E [[v[[n · 
KT KT 

TETh TETh EE£N 

To obtain [ 13], we just have to take v = u - uh and divide each term of the above 
inequality by [[u - uh [[n, completing then the proof of step 2. 

Step 3: inverse bound 

Let us consider the local bubble test function vr = (h + Kr~uh)br. Then using 
Lemma 2, we obtain 

[ 17] 
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and 

IIY'vTIIo,2,T -< h,Z: 1 IIh + KT~uhllo,2,T, 
llvTIIo,2,T -< llh + KT~uhllo,2,T. 

On the other hand, since the support of the function VT is included in T and u is a 
solution of the continuous problem, we have 

l (JT + KT~Uh)VT = l fvT + l KT~UhVT + l (fT- f)vT 

{ fvT + 1 9VT - { KV'Uh · Y'VT + { (fT - f)vT 
ln. rN ln. lT 

l KTY'(u- uh) · V'vT + l (/T- f)vT 

< vfKTiu- uhh,2,TVKTIIY'vTIIo,2,T + llh- !llo,2,TIIvTIIo,2,T. 

Thus 

l (h + KT~uh)vT -< llh + KT~uhllo,2,T(h,Z: 1 ~~:i/ 2 llu- uhiiT 

+II!- hllo,2,T). 

Hence, combining the two inequalities, we finally obtain 

Next, we consider an arbitrary boundary edge (face) E E fN and define 

From our Lemma 2, we have 

[19] 

On the other hand, using the construction of u, VE and our basic inverse inequali
ties, we obtain 

L (gE- KTOnUh)VE = L (g- KTOnUh)VE + L (gE- g)vE 

1 fvE + { gvE -1 KTV'uh · Y'vE- L { (! + ~~:~uh)VE 
n. lrN n. T'EwE lT' 
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< JK"Tiu- uhh,2,wEJKTII'Vvello,2,wE + L II/+ ~~:Lluhllo,2,T'IIvEIIo,2,T' 
T'EWE 

+II9E- gllo,2,EIIvEIIo,2,E 

-< h~ 112 ~~:V 2 IIu- uhllwEII9E- ~~:r8nuhllo,2,E 

+h~ 2 L II/+ ~~:Lluhllo,2,T'II9E- KTOnuhllo,2,E 
T'EWE 

Thus, by combining the above two inequalities, we get 

II9E- KTOnuhllo,2,E ~ h~ 112 ~~:V 2 IIu- uhllwE 

+h~2 L (II/- h~llo,2,T' + llh' + ~~:Lluhllo,2,T') 
T'CwE 

+II9E- 9llo,2,E · [20] 

Finally, let us consider an internal edge (face) E E £h separating the elements T1 

and T2 and define 

From Lemma 2, we first have 

Now, using the fact that the support of VE is included in W£, the construction of u 
and the equivalence of norms, we obtain 

h (KT1 0nUh- KT2 0nUh)VE 

L { (! + ~~:rLluh)vE- { fvE - { gvE + { ~~:'Vuh · 'VvE 
TCwE lr Jn JrN Jn 
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+II(!+ K~uh)llo,2,wEnn,llvEIIo,2,wEnn, 

-< :Z::>~Y\IKillu- uhllwEnn,llvEIIo,2,E 

+II/+ K~uhllo,2,wEnn,llvEIIo,2,wEnn, 

-< ~IIK10nUh- K20nuhllo,2,E(:L:>t/llu- uhllwEnn,JK;(:I + :~) 1 / 2 
i 1 2 

By construction of coefficients a;, we have 

and hence by using the above inequalities and [ 18] we obtain 

[22] 

Then from [18], [20] and [22], we get [14] 0 

4. The elasticity problem 

Now, we will try to extend the previous approach to linear elasticity problems. Let 
be n a Lipschitz, bounded domain of JR. n with an interior boundary denoted r 12 . This 
boundary represents the interface between two elastic, isotropic and homogeneous 
materials, noted n1 and n2, respectively. Let r = on such that r = r D u r N' 
f D n f N = 0, with on; n f D =f 0, i = 1, 2. This means that we assume for the 
time being that each subdomain is fixed on part of its boundary. This assumption will 
be useful to relate the H 1 semi-norm used in the local interpolation [7] and the local 
energy norm. It can be relaxed if we can prove this interpolation result directly with 
the le( ·) lo,2 norm. In this framework, we consider the following elasticity problem 

[P] 
{ 

-div:: rg
0 

u. n = 

inn, 
on fv, 
on fN, 
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where f E V (n)n and g E L2 (r D t are the external forces and u is the stress tensor. 
Assuming isotropy, this tensor satisfies the constitutive law 

u = (u;j) = (..\kC:pp(u)oij + 2J.lkEij(u)), 

with Ak,J.lk > 0 the Lame's coefficients of the material nk and Cij(u) = ~(OiUj + 
OjUi) the components bf the linearized strain tensor e:(u) associated to u. 

Remark. There is extensive work relating linear elasticity and a posteriori estimates, 
see by example [AIN 94], [JOH 92], [LAD 91], [LAD 83], [MUC 95] and [SZA 90]. 

The standard weak formulation of the problem [P] is then: Find u E H such that 

a(u,v) =< F,v > ,Vv E H 

where 

H {vEH1(ntfv=Oonfn} 

a(u, v) { ul(u): e:(v) + f u 2(u): e:(v) ln, in2 
< F, v > = { f . v + { g . v . 

ln lrN 
Let Hh the finite element space defined by 

Then the approximate problem of [23] is: Find uh E Hh such that 

a(uh, vh) =< F, vh > , Vvh E Hh. 

We define the energy norm by: 

llvlln = {~ llviiAY12 ={~ln. u;(v): e:(v)}
1
/
2 

, Vv E H. 

[23] 

[24] 

By the Korn's inequality, since an; n fn has a non empty measure, there exist 
two positive constants Cn, and Cn2 , depending only on the geometry of n 1 and n 2, 
respectively, such that 

llvll1,2,n, :S Cn,lle:(v)llo,2,n, Vv E H, i = 1, 2. 

Finally, there exits an interpolation operator (see Lemma 2) Rh : H -+ Hh such 
that for all v E H, T E T,., E E fN U £h 

llv- Rhvllo,2,T -< hTivh,2,tilrnn, 

llv- Rhvllo,2,E -< h1f2ivh.2,wEnn,. 
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With the above definitions we can prove exactly the same results as in section 3. 
We only have to pay attention to: 

- replace "'T by Er where Er is the Young modulus of the material that com
poses the element T, 

- note that in the proof of step 3 we find a factor 1_
1
2..,, that we include in a 

constant. It's clear that if a material is quasi-incompressible then this constant ex
plodes. This means that our development is valid only for compressible materials. In 
fact, for practical purposes we assume that 0 < v; :S: 0.45. 

Altogether, defining the local weighted residual by 

7JR,T 

we can prove 

Theorem 5 Let u be the solution to the continuous problem [23] and uh the solution 
to the approximate problem [24]. Then the following estimate holds 

h }1/2 
+ L E~ llgE- gii6,2,E 

EE£(T)n£N 

All the constants are independent of the mesh size hand the Young's moduli E;, but 
they can depend on the factor 1_

1
2..,,. 

5. Numerical results 

In this section we will apply the results of section 4 to two elasticity problems. We 
will try here to monitor the evolution of the residual as the mesh is refined. 
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Remark. In order to obtain a optimal mesh refinement procedure (cf. [LAD 91]), 
let co be the accuracy required by the user, we say that the mesh T* is optimal if its 
elements number N* is minimum and it provides a global error c• equal to co. In this 
framework, for each element T E T, we compute a refinement factor: 

h* 
rr =_I_ 

hr 

where hr is the size of the element T ofT, and hr the size of the elements ofT* 
within the T area (in 2D case). 

If no strong gradients appear in the solution (see [COO 93]) then a priori error 
estimates indicate that the local contribution to the error should scale like 

...I...- _I_ -r£ r}* (h* )P 
7JT - hr - T 

where p depends on the element type (p = 1 for linear and p 
elements). Thus we have the following minimization problem: 

. . I: 1 mmN = -rn 
T T 

with 

This problem admits the explicit solution: 

""' 2p 2 2 ~ rT 7JT =co. 
T 

1/p 
co 

rr = -2/-(-2p_+_n_)_[_"'_"--2-n_/_(2_p_+_n_)]""'l-;/2=-P 0 

1Jr ~T 1Jr 

2 for quadratics 

The new mesh is then obtained by a metric controlled Delaunay mesh generator 
( cf. [BOR 96]) constrained to generate local equilateral triangles of size rr hr. 

In the first example (Figure 3), we consider a soft material neighboring a more 
rigid isotropic material. 

Figure 3. Example 1 

This problem is discretized using 3-node triangles, but the same type of result is 
valid for quadrilaterals (we have tested the same examples using Q2 quadrilaterals). 
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In Figures 4-5 we can see the initial and adapted meshes and the distribution of the 
estimator TJ· 

Figure 4. Initial mesh (I 46 elements) and distribution of the error estimator 1J 

Figure 5. Adapted mesh (I 430 elements) and distribution of the error estimator 1J 

Figure 6. Global view of Von Mises stress field for Example 1 

Finally we show a comparison of the approximate solution in the initial mesh, the 
adapted mesh and our reference solution (calculated in a uniformly refined mesh) and 
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the evolution of our estimator and the standard one. 

Figure 7. Comparison of the different solutions of Example 1 in a diagonal cut 

2.5 

w 
f-
<( 
::;; 1.5 
f= 
rJJ 
UJ 
c: 
0 
c: 
c: 
UJ 
Oi 
0 
.J 

0.5 

0 

-0.5 

2.5 

'Weighted residual' -+
'Standard residual' -+-·· 

.... 

3.5 4 4.5 
Log(NUMBER OF ELEMENTS) 

Figure 8. Comparison of standard and weighted residuals for Example 1 

Example 2 (Figure 9), considers a hi-material dam discretized with the same finite 
element as in example I. 
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Figure 9. Example 2 

Figure 10. Initial mesh ( 639 elements) and distribution of the error estimator 1J 

Figure 11. Adapted mesh ( 1105 elements) and distribution of the error estimator 1J 
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Figure 12. Global view of Von Mises stress field for Example 2 

Finally, like in example I, we show a cut of the approximate solution in the initial 
mesh, the adapted mesh and our reference solution (calculated in a uniformly refined 
mesh). 

Figure 13. Comparison of the different solutions of Example 2 in a cut 

The relative error that we obtain in this example is globally near to 5 %. Finally, 
the last figure shows a comparison between our error estimator and the standard resi
dual when the number of elements increase (i.e., h -t 0). 
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w 
~ 
::;; 
f= 
rJl 
w 
c:: 
0 
c:: 
c:: 
w 
c;; 
.3 

3.5 

2.5 

1.5 

·-·--+--------
------- ..... ______ _ 

'Weighted residual' +
'Standard residual' -+-·· 

---+ 

0.5 L__.L_ ____ _,_ _____ L_ ____ --'---------' 

3 3.5 4 4.5 5 
Log(NUMBER OF ELEMENTS) 

Figure 14. Comparison of standard and weighted residuals for Example 2 

6. Conclusions 

We have derived and analyzed a local a posteriori error estimate for heterogeneous 
elastic bodies of residual type. The first numerical tests are encouraging for compres
sible isotropic materials. 

Further work is needed to handle anisotropic heterogeneous materials because we 
cannot prove the same type of results as for the isotropic case; nevertheless the nume
rical tests indicate that our error estimate might work even in this framework. If this is 
not the case, it seems that it would be necessary to use some kind of generalization of 
the equilibration residual technique. 

Indeed, the local H1 norm appearing in the inverse inequality for estimating "ilvr 
will no longer be uniformly equivalent to the local energy norm. In our opinion the 
local energy norm of the residual can only be properly obtained by solving a local (cf. 
[AIN 97]) Neumann problem. 

Acknowledgment. The first author gratefully acknowledges the strong support of 
FIRTECH Calcul Scientifique. 
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