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ABSTRACT
We compared a dilute suspension of undulating rod-like particles
(active suspension) with a similar one consisting of rigid rods
(passive suspension) under shear flow. For the active suspension,
a synchronised group of swimmers propel themselves forward
by passing a travelling wave through their bodies while at
the same time rotate due to planar background shear flow.
Using a high resolution immersed body numerical simulations,
we have shown that an active particle can exhibit complex
dynamics, which is fundamentally different from a similar passive
one. The orientation of the active particle consists of two
separate oscillations: a low-frequency oscillation similar to the
passive particle (determined by shear rate) and a high-frequency
oscillation due to the body undulations. Nevertheless, different
dynamics did not result in a major difference in rheological
behaviour of the suspension.We found that the effective viscosity
of the active suspension is equal to that of a passive one, i.e.
self-propulsion did not change the viscosity of the suspension
probably because of the high shear rate and inertia of our
simulations.
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1. Introduction

A suspension of self-propelled particles, which is categorised under active sus-
pensions, has been the subject of many recent experimental and theoretical
investigations (Elgeti, Winkler, & Gompper, 2015; Saintillan & Shelley, 2015)
due to numerous applications (Ozin, Manners, Fournier-Bidoz, & Arsenault,
2005), including drug delivery in medicine (Balasubramanian et al., 2011). Such
particles can exhibit interaction mechanisms that favour velocity alignment
of neighbouring particles, often display collective behaviours like swarming
(Yang, Marceau, & Gompper, 2010) and flocking (collective, coherent motion
of large numbers of self-propelled particles) (Toner, Tu, & Ramaswamy, 2005).
Examples of such behaviour range frommicro-scale (sperm, bacteria, nano-rods
– see Lauga & Powers, 2009 for review) to macro-scale (fish Daghooghi & Boraz-
jani, 2015; Gazzola, Tchieu, Alexeev, de Brauer, & Koumoutsakos, 2016, robots
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Becker, Masoud, Newbolt, Shelley, & Ristroph, 2015; Daghooghi & Borazjani,
2016). Over the past decade, a number of different realisations of active particles
have been proposed based on anisotropic rod-like shapes (Saintillan & Shelley,
2007; Wensink, 2012) as a special class of biological systems (Yang et al., 2010).

Organisms have developed a variety of different mechanisms for propul-
sion such as using flagella, cilia or surface waves (Lauga & Powers, 2009).
Propagating a travelling wave through the body is a common mechanism to
generate propulsion in a wide range of small aquatic organisms from planktons
(Brennen & Winet, 1977) to fish larvae (Li, Müller, van Leeuwen, & Liu, 2012).
This mechanism produces thrust and pushes microorganisms forward in the
absence of shear. However, when a shear is imposed in the surrounding fluid,
the microorganism also experience a viscous torque due to the shear. Therefore,
the orientation of the swimmer is determined by both the viscous torque and
force production due to body undulation.

In addition to the dynamics that these suspensions exhibit, their rheology
is also of interest. In fact, self-propulsion is known to play a drastic role in
changing the rheological behaviour of active suspensions. Assuming pure relax-
ational dynamics, Hatwalne, Ramaswamy, Rao, and Simha (2004) was the first
to consider the effects of self-propulsion on the viscosity of active suspensions.
The viscosity reduction for dilute suspensions has been addressed in some the-
oretical studies (Gyrya, Lipnikov, Aranson, & Berlyand, 2011; Haines, Sokolov,
Aranson, Berlyand,&Karpeev, 2009) indicating that the shear viscosity in a dilute
suspension of swimmers can be smaller than the viscosity of the ambient liquid.
Based on the proposed theory, the necessary condition for viscosity reduction
in planar shear flow is the particle’s tumbling (Haines et al., 2009). However,
experimental observations on the effective viscosity of dilute suspensions of
swimming aerobic bacterium show significant reduction in the viscosity without
noticeable tumbling compared to that of the same suspension of nonmotile
bacteria (Sokolov, Aranson, Kessler, & Goldstein, 2007; Sokolov & Aranson,
2009).

In this paper, we use numerical simulations to investigate aspects of orienta-
tion dynamics in suspensions of self-locomoting rods at low (but not negligible)
Reynolds numbers. The purpose of this research is to study the role of body
motion (self-propulsion) on the dynamics and rheological behaviour of a dilute
suspension, where particles interact only with the background flow and not with
each other. We model the swimmer as a flexible (active) rod with an aspect ratio
of Length/Diameter= 25 and compare it with an identical rigid (passive) rod
under the same flow conditions. To reduce computational costs, we consider a
single swimmer in a computational domain and implement periodic boundary
conditions to create a dilute suspension of particles.
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2. Method andmaterial

The numerical method used to simulate the motion of neutrally buoyant rod
in the shear flow is the curvilinear immersed boundary (CURVIB) method
(Asgharzadeh & Borazjani, 2016; Borazjani, Ge, & Sotiropoulos, 2008; Ge &
Sotiropoulos, 2007; Gilmanov & Sotiropoulos, 2005) coupled with the dynamics
of a moving object. We have used the quaternion-angular velocity equations,
instead of the conventional rotationmatrix, to find the instantaneous orientation
of the particle in order to avoid numerical drift. These solvers are coupled
together through a strong-coupling fluid-structure interaction (FSI) approach
(Borazjani et al., 2008). This computational set-up is an extension to our previous
framework (Daghooghi and Borazjani 2015), which was used to simulate the
motion of a rigid (passive) ellipsoid in shear flow. Therefore, we briefly discuss
the method and the kinematics of the active particle below.

2.1. Numerical framework: structure/flow solvers and 3D rigid body rotation

In this work, the motion of the active particle is a combination of an undu-
latory motion (prescribed with respect to a moving coordinate system), and a
rotation/translational one (calculated through FSI). The undulatory motion is
a backward travelling wave (Figure 1(a)), which is observed in experimental
observations and measurements for fish larvae (Li et al., 2012). The following
equation describes the lateral undulations of the active particle:

h(s, t) = a(s) sin
(
2π
λ
s − wt

)
(1)

where s is the dimensionless distance from the head along the longitudinal axis
of the particle (0 < s < 1); h(s, t) is the lateral excursion at dimensionless
time t; a(s) is the dimensionless amplitude envelope function; λ is the length
of the body wave; w is the angular frequency– see Figure 1(a). All variables
are non-dimensionalised by a characteristic length L (stretched length of the
object) and a characteristic velocity U = amax(2π f )L, where f is the frequency
of the undulations and amax = a(1) = .1 is the maximum amplitude of the
lateral undulations. This is the maximum lateral velocity due to undulations,
which occurs at the anterior part (s = 1.0) of the particle. Based on selected
characteristic length and velocity, we set (Daghooghi and Borazjani 2016):

a(s) = amaxe2.18(s−1) λ = 0.65 w = 10 (2)

The body undulation along with the bulk shear flow create velocity and
pressure fields around the particle and exert a hydrodynamic force/torque on
its surface. The exerted hydrodynamic force/torque make the particle to trans-
late and rotate. The angular and translational momentum can be obtained by
integrating hydrodynamic force/torque through a strong coupling (iteratively)
FSI (Daghooghi & Borazjani, 2015) as:
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Md2rc(t)
dt

= F(t) (3)

dL(t)
dt

= M(t) (4)

where rc(t) is the position vector of the particle’s centre of mass (COM) with
respect to the inertial frame of reference (Figure 1(b)), F(t) and M(t) denote
the total hydrodynamic force and torque exerted on the surface of the body,
respectively,M is dimensionlessmass of particle andL is the angularmomentum
of the body defined as:

L(t) =
[
R(t)IbRT(t)

]
�(t) (5)

where� is angular velocity vector,R is the rotation matrix and Ib is the moment
of inertia calculatedwith respect to themoving coordinate system (attached to the
body) (Daghooghi &Borazjani, 2015). Themoving coordinate system is attached
to the particle’s COMand a schematic illustrations of moving and inertial frames
are shown in Figure 1(b). Instead of the conventional way of solving for the
time evolution of the rotation matrix, it is preferred to use quaternions, q(t), to
represent the orientation of the body in three-dimensional space (Baraff, 2001)
to avoid the numerical drift. The quaternion vector at each specific time instant
can be calculated by solving the following equation:

dq
dt

= 1
2
q × � = 1

2

⎡
⎢⎢⎣

0 −�1 −�2 −�3
�1 0 −�3 �2
�2 �3 0 −�1
�3 −�2 �1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
q1
q2
q3
q4

⎤
⎥⎥⎦ (6)

Since we still need the rotation matrix to calculate the instantaneous moment of
inertia in Equation (5), R(t) will be computed as an auxiliary variable from q(t)
as the following:

R =
⎡
⎣ 1 − 2q22 − 2q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1 − 2q21 − 2q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2q21 − 2q22

⎤
⎦ (7)

Now we have enough equations (Equations (3)–(7)) to close the system of
equations and solve for all unknown variables of the particle dynamics(
rc , L,�,R, q

)
. Finally, the position vector on the surface of swimmer is cal-

culated as:
r(t) = R(t)

[
R(t) − rc(0)

] + rc(t) (8)

where R is position vector of a material point on the surface of swimmer with
respect to the body-frame coordinate system (attached to the body), and rc(0) is
the initial vector position of the COM, which is also the origin of the body-frame
coordinate system.
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The equations governing the motion of an incompressible Newtonian vis-
cous fluid are the unsteady 3D Navier–Stokes equations. Governing equations
are solved over high-resolution grids using a hybrid staggered/non-staggered
discretisation with QUICK scheme for the convective and central difference
for the viscous terms. The equations are integrated in time using an efficient,
second-order accurate fractional stepmethodologywith aNewton–Krylov solver
for the momentum equations, and a GMRES solver enhanced with multi-grid
as a pre-conditioner for the Poisson equation (Borazjani et al., 2008; Ge &
Sotiropoulos, 2007). The code is parallelised using MPI and the parallel libraries
of PETSc (Balay et al., 2001) to efficiently utilise the supercomputing facilities
available to the authors. To handle the moving boundaries, a sharp-interface
immersed boundary method is used (Borazjani et al., 2008; Ge & Sotiropoulos,
2007; Gilmanov & Sotiropoulos, 2005). The sharp-interface is maintained by
reconstructing the boundary conditions (no slip) at the nodes that are exterior
to, but adjacent to the immersed-boundary surface using interpolation along
the local normal to the boundary, which is shown to be second-order accu-
rate (Gilmanov & Sotiropoulos, 2005). Using the strong-coupling partitioned
approach with under-relaxation (Borazjani et al., 2008), the fluid and particle
domains are separately advanced in time, but the simultaneous (implicit) solution
of both equations is achieved through fluid/structure sub-iterations (Daghooghi
& Borazjani, 2015). The method has been applied to a variety of complex flow
problems such as rheology (Daghooghi & Borazjani, 2015), aquatic swimming
(Daghooghi & Borazjani, 2015, 2016) and cardiovascular flows (Asgharzadeh &
Borazjani, 2016).

2.2. Formulation of rheological parameters

After calculating the kinematics of the particle due to exerted hydrodynamical
force/torque, the stress tensor of the suspension can be obtained as (Batchelor
1970):

�ij = −δij
1
V

∫
Vf

pdV + μ

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
+ �

p
ij (9)

where p is the pressure, V and Vf are the total volume of suspension and the
volume occupied by the fluid, respectively, and ∂Ui

∂xj is the volume averaged
velocity gradient. �

p
ij represents the contribution to the bulk stress due to the

presence of particles and referred to as ‘particle stress’. The non-dimensional
form of this contribution (dividing particle stress by ρU2) reads as (Batchelor
1970):

�
p
ij = 1

V

N∑
n=1

∫
(Ap)n

[xjσiknk − Re−1(uinj + ujni)]dA

− 1
V

N∑
n=1

∫
(Vp)n

ρxjaidV
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− 1
V

∫
V

ρu′
iu

′
jdV (10)

where Re = (UL)/ν is the Reynolds number based on the swimmer’s charac-
teristic length and velocity, Vp is the particle’s volume, N is the total number of
particles in the suspension, σik is the Newtonian stress, u′

i are velocity fluctua-
tions, xi is the displacement vectormeasured from the COMand ai is the particle
acceleration calculated at r. Finally, the relative viscosity is defined by:

ηr = 1 + Re
γ̇
Sym(�

p
yz) (11)

where γ̇ is dimensionless shear rate (shear rate divided by U/L = .2π f , where
f is the frequency of the rod’s undulations), Sym(•) denotes the symmetric part
of •, • is the averaged value of • over rotational timescale, and (x, y, z) are
corresponding to vorticity, flow, and velocity gradient directions, respectively,
as shown in Figure 1. It should be noted that in Stokesinan dynamics, in which
suspended particles are both force-free and torque-free, only the first term on
the right-hand side of Equation (10) (stresslet) should be considered. Two other
terms of Equation (10) extend this framework to non-zero Reynolds numbers
(Batchelor, 1970). This formulation has been successfully applied to study inertial
effects in suspensions of particles with various shapes (Aidun & Clausen, 2010;
Daghooghi & Borazjani, 2015; Haddadi & Morris, 2014).

2.3. Computational set-up

The computational set-up is similar to the one used in our previous work
(Daghooghi & Borazjani, 2015). The flow is initialised with a linear shear flow
with the dimensionless shear rate γ̇ = 1.0. The shear rate is chosen such that
the timescales of the background shear flow and undulations are approximately
equal. Such shear rates make the induced velocity due to shear velocity compa-
rable to velocity of the undulations. In fact, the maximum shear velocity is .75
times of the maximum lateral velocity due to undulations. Boundary conditions
in the velocity gradient direction (y-direction in Figure 1) are moving walls in
opposite directions, and other directions are set to be periodic (Daghooghi &
Borazjani, 2014). The implementation of periodic boundary conditions creates
a planer array of particles that rotate in-phase, i.e. a periodic suspension. Such
simulations can be a good approximation of a homogenous suspension in low
concentrations in which particles are sufficiently far from each other and close-
distance interactions are less likely to happen (Daghooghi & Borazjani, 2015). A
schematic of the computational domain is depicted in Figure 1.

In both cases (active and passive) investigated in this paper, volume fraction
and Reynolds number are fixed at φ = .001 and Re = 1.0. These values of
volume fraction and Reynolds number are in agreement with the assumption
of dilute suspension under influence of inertia. Simulations start by placing the
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COM of the particle (active and passive) in the centre of computational domain
such that body attached and inertial reference frames coincide. In other words,
the passive particle is aligned in the flow direction and the active swimmer start
undulating in the x − z plane. Simulations of passive particles under inertial
effects have shown that the final state of rotational mode for prolate spheroids
(rods) and moderate amount of inertia is tumbling (Rosén, Do-Quang, Aidun,
& Lundell, 2015), as we picked for our passive particle. For the active particle
at this initial orientation, undulations could be either in x − z or y − z planes.
The former case is chosen, as it creates a more complicated flow pattern (flow
rotation due to shear and undulation are perpendicular), compared to the latter
one (flow rotation due to shear and undulation are in the same plane).

The computational domain is .5 L× 1.5 L× 1.5 L along x, y, and z directions,
respectively, and discretised uniformly with a grid size selected as � = .01 L.
This grid size has opted based on the grid sensitivity tests for various spherical
and ellipsoidal particles at similar Reynolds numbers (Daghooghi & Borazjani,
2015). Computational time step is .01 for the passive particle, and for .0026 for
the active particle (smaller time step for active suspension is due to the stability
of FSI).

3. Results and discussion

3.1. Flow visualisation and kinematics of the particle

As a particle is released in a shear flow, it starts to rotate due to the vorticity of the
bulk flow. However, the active particle creates another vorticity vector, which is
initially perpendicular to the shear flow vorticity and superposition of these two
vorticity vectors creates a complex flow. In Figure 2, the out-of-plane vorticity
contours around the rod are visualised in two perpendicular planes when both
particles have rotated θ = .1 radians around x-direction. In the left side of the
figure, vorticity along the x-direction is shown for simulations of passive (upper
part) and active (lower part) particles. We coloured ωx = 1.0 (equal to the
vorticity of undisturbed flow) as white, regions coloured as red and blue rotate
with higher and lower angular velocity with respect to the undisturbed (bulk)
flow, respectively. Comparing upper and lower left figures, there are general
similarities between this component of vorticity for both particles. Fluid particles
rotates faster at both ends of rods with symmetric relative vorticity (vorticity with
respect to the bulk flow). Highest values of vorticity at both ends is due to the
fact that at these points rod has the highest value of velocity and fluid particles
attached to these points experience high value of rotation. There are also some
differences such as the break up of higher vorticity (red) in the rear and lower
vorticity (blue) in the middle of the active rod. Moreover, the undulatory rod
(lower left figure) has a higher relative vorticity compared to the rigid rod, which
is probably due to higher tip velocity caused by body undulations, i.e. at the
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shown time instant the lower vorticity region are larger at the ends of the active
rod.

In the right side of Figure 2, out-of-plane vorticity is shown in the mid-
plane that passes through the body and perpendicular to the previous plane
(X − Z plane in Figure 1(b)). In fact, this plane rotates with the body around the
x-axis itself. For an undulatory rod, as clearly shown in the lower right figure,
an array of vortices with alternating normal directions is formed due to the
body rotation. Sign and strength of these vortices change during the time as the
travelling wave passes through the body. Theoretical analysis (the body velocity
and fluid velocity should match at the body surface, i.e. no-slip condition) and
experimental measurements (Willert & Gharib, 1991) of the surrounding fluid
revealed that the sign (shown as red or blue in this figure) and magnitude of
fluid rotation close to the body surface is correlated to the body kinematics.
Consequently, the vorticity of fluid near the body surface is equal to the angular
velocity of the body surface itself. These vortices are stronger than the vorticity
in the perpendicular plane (lower left figure), which are caused by the shear flow.
On the other hand, normal vorticity for the rigid rod in the similar plane (upper
right figure) is significantly weaker in the absence of body movements.

As stated earlier, we expect rich kinematics for the active particle as the
consequence of combination of a shear flow and the body motion. Figure 3
shows three components of angular velocity of active and passive particles as a
function of time. Note that for ωx (Figure 3(a)) a whole cycle is shown, whereas
for two other components (Figure 3(b) and 3(c)) only a half cycle is shown as
they are symmetric for the other half. The most evident point about the angular
velocity vector is that passive particle has a very low frequency of oscillation
due to its rotation (tumbling), whereas components of this vector consists of
two frequencies for the active particle, a low-frequency oscillation similar to the
passive particle and a high-frequency oscillation due to the body undulations.
In fact, the kinematics of the active particle is determined by two important
physical timescales: the angular velocity of body undulations w and the shear
rate imposed to the suspension γ̇ . Frequencies of oscillations in Figure 3 are
controlled by these timescales.

The angular velocity about the vorticity direction ωx (shown in Figure 3(a))
for both particles have twomaxima, for which the projected area against the flow
is maximum as well. The first maximum of angular velocity in active and passive
rods overlap but the second one is shifted because the active particle is swimming
when it is aligned with the flow and make the rotation time slightly longer (see
the period of rotation T in Table 1). The maximum of ωx is very close to one for
the passive rigid rod, which is in agreement with analytical/numerical solutions
for high aspect ratio spheroids (Daghooghi & Borazjani, 2015; Jeffery, 1922). For
the active particle, ωx is very similar to the passive one, but it oscillates (with a
frequency equal to that of body undulations) around ωx of the rigid rod with an
amplitude that changes dynamically during the cycle of rotation. Nevertheless,
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(a)

(b)

(c)

Figure 3. Instantaneous angular velocity of active and passive particles about (a) vorticity
direction, (b) gradient direction, and (c) velocity direction.
Notes: For ωx a whole cycle is shown, whereas for ωy and ωz only a half cycle is shown as they are symmetric for
the other half.

both particles have very close average values of ωx and period of rotation (see
Table 1) and they spend most of their time aligned with the flow. Table 1 shows
that the average angular velocity for both particles are about ωx ≈ .07, which
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Table 1.Average angular velocityωx , periodof rotation T , Average shear particle stressSym(�
p
yz),

intrinsic viscosity [η].
Case ωx T �

p
yz [η]

Active .0685 90.1 .01074 9.70
Passive .0721 87.2 .01064 9.61

is considerably lower than the bulk vorticity of flow. In fact, our results show at
80% of the rotation time both particles have angular velocity smaller than their
average value.

Other components of angular velocity vector, ωy and ωz , are shown in
Figure 3(b) and 3(c), respectively. We can clearly see that these components of
angular velocity for an active particle have a cyclic behaviour similar to ωx . The
amplitude of these velocities is also comparable with ωx , even though their cycle
average is close to zero. Oscillations of ωy and ωz resembles a high-frequency
kayaking motion of a spheroid(rod) in the shear flow (Tao, den Otter, & Briels,
2005). In thismotion,which can be seen in rigid particleswhose long axes initially
make non-zero angles with the shear plane, a particle exhibits motions akin to
that of the paddles of somebody kayaking (Tao et al., 2005). Comparing Figure
3(a)–3(c), one can see that when amplitude of ωx reaches its maximum value
(t ≈ 22), amplitude ofωy andωz areminimumandmaximum, respectively. This
is due to the effect of undulations on the exerted torque on the active particle.
The total exerted torque on the particle is the result of the shear flow and body
undulations. The shear flow generates a torque along the x-axis, whereas the
torque due to body undulations is perpendicular to X − Z plane (the plane in
which the body undulates and rotate with shear flow), i.e. Y direction in Figure
1(b). At this time, the particle is oriented vertically with respect to inertial frame
of reference and undulates in the x − y plane, and consequently, generated
torque due to undulations has a major component along the z-axis and almost
no component along the y-axis. Therefore, the amplitude of angular velocity
along z and y directions is maximum and minimum, respectively. ωy and ωz are
calculated and found to be close to zero, i.e. negligible, for the passive particle.
We conclude that the passive rod just simply tumbles (rotates) as it is initially
aligned along the flow axis (very close to a rigid spheroid at the highest Jeffery’s
orbit Jeffery, 1922), whereas, the active rod not only tumbles, but also performs
a high-frequency kayaking motion around its low-frequency rotational orbit.

3.2. Particle stress and intrinsic viscosity of the suspension

Shear particle stress �
p
yz is an important rheological parameter of a suspension,

as it determines the relative viscosity of the suspension (ηr in Equation (11)).
Figure 4 shows the instantaneous shear particle stress during particle’s rotation
for both simulations of active and passive particles. As expected, the particle
stress is a periodic function of time with frequencies equal to that of the angular



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 73

Figure 4. Instantaneous shear particle stress for active and passive rods.
Notes: Particle stress is a periodic function of time with frequencies equal to that of the angular velocity. Self-
propulsion can slightly increase the shear particle stress and consequently intrinsic viscosity of a suspension.

velocity. The high-frequency oscillations can be observed by zooming around
the plot of particle stress as shown by the inset in Figure 4.

Comparing particle stress in this figure with the angular velocity ωx in
Figure 3(a), the highest amplitude of particle stress associated with the highest
amplitude of ωx , i.e. particles have the highest projected area against the flow.
This figure clearly shows that shear particle stress of both cases are very close
and active particle has a relatively high value around peaks, but this difference
is not very influential when average values are taken into account (either time-
average or cycle-average) as can be seen in Table 1. For dilute suspensions of
microswimmers, effective viscosity is typically studied by considering intrinsic
viscosity [η] = (ηr−1)φ−1 (Haines et al., 2009). This constant for non-Brownian
suspensions depends on the shape, size and orientation of particles and can be
determined analytically for simple shapes in dilute regimes (Jeffery, 1922; Leal
& Hinch, 1971) and experimentally for more complicated geometries and high
concentrations (Jeffrey &Acrivos, 1976; Mueller, Llewellin, &Mader, 2010). The
value of intrinsic viscosity (based on the average value of shear particle stress) is
calculated here and found to be [η] = 9.61 for the passive rod and [η] = 9.70
for the active one, which does not show a meaningful difference due to self-
propulsion.

Modelling a bacterium as a rigid prolate spheroid in a Stokesian fluid, Haines
et al. (2009) obtained the particle stress analytically as a function of particle’s
shape and orientation and addressed a decrease in the intrinsic viscosity due to
self-propulsion.However, as canbequalitatively seen inFigure 4(a), this is not the
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case in our simulations, i.e. self-propulsion has not changed the intrinsic viscosity
of the suspension. To explain this contradiction, some of their implemented
assumptions and ours need to be discussed. The decrease in viscosity is apparent
only in weak shear and for strong shear (our simulations are at relatively high
shear rate of γ̇ = 1.0) the effect of self-propulsion becomes negligible. Another
important assumption is that the reduction in viscosity in their model relies on
the swimmer being a ‘pusher’ and for a ‘puller’ swimmer self-propulsion cause
an increase in viscosity. It should be noted that being a pusher and puller is
based on a model for a spherical microswimmer (squimer) in Stokes flow, i.e. no
inertia. Our swimming rod can be considered a pusher. However, the inertia in
our simulations cannot be ignored (Re = 1.0), i.e. the inertia might be another
source of this discrepancy.

4. Conclusion

We investigated the role of self-propulsion on the motion of a moderate aspect
ratio rod in a shear flow and its effect on the viscosity of the suspension at very
dilute concentration φ = .001. The active particle moves through a shear flow
by passing a travelling wave and at the same time rotates due to the exerted
hydrodynamical torque from the background shear flow. In comparison with a
rigid rod in a passive suspension, an undulatory rod revealed amore complicated
kinematics and the angular velocity consists of oscillations with two frequencies,
a higher frequency equal to the body undulation frequency and a lower one
due to the external shear flow. The body motion also causes a high-frequency
kayaking motion in the orbit of rotation for the active particle. We found that
self-propulsion does not make a fundamental difference in the time period
of rotation and the average value of angular velocity. We also calculated and
compared the particle stress and intrinsic viscosity of the suspension for both
cases (active and passive suspensions) and found that self-propulsion did not
significantly change these values, which is in contrast with some previous studies
that indicate the opposite role (significant reduction) for self-propelling particles
in a dilute suspension probably due to high shear rate and inertia (Re = 1.0) of
our simulations.

It should be noted that our results and conclusion are based on one case
with (single values of shear rate and Reynolds number). We plan to perform
simulations over a range of shear rate and Reynolds number to study the effects
of these parameters on particle stress and intrinsic viscosity of a suspension.
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