
An Object-Oriented Implementation
of the Finite Element Method
for Coupled problems

Igor Klapka * - Alberto Cardona ** - Michel Geradin *

* Laboratoire des Techniques Aeronautiques et Spatiales
Dynamique des Structures, Universite de Liege
rue Ernest Solvay 21, B-4000, Liege, Belgium

** Computational Mechanics Laboratory, INTEC
Universidad Nacional del Litoral, Conicet
Guemes 3450, 3000 Santa Fe, Argentina

ABSTRACT. Recent advances in computational hardware allow us to consider solving complex
phenomena (e.g., coupled problems, large non linearities, optimization, etc.). Complexity of
problems to be analyzed is constantly increasing due to cu"ent industrial demands that pose
severe constraints to software developers. Object-oriented programming has emerged as a
solution to manage complexity. In this paper, we describe aspects in the development of a
finite element pro gram written in C++. Particular aspects of the fonnulation, as the concepts
of partition and tools for the decomposition of the problem into several sub-parts, are
introduced. Examples illustrating applications to the solution of piezoelectric motor
modeling and of shape optimization are shown.

RESUME. L'avance technologique et scientifique pennet de considerer Ia resolution de
problemes de plus en plus complexes (p.e., problemes couples, problemes non lineaires,
optimisation, etc.). Poussee par Ia demande industrielle, Ia complexite des problemes a
analyser est en constante croissance, ce qui impose de serieuses contraintes aux
developpeurs. La philosophie de programmation orientee objet propose de gerer cette
complexite. Dans cet expose nous decrivons des aspects du developpement d'un code
eliments finis ecrit en C++. Certains aspects particuliers de Ia fonnulation tels que les
concepts de partition et d'outils de decomposition en sous-domaines sont developpes. Leur
utilite est illustree a /'aide d'exemples de solution d'un modele de moteur piezo-electrique et
d'une optimisation defonne.

KEY WORDS: coupled problems, piezoelectricity, object-oriented programming, C++,
command interpreter.

MOTS-CLES: problemes couples, piizoelectricite, programmation orientee-objet, C++,
interpreteur de commande

Revue europeenne des elements finis. Volume 7- no 5/1998, pages 469 ~ 504

470 Revue europeenne des elements finis. Volume 7- no 5/1998

1. Introduction

The finite element method is currently used as an extremely valuable tool of analy­
sis in many fields of engineering and science. Since 1960, several research teams have
developed analysis softwares based on this method, software which has continuously
grown over the years leading to powerful packages that are in use today in industry
and research. However, computers and software technology have changed a lot since
the days when these programs were conceived, and propose new techniques to man­
age information. Also, new faster computers make way for more complex problems,
requiring in turn modern information handling techniques. As a consequence, devel­
opers are evidencing an increasing difficulty in keeping their software up to date, with
very high costs of maintenance and development. Yet, they are facing a growing de­
mand for user-friendliness in the form of graphics, menus, dialog boxes, etc.

New software technology tries to remedy to deficiencies encountered with con­
ventional programming. In particular, object-oriented programming (O.O.P.) is cur­
rently seen as the most promising way of devising a new application. The objective
of this work is to define and evaluate an architecture for the development of finite
element methods using the C++ programming language. A new package named
OoFELIE(for Object Oriented Finite Element method Led by Interactive Executor)
has been created. Object-oriented programming techniques have been followed, trying
to give the program a maximum of flexibility for accommodating future changes.

In a first paper(CKG94] , emphasis was put on the computation engine. In this
paper, we present results of our investigation into the design of finite element classes
taking physical and mathematical aspects into account. A method to manage degrees
of freedom, information and results accounting for partitioning in sub-domains is pro­
posed. In the second part, the description of a very powerful and easily extensible inter­
face to create and use objects is presented. 1\vo examples are presented to demonstrate
benefits of this integration.

2. Software Design Considerations

This research is the result of several observations. The first one concerns the grow­
ing needs of complex modelization of interaction between different physical fields.
The second one concerns the evolution of new computer technology which invites de­
velopers to reconsider the design of their current tools of analysis, for example, by
using new languages features or by proposing adapted algorithms to distribute tasks
between computers connected in parallel. The last two decades have been marked by
the growing computer power, allowing us to consider modelization of more and more
complex phenomena. Both from the point of view of model size and of the interaction
between different models, management of information is more complicated and has
become crucial. We emphasize that achieving a correct implementation is, at least, as
important as developing a sound basis for the formulation of the method.

Several people are involved in the development of large finite element software.
They can be grouped as follows, from the point of view of their interests and skills:

FEM for coupled problems 471

I. final users of the code, who are interested into getting an answer to physical
problem in hand,

II. numerical analysts, who propose new finite element methods and algorithms,
III. programmers, seen as users of classes and methods implemented by other peo­

ple,
IV programmers of new classes and methods, to be used by people of the previous

group.

We should remark, however, that the same person may belong to more than one group.
In fact, what makes the decision is the task being performed at a given moment. All
of them should be taken into consideration, from the very beginning of the design of a
new finite element program.

The main concerns about software for each group can be described by the following
table:

Tasks
Concerned by I II III IV

Efficiency and performance ++ +++ ++ +
User-friendliness +++ + +++ 0

Extensibility + ++ + ++
Maintainability 0 0 0 +++

Since the code will be mainly used as a research tool in an academic environment, we
have decided to give priority to extensibility and efficiency features as main criteria
for code design. Whenever these two features collide, the numerical efficiency aspect
has been retained. In second lieu, the maintainability and portability issues have been
considered.

3. Object-Oriented Programming

3.1. A New Philosophy

The object-oriented philosophy comes from the idea that tools (methods) must be
associated with the information (data) they manage. In order to do that, some new
concepts have been introduced:

Class. A class defines an abstract data type. It may represent for example a family of
objects in the real world. Classes are identified during the analysis phase of ap­
plication development. A class incorporates the definition of the structure as
well as the operations on the abstract data type. For example, Element would
be defined as a class in a finite element method application. 'JYpically, data
which the system analyst would define relating to the class Element would
include such items as localization, connected nodes, number of degrees of free­
dom, etc. Elements belonging to the collection of objects described by the class
are called instances of the class.

472 Revue europeenne des elements finis. Volume 7- no 5/1998

Subclasses and Inheritance. A subclass is subordinated to a class and has all of the
same elements of the class from which it is inherited. Therefore, the term in­
heritance indicates an 'is a ... ' relationship between two classes. A subclass
is usually of a special type and has additional data elements relating to it. For
example, an Isoparametric_Element is an Element in which both po­
sitions and displacements are interpolated from nodal values.

Encapsulation. In an object-oriented application by which all data as well as func­
tions and services offered by a class(or subclass) are packaged together. This
(independent) self-containment of classes and their functions and services (i.e.
members) is called encapsulation. This full modularity both greatly enhances
introducing changes during the development phase as well as performing on­
going maintenance. In addition, as we will see below, encapsulation makes it
possible for the unique polymorphic capability of object-oriented applications.

Polymorphism. As previously mentioned, functions and services required by a class
are packaged (encapsulated) together. This modularity enables the same func­
tion or service to respond differently when performed on objects from different
classes. For example, a single request to fill_stiffness will automati­
cally be computed differently for a bar than for a quad4 element. This is due
to the fact that different calculation methods are encapsulated within subclasses
bar and quad4. This unique capability of object-oriented applications to in­
terpret the same request differently depending on the object being processed is
known as polymorphism.

The two latter concepts may be used to get a complete data abstraction, implying
for example that we can ask the elementary stiffness to a list of Element objects
without knowing exactly what element types form each item in the list.

3.2. The Methodology

An essential factor of success in a large project is the employment of good analysis
tools. As the complexity of systems increase, the analysis becomes even more impor­
tant. Object-oriented philosophy has brought new techniques in modeling and analysis
like OOD [CY91, COAD91] , BoocH[Boo94] , OMT[RuM91] and OOSE
(Object-Oriented Systems Engineering - Oden University). They all propose analysis
methodologies to help in the design of the architecture of an object-oriented project.
Thday, there is a tendency to use UML (Unified Modeling Language) which fuses the
concepts of previously mentioned ones into a standardized modeling language.

3.3. The Language

Discussions on the different languages which currently propose object-oriented
philosophy (OOPL) can be found in books like [RuM91, CH. 15 & 16] , [CY91,
CH 7] , or [BN94] for a point of view on scientific applications. Amongst the many
existing object-oriented languages, we have selected C++ for portability and effi-

FEM for coupled problems 473

ciency reasons, and also for the large number of tools available (graphic interfaces
library, network tools, etc.). We remark also that C++ revealed itself to be alan­
guage which the programmer imposes to such discipline that it allows one person to
maintain more than 30,000 single lines of code [STR91] .

Several researchers have worked in the application of object-oriented programming
techniques to the finite element method in recent years [DF92] [ZH94] . T. Zimmer­
mann et al. used the SMALLTALK programming language (DPBZ90] [ZDP91] .
Although it is considered as a pure object-oriented language, it is not used for real nu­
merical applications because of efficiency reasons [ZDP92] . Other researchers have
presented object-oriented implementations of the finite element method using object­
oriented extensions of PASCAL [FFS90] (MAc92] or ADA. However, there exists
a generalized concern that the C++ language -an extension to C developed by B.
Stroustrup (STR91] -is the most widespread object-oriented language for numerical
computations. Applications of finite element programming using C++ have been
reported in references (FD91] (MIL91] (ZH94] . We should finally mention that
the new standard FORTRAN 90 [MR90] includes also features which can be consid­
ered as object-oriented extensions, making this option appealing for who are strongly
involved in FORTRAN programming. However, it has many limitations since, for in­
stance, it does not support inheritance or dynamic polymorphism.

3.4. Numerical efficiency

From a numerical efficiency point of view, it is important to understand that in
C++ most of the object-oriented concepts do reach the compilation step. Only the
polymorphism concept needs dynamic (during execution) binding. Historically, first
versions of C++ compilers were simply translators to C, theoretically limiting ef­
ficiency to that of C. In fact, as announced by the creator of the language, C++ is
designed to be a an improved C, supporting data abstraction and object-oriented phi­
losophy. This means more concepts to be understood by the programmer and thus,
more sources of mistakes. \\e should bear in mind that object-oriented philosophy
must be considered as a tool, and not a systematic obligation which could lad to make
of each bit an object.

We think that most of the criticisms of C++ efficiency are not valid. Practice has
taught us, as also mentioned by P.R.B. Devloo (DEv94] , that inefficient implemen­
tation of C++ programs is the consequence of a bad understanding of the language.
For example, when implementing a vector class you may be tempted to overload op­
erator [i] so as to test if the index i is inside the vector range. It may be a useful
feature in some cases, but you should not expect to get BLAS performance if you use
this operator in a vector product. \\e must keep in mind that abstraction often comes
with a loss of performance. Stepanov calls it the abstraction penalty and proposed a
test to quantify it [Roa96] .

For this reason, we chose to limit the non-anticipation principle proposed by Dubois­
Pelerin (DPBZ90] to objects accessed through the command-line interpreter and to
high level methods. This principle tries to expand data abstraction to a state abstrac-

474 Revue europeenne des elements finis. Volume 7- n° 511998

tion concept, which implies verifying the state of each data entity before using it.
This idea may result in the implementation of many costly tests which can be consid­
ered as not acceptable at execution time if used on often called functions or operators
(operator [J for example). Our choice seems to contradict the object-oriented phi­
losophy. However, we have verified this by using techniques of analysis as state dia­
grams (OMT)[RuM91] , we can gain a good knowledge about the state of the object
before using it, which makes some tests unnecessary.

Also, the user of classes has an unavoidable part of responsibility. For instance,
many algorithms do not need zero initialization of matrices. This is why most matrix
class implementations do not initialize matrix values by default, leaving the choice to
the user (e.g., LAPACK++).

In terms of pure computational efficiency, J.J.Dongarra and R.Pozo [DLN+94]
obtained with the LAPACK++ library (a C++ extension of the Fortran LAPACK
library for numerical linear algebra) exactly the same performance as with FORTRAN.
However, the C++ implementation provided scalability, portability, flexibility and
easy-to-use, features which were not so easy to obtain for large codes implemented in
FORTRAN. Other research carried out by the BLITZ++ consortium [VEL95] gave
in some cases, better performance than FORTRAN.

To get these results, R. Pozo and T. \eldhuizen made frequent use of the templates
mechanism which allows to define concepts (methods, algorithms) independently of
the type of object being used. The main difference with the virtual inheritance mech­
anism consists in the fact that the connection between data and methods is made by
the compiler; then it receives enough information to produce an optimized code. This
technique does not only increases legibility without losing efficiency, but also allows
to methods to be reused without considering how data are implemented. The templates
concept is preferred to the class inheritance mechanism in order to implement static
polymorphism.

4. Numerical Solution of a Continuum Mechanics Problem

The process of solving a continuum mechanics problem customarily involves a step
of discretization followed by a step of searching the solution to a discrete algebraic
problem.

Discretization allows the behavior of continuum (e.g., space, time) to be presented
in terms of the behavior computed at a given number of points (we then talk of values
computed at the degrees of freedom of the model). The original problem is transformed
into a discrete algebraic one which can be effectively put and solved numerically. The
components of this algebraic problem express values computed at the degrees of free­
dom (dof) of our model. Several kinds of algebraic problems have to be solved, de­
pending on the problem to analyze. For instance, the continuum mechanics problem
in linear statics is expressed by a boundary value problem which is transformed after
discretization into a system of linear algebraic equations. When dealing with linear
vibration analysis, we have to solve a linear eigenvalue problem. In non-linear statics
the problem to be solved is a system of non-linear algebraic equations.

FEM for coupled problems 475

These algebraic problems share several characteristics unique to finite element
analysis. First to be mentioned, the number of equations and unknowns can be very
large (e.g., it is not uncommon to talk of more than 100,000 unknowns in linear statics
industrial applications). Also, the degree of coupling between unknowns is from mod­
erate to low, so that appropriate schemes to handle sparse coefficient matrices should be
employed to reach maximum computational efficiency. Several strategies, specialized
to finite element applications, exist: e.g., the skyline and frontal solution schemes.
Systems of non-linear equations range from mildly non-linear, for which it is fairly
easy to find a solution, to very badly conditioned ones. There exists a large number
of algorithms to solve non-linear systems of equations in finite element applications,
each one being adapted to a particular kind of problem. In order to get a solution to a
practical industrial problem, the analyst should have a variety of algorithms at his dis­
posal, and should be able to switch from one to another even while advancing along
the solution path.

What has already been said for systems of non-linear equations in the preceding
paragraph applies also to the methods for extracting linear eigenvalues, integrating sys­
tems of ordinary differential equations and so forth. Many specialized algorithms exist
and new ones are continuously being proposed which take into account the peculiari­
ties of these systems and of new hardware technology. Finally we must mention that
in many cases the problem to be solved consists of a sequence (or even nesting) of al­
gebraic problems of the kind described in the previous paragraphs. Examples of these
situations can be found, for instance, in optimization, stability analysis of non-linear
structures and dynamic stability analysis of mechanisms and structures.

5. Basic Classes

The finite element method is an analysis tool for many different problems of contin­
uum mechanics, most widely used for structural analysis. The method essentially con­
sists into discretizing the continuum and transforming the system of partial differential
equations into an algebraic problem.

In OoFELIE, we distinguish between two large basic class families: mathematical
and physical classes. The foremost family is formed by classes specific for treating
algebraic problems, e.g., vector and matrix manipulation. The latter family is a set
of classes used for the description of the physical problem under study. Section 5.2
describes the physical classes family.

Besides the above-mentioned class families, there is a third group whose function
is to establish the relationship between the two first class families. Within them, we can
mentiontheclassesDof, Dofset, Partition, Connection, Vectstr,
Matrstr, Domain. They are described in the subsequent sections.

Some utility classes have also been developed to manage variable size arrays of
objects (ternpla te vararray<>), stacks, buffers, pool for memory management,
read and write protection on objects and execution time measurement, among others.

476 Revue europeenne des elements finis. Volume 7- no 5/1998

5.1. Mathematical Classes

At present the library consists of 30 classes organized into two groups:

1. The first group consists of different types of matrices. Most of them inherited
from a virtual class rnoth_rnat.

- Matrix: full matrices.
- Matrixcx: full complex matrices.
- Sparse: sparse matrices.
- SparseCx: sparse complex matrices.
- Ma tsyrn: symmetric matrices.
- Ma tband: symmetric banded matrices.
- Skyrna t: symmetric skyline matrices
- Skyrnatcx: symmetric skyline complex matrices.
- SkyrnatNs: non-symmetric skyline matrices.
- SkyrnatCxNs: non-symmetric skyline complex matrices.
- MatTri (U/L): lower/upper triangular matrices.
- Vect: vectors.
- VectSet: set of vectors (Vect).
- BlocSet: set ofVectSet.
- Vect3 I Matr3: three-dimensional vectors and matrices.
- VectN<N> 1 MatrN<N>: N-dimensional vectors and matrices (tem-

plate implementations for high performance in tiny dimensions).
- VarVect 1 VarVectSet 1 VarVarVectSet: variable size vectors

implemented by template VarList<type>.
2. The second group concerns calculation methods. These classes serve as black

boxes defining robust user interfaces to the method, and taking into account
particular aspects such as, e.g., memory management.

- StatSyst: base class for linear systems solvers

- Direct solvers
- Iterative solvers (implementations ofGMRES, BiCg, BiCgStab, CGS,

CG from SIAM Templates book.)

- DynarnSyst: base class for all eigenvalue and eigenvector calculations.

- Jacobi: Jacobi method for symmetric (eventually banded) matrices
- QR: QR method for banded matrices
- SVD: singular value decomposition implementation
- Lanczos: Lanczos algorithm with single iteration vector and restart,

or blocks Lanczos algorithm

- Opti: optimization functions.

FEM for coupled problems 477

Figure 1. Hierarchy of matrix classes

The hierarchy of matrix classes is described in Figure 1. Classes Physet and
Structural are described later in Sections 5.2 and 3. We note that this figure fol­
lows Grady Booch diagram conventions.

5.2. Physical Classes

The set of physical classes is used to describe the problem under analysis and the
system state. A list of some of the currently available physical classes in OoFELIE
follows:

Node state: virtual generic class providing standard interface to access state vari-
ables of a node, including:

Position: coordinates of a point in Cartesian space,
Displacement: displacements at a point,
Force: data and methods to handle loads,
Temperature: temperature at a point.

Also, time derivatives of the above are accessed through Nodes tate.

Element : virtual master class of the finite elements library. It provides methods
of access to their attributes, and of computation of the different finite element
arrays and tables (e.g., fill_stiffness (), fill_mass (),etc.).

Material: master class for description of materials of various kinds.
Propelem: master class for description of element properties.
Fixation: master class for information concerning boundary conditions of the model.

478 Revue europeenne des elements finis. Volume 7- no 511998

The objects of physical classes can be grouped to form sets of objects of the same
kind. For instance, the set of Material objects can be grouped under an instance
of the class MaterSet. The notion of Set makes easier to manipulate data. For
instance, it allows us to make operations on sets such as giving a common property to
all objects in a set (e.g., a given material can be assigned to a whole set of elements).

The implementation of Sets is based on the concept of a templates to simplify
programming. Different classes were implemented for the various kinds of physical
classes. Some of them are: PosiSet, ElemSet, FixaSet, MateSet, TempSet,
DispSet. Any values of sets of classes inherited from NodeSta te may be accessed
with the structural vectors.

5.2.1. The Class Physet: Stack of Propenies and Parental Recursion

In many situations, physical objects need to make references to properties, which
usually are physical and therefore are represented as objects of the physical family
(for example, an element can reference a set of nodes or a set of materials). These
properties can be attributed to a single physical object or to a set of objects (e.g., a
Material can be attributed to a single Element or to an ElemSet).

To establish such links, the virtual base class Physet has been created, from which
every physical object inherits. This class manages, for each Physet object, a list of
references to other Physet objects.

The search for a particular property is done using a mechanism called parental
recursion implemented in the Physet class. In this mechanism, the object looks first
for the searched property in its own list of properties (pointers to other Physets). If it
is not found, the query is passed to a parent object (for example, from an Element to
an ElemSet). The mechanism is applied recursively until either finding the property,
or until arriving the lineage root.

If the property is not found in any object up in the lineage, the virtual function Phy­
set: : i f_not_found () is called (see Figures 2 and 3). This function is provided
to allow the designer of a physical class implement a default action to be followed in
case of failure (e.g., create a default object of the searched property and issue a warning
message).

Properties can be identified by using either their type (Ph_Ob_id code) or their
Key, which distinguish physical fields in a same type of properties.

lock Phvaet enum Ph_Ob_id
features:Field II properties:Stack {Nodeset_po,
first_comp:unsigned she II pere:Physet* Elemset_po,

operators I, &, "· =, != Lock Qet_key() Materset_po,

~
void add_properties(Phvset * l Fixaset_po,
Physet* Qet_properties(Ph_Ob_id} 000

Phvset* Qet_properties(lock) "J}
I Kev _I Phvset* il_not_found(Ph_Ob_id}

Physet* if_not_found(Lock}
I I

Figure 2. Wrtual class Physet

FEM for coupled problems 479

ui father;

Physet::

Physet *father;

Physet properties[]; ---------------·-··---···------;

physet• get_property(Ph_Ob_idlkey);

nturu (Phyaet1) property; return lOLL;

Figure 3. Parental recursion mechanism implemented in Physet

6. Coupled Fields Management

6.1. Degrees of Freedom

The discretization process establishes a set of generalized coordinates or degrees
of freedom for the continuum fields: i.e., displacements, temperatures, velocities. The
class Dof implements the concept of degree of freedom. This is an essential concept
in the method, so that the design of this class deserves special attention.
A degree of freedom is characterized by following aspects:

Physical nature: is it a displacement along the x, y or z-axis, a rotation, a temperature,
an electrical potential, a Lagrange multiplier, ... ?

Differentiation level: does it correspond to the primary variable or to its first or second
time-derivative? In other words: is it a generalized displacement, a generalized
velocity or a generalized acceleration ?

State: is it fixed or free? is it located at an interface or not?, is it a measured dof or
not? (the latter concept is used in modal identification methods).

Note that the number of degrees of freedom for a given problem can be very large,
so that the information of a Do f should be stored in a minimum of space. Also, a Do f
object should be capable of answering as fast as possible to queries concerning its own
characteristics as for instance: does this dof correspond to a fixed displacement? The
set of characteristics of a Do f is stored in an object of the class Key, designed to satisfy
the above-mentioned requirements.

Groups of Dofs are managed by objects of the class Dofset. A Dofset instance
is automatically generated upon declaration by the user of a structural object (i.e., a
structural vector or matrix, see Section 3). Any modification of the mesh implying
modification of the dof numbering is forbidden after generation of the degrees of free­
dom set, unless explicitly stated, in which case the dof information will need to be
recomputed.

480 Revue europeenne des elements finis. Volume 7- no 511998

Pos. Sub-field Abc Flags meaning
1:10 NATURE TX Displacement x

TY Displacement y
TZ Displacement z
RX Rotation x
RY Rotation y
RZ Rotation z
TO Thmperature
EP Electric potential
LM Lagrange multiplier
TM Time (for space time-finite element)

11:12 REFERENCE AB Reference (absolute)
RE Incremental (relative)

13:14 FIXATION FR Free
FR Fixed

15:16 INTERFACE IN Interface
NI Not-interface

17:18 BOUNDARY BO Boundary
IL Internal

19:20 MEASURE ME Measured
NM Not-measured

21:24 DEGREE GD Generalized displacement
GV Generalized velocity
GA Generalized acceleration
GF Generalized force

25:28 JOKERS Jl Joker 1 (user defined)
J2 Joker 2 (user defined)
J3 Joker 3 (user defined)
J4 Joker 4 (user defined)

Th.ble 1: Flags in field

6.1.1. Qualifying Degrees of Freedom: Classes Key and Lock

Sets of physical characteristics and their states are described by instances of the
class Key. On the other hand, acceptance criteria are described by objects of the class
Lock. The latter class is quite similar to the former one, from which it is derived
by inheritance. Both classes work by binary encoding the information. Then, the
satisfaction of a given criterion is verified by logical operations on the binary flags
(which are performed very fast). Queries concerning the characteristics of a given
dof can be translated into the following question: does this key match the lock? This
section describes some details of implementation.

In an object of the class Key, each characteristic item (e.g., displacement x) is
assigned a two-states flag. In order to keep the memory requirements to a minimum,
these flags are encoded and grouped together into an instance of a class named Field.
An instance of Field defines 32 bit-flags and occupies 5 bytes.

FEM for coupled problems 481

The class Field is actually made of several sub-fields. A Key allows the setting
to on only one flag at each sub-field. Currently, the eight sub-fields mentioned in Thble
1 have been defined. By setting to on one (and only one) bit at each sub-field, we fully
specify the nature and characteristics of the corresponding degree of freedom.

The program has several predefined keys. For instance, there is a predefined key
for each elementary bit information;

Key TX {OxlOOOOOOO); Key TY {Ox20000000);
Key TZ {Ox40000000);

with the constructor of the class Key initializing the Field.
Fields describing more complex concepts can be generated as the result of logical

operations between elementary Fields.
The result from operating two Fields objects is a new Field object, whose

flags are issued from logical operations between the corresponding flags of the original
Field objects.

Keys for typical degrees of freedom are also predefined:
Key DISPL_X{TXIGD); Key DISPL_Y{TYIGD);
Key DISPL_Z{TZIGD);

We note that values for sub-fields not defined at construction are given by the de­
fault Key:

Key DEFAULT {REIFRINIIILINMIJl);
For instance, the full description of a free displacement degree of freedom on the

y direction is made as follows:

NATURE
0100000000

6.1.2. Class Lock

The class Lock defines a criterion of acceptance for objects of the class Key. The
implementation of Lock is similar to that of Key, with the difference that it allows to
set to on several flags per sub-field.

For instance, the following are valid Locks:
Lock DISPLACEMENT {TXITYITZIGD);
Lock FORCE {TXITYITZIGF);

Lock NATURE{TXITYITZIRXIRYIRZITOIEPILM);
Lock FIXATION{FRIFI);

Lock ALL{Oxffffffff); Lock NOTHING{OxOOOOOOOO);
The function int Key: :match {Lock &) verifies matching of a Key with a

Lock. This function makes a logical OR between corresponding flags of both objects.
If the result is different from zero for each sub-field, the function returns 1 (i.e. the
key opens the lock).

482 Revue europeenne des elements finis. Volume 7- n° 511998

The following examples illustrate a case in which a key succeeds into opening a
lock and a case which it does not:

NATURE REF FIX INT
1000000000 0 1 1 0 0 I

1111110000 0 1 1 0 0 1

1000000000 0 I I 0 0 I

NATURE REF FIX INT
1000000000 0 I I 0 0 I

1111110000 0 I 01 0 I

1000000000 0 I 00 0 I

BND MEA DEG
01 0 1 1000

0 I 0 I I 1 1 I

0 I 0 I 1000

BND MEA DEG
0 I 0 I 1000

0 I 0 I I I I I

0 I 0 I 1000

JOK
1000

I I I I

1000

JOK
1000

I I I I

1000

(key)

(lock)

=*'Ihle

(key)

(lock)

'*False

Certain acceptance criteria cannot be expressed by a single Lock. Think, for in­
stance, in a case in which we ask a Key to be either a free displacement along x or
a fixed displacement along y (a Lock built following these notions would also ac­
cept non-desired combinations, as fixed displacements along x). In such cases, we
are obliged to test against several Locks. The class UnionLock was introduced to
simplify these operations.

An instance of the class UnionLock expresses in a single entity a set of Locks.
Then, the function int Key: :match (UnionLock &) verifies matching of the
Key with the sequence of Locks, and returns 1 (true) whenever the Key matches any
one of them.

A Uni onLoc k can be built by making the addition (operator '+')of several Locks.
Lock txyfree (TXITYIFR);
Lock rzfix (RZIFI);
UnionLock rxfr_or_ryfi

6.2. The Mathematical Point of Wew

txyfree + rzfix;

Solving numerically a physical problem leads to the problem of solving a system of
algebraic equations. The solution is expressed in terms of local values of the physical
variables (i.e., the degrees of freedom of the model). When the behavior at all degrees
of freedom is known, the model is fully determined.

In many cases, we need to split and sort the degrees of freedom into groups fol­
lowing different criteria and according to the solution method. This corresponds to
dividing the domain into sub-domains. These sub-domains may for instance result
from geometric considerations or may also correspond to grouping of dofs according
to their physical nature. They can be use, for example, to solve an interface problem
either in primal form (in terms of global interface unknowns) or in dual form (in term
of interface Lagrange multipliers)[FR91) , or to build specials preconditioner. Cri­
teria to make the sub-domain splitting are implemented using the classes Lock and
Partition.

The connection operation consists in sorting the degrees of freedom at each sub­
domain and localize them inside the sub-domain(s) to which they belong. It has been
implemented introducing the class Connection.

FEM for coupled problems 483

6.2.1. The Concept of Partition

Degrees of freedom may be classified in partitions following different criteria. This
information is used to link the Dof to the associated mathematical unknowns.

Different criteria of partitioning can be defined, namely:

according to the nature of dof (e.g., translation I rotation I internal dot),
according to its fixity state (e.g., fixed I free),
according to geometric or physical partitioning (e.g., substructuration for par­
allel computations, substructuration for constructing super-elements),
or any combination of the above-mentioned criteria.

I ObjectTyp;-) ------- _/ \........
r- __ ~ _ _!::L~o~ck~_)

/ Vararray ~ -)- ~
,.---.___ f41 .. n

"--- -----... T& operator[](int \) . '-----) , l Umonlock
~ ------

_____ ..------

aii:Field (

\ / __/

~_h_
Key)

)

Figure 4. Implementation of class Partition

The class Partition has been created to implement this concept. This class al­
lows the defining of a distribution of the degrees of freedom set in separate subsets
following one or more criteria. An object of the class Partition gives an exclu­
sive mapping between dofs characteristics and part numbers. It can be built simply by
giving the sequence of Locks (or UnionLocks) that define each part. A dofbelongs
to the part whose Lock is first matched, when verifying the parts assignment in as­
cending order. The last part is conventionally defined to be the Lock all, so that
this part comprises all those degrees of freedom not included in the preceding ones.

The following example illustrates a case in which we partition the degrees of free­
dom set into four parts:

Group 1:
Group 2:
Group 3:
Group 4:

free displacement dofs along x 1 y and z axes
free rotation dofs along x 1 y and z axes
free temperature dofs
remaining dofs (fixed displacements, rotations and temperatures).

484 Revue europeenne des elements finis. Volume 7- no 5/1998

Each of the first three groups is characterized by a particular Lock, while the fourth
one is characterized through the Lock all which has all bits set to on. An example
of the set of instructions defining an object P of the class Partition follows:
>> Partition P;
>> P.add_new_part(TXITYITZ I FR) i
>> P.add_new_part(RXIRYIRZ I FR) i

>> P.add_new_part(TO I FR) ;
>> P.print();
Partition =
Field no 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0
Field no 2
0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0
Field no 3
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0
Field no 4
1

6.2.2. The Connection

Each dof is individualized by a unique global label. Structural matrices and vec­
tors are assembled separately for each part. The connection establishes to which part
and in which position inside its part, should be assigned each dof. This concept is
implemented by an object of the class Connection.

' Domain teach

/Creation of a Connexion object

manage this dot in that part (dot number, part number)

Restitution state
int: in which part in the partion is that dof(dof number)
int: where is that dot in his part(dol number)
dot: which dot is there(number of the part, order number in this part)

Figure 5. State diagram for class Connection

We may distinguish two phases when using an instance of the class. During the
first phase, the learning phase, we teach the Connection to which part belongs each

FEM for coupled problems 485

dof. In this phase, we are able to modify the dofs ordering at each part (e.g., using
different bandwidth optimization algorithms) or even the dof/part assignment.

In the second phase, the restitution phase, we inquire the object to get information
about the particular connection. For instance, we may ask to which part does a given
dof belong, what is the order number inside its part, etc.

Both phases are separated by a call to the member function manage_ end () ,
which enables the user to make inquiries and disables any further intent to modify
the connection.

The domain has a member function void build_connect (Connection&,
Partition&, Opt_ReOrder_Type=Sloan) which is responsible for the first
learning phase of Connection.

lllocinv:Locinv*
llloc:int*

Ct 12

void mana~e_dof_j1_in_part(int _j1 ,int _part)
void mana~e_end()
int ~et_NoOfPart(int i)
int ~et_NoOfDoflnPart(int i)
int get_NoOfDofGiobal(int i,int j)

Figure 6. Interfaceforclass Connection

An example of construction of an object of the class Connection follows.
>>Domain BarTher{ ... };
>> Partition P;
>> P.add_new_part(TX FR);
>> P.add_new_part(TO FR);
>> Connection C;
>> BarTher.build_connex(C,P); C.print();
Connection = Number of parts: 3

Number of dofs : 30
- part 1 8 dofs
- part 2 2 dofs
- part 3 20 dofs

First, we defined a partition with three parts: free x-displacements, free temperatures
and the rest of dofs. Then, based on this partition, we built a connection for the domain
barther.

6.2.3. Structural lectors and Matrices

Knowing a DofSet and a corresponding Connection we can construct struc­
tural vectors and matrices which will be used in the numerical solution phase. If no
sub-domain has been defined using partitions and connections, matrices and vectors
for the whole domain are constructed.

486 Revue europeenne des elements finis. Volume 7- no 511998

Figure 7. Structural vectors and matrices

6.3. The Physical Point of Wew

6.3.1. Storage Sets

To solve a problem we need to manage information on the model. we may consider
we have a database with already known information which represents the model, and
from which we evaluate new pieces of information during computations, that are to
be stored later in the database. A mechanism has been designed to manage, store and
recall nodal results, and interface them to the mathematical classes. This mechanism
is implemented using the structural vector, which is in fact a vector of pointers on
values stored in the database.

The structural vector is built from three kinds of data: the domain, the connection,
and the part number in the partition. For instance, we may define a structural vector
that comprises all degrees of freedom in the second part of domain A, for the connection
Co. In this way, we may have different vectors for the different parts in which a given
domain has been partitioned. we can also define several connections on a same domain
and different structural vectors for each one. we use these notions, for instance, in
optimization problems (see Example 8.1).

In order to completely define the structural vector we should give also its type; that
is, we have to indicate further qualifiers that apply to all dofs in the structural vector.
These qualifiers are: the differentiation degree (i.e. generalized displacements, gen-

FEM for coupled problems 487

eralized velocities, accelerations), absolute or relative quantities, measured quantities
or not? Normally, all this information is contained in the Key associated to each dof.
We have limited the possibilities of constructing structural vectors to cases in which
all dofs are of the same type, for instance, they have all the same differentiation degree
(i.e. they are all displacements). This is the most usual situation and does not introduce
any practical limitation. The rest of the sub-fields in the Key (NATURE, FIX, INT,
BND and JOK) are used to define the index number inside the structural vector by an
appropriate algorithm. The situation is illustrated next.

In the following example, we define a structural vector v for the domain BarTher,
covering all the generalized displacements of the model.

>> Vectstr v (BarTher, GEN_DISPL);

where GEN_DISPL is a key that indicates degree of differentiation 0.
Figure 8 gives a brief description of the data structure implementation through flow

diagram. For instance, the identifier and coordinates of each node are stored into an
object of the class Position. The set of nodes of the discretization is then grouped
into an object of the class Posi tSet. And the set of node coordinates is put together
with the other objects that form the discrete model (sets of elements, fixations, loads,
materials, etc.) to form an object of the class Domain. The class Domain contains
also pointers to objects of classes that describe results of computations; e.g., displace­
ments, stresses, velocities, accelerations, etc.

Set Analysis
(.,

Figure 8. Domain and physical data

488 Revue europeenne des elements finis. Volume 7- no 511998

6.3.2. The Physical Space: the Domain

The domain contains all information about the representation and modelisation of
physical space. It acts as a container for references to all data sets of a given compu­
tation (see Figure 8), and provides methods of access to any physical data. Physical
data is accessed by using the stack of properties mechanism (see Section 1). An ob­
ject for each one of classes Posiset, of Elemset and of Fixaset are minimally
required to build a Domain. But several other physical properties may be added to
extend the capabilities of analysis, for example, Partition, Connection, In­
terfaceset, etc. The Domain is also the class that constructs the Dofset.

Once a Domain is defined, structural objects like instances ofvectstr of Sky­
matstr may be built with reference to it, giving reference to the corresponding Dof­
set or subset of the Do f set if a partition is defined.

Domain l Node's DOFs &

set_ analysis
1 Standalone DO

'II set_step
set_iteration Dofset

0 II dofs:Vararray<Dof* :

~Reference to 1
cuffent analysil 1 I Steo

Ansolv"'l"' I Reference
to domain I steps:Vararray<Step* ' IV' 1 .. n
which set_ step

"created it ;,.
lsuoerEiementlllnearStatic! LinearVIbratiorl

I

A
~ iJ fNnni:J ll Dvnamics I
r lf 11 I

Figure 9. Classes Domain and Analysis

7. Dialog with Objects

The software we have built tries to answer the following requirements of design:

users have to dispose of a fairly large variety of algorithms to be applied in
many changing situations;
it should be easy to incorporate new algorithms to the program;
linking and chaining the execution of different solution algorithms ought to be
easy and transparent to the user.

FEM for coupled problems 489

The answers we gave to these demands is by means of a language interpreter which
accesses data usually restricted to internal use in a standard program. The language
can be used to describe both data and algorithms. In other words, it is able to define
in detail the methods by which data should be transformed to reach the final results.

7.1. The Command Line Interpreter

The main program works in dialog with two modules: an interpreter -which em­
ploys a specialized high-level language- and an execution manager. The interpreter
translates user instructions into a low-level language internal to the program. A first
detection of errors is made at the interpreter level, followed by appropriate error re­
covering. If the command is correct, the equivalent command in low-level language
is transmitted to the execution manager, which gives course to the required action.

We distinguish between three different kinds of commands: flow-control, decla­
ration and expression statements. Flow control actions are directly taken by the ex­
ecution manager. Declarations require the construction of an object, followed by the
storage of its name and address into a symbol table. These actions are also taken by
the execution manager, after calling the appropriate constructor of the class.

For the other statements, which involve algebraic operations and function calls,
the execution manager simply invokes the appropriate method of the concerned class.
This is programmed using the dynamic binding capability of an object-oriented lan­
guage [AMM91] . For instance, when the user asks for the addition of two scalars,
the execution manager will call the addition method of the scalar class. But when the
addition of two vectors is required, the execution manager will make use instead of
the addition method for the vector class, by simply recognizing the type of variables
involved in the algebraic operation.

7.2. Choice of Grammar

The command interpreter was defined in terms of a language whose grammar is
as close as possible to C++. Therefore, once an algorithm is implemented and tested
(interactively or through a commands file), the resulting procedure can be easily added
to the compiled part of the software (for example, as a member function).

Here is a list of functionalities which have been given to the interpreter-executor':

creation of objects from classes and use of their members functions,
use of inheritance and polymorphism,
execution of algebraic operations through operators (+ - * / [] & I A),

use of Stream capabilities (« ») [STR91] ,
possibility to add and/or to overload member functions,
material or element properties may depend on o!her properties, through func­
tions declared with the interpreter.

1 a description of the parser/interpreter implementation itself is made in reference[CK G94]

490 Revue europeenne des elements finis. Volume 7- no 5/1998

1Wo major problems have been encountered in the specification of the interpreter
capabilities. They have requested special adaptations of the grammar and are briefly
discussed below.

7.2.1. Function Definition

We can see there exists an analogy between the prompt command line in the inter­
preter and the main () { ... } function in a C++ program. The only exception is that
in C++, functions cannot be declared and/or defined inside the main program.
A declaration such as

Complex csqrt(float x, float)

leads to an ambiguity, since the parser cannot see the difference between the declaration
of a Complex variable whose name is csqrt with constructor (float, float)
and the declaration of a function csqrt which returns a Complex from two argu­
ments. For this reason, a new reserved key word Function has been introduced in
the language.

7.2.2. Inheritance

In a compiled program, the name of an object is specified at its creation (e.g.,
float a;). That name will never appear in the object file resulting from the compi­
lation, since the executable file no longer needs that information at run time.

In an interpreted language, however, we need that information. Therefore, accord­
ing to encapsulation philosophy, each object must have a member function which re­
turns its name given at declaration time.

The same problem happens when finding the name of public data and member
functions, in which cases the problem of inheritance is encountered. Supposing we
have a class sA: inheriting from a class A: . A: has a member function funcA which
does not need to be redefined in sA: (Figure 10). How could the interpreter know that
sA: has a member function funcA due to its inheritance from A: ?

In a compiled use of class, static information on polymorphism, encapsulation and
inheritance does not survive to compilation; thus, it no longer exists in the executable
file. In an interpreter, compilation and execution co-exist, in which case, this infor­
mation has to be stored and controlled to maintain the object-oriented concept in the
interpreted language. This fact naturally leads to the concept of L classes.

7.3. I_ Classes

Each class to be accessed through the interpreter, has a corresponding Lclass
which inherits from the virtual class L (see Figure 10).

Objects on the interpreter stack are of type L. Each one has a name and a pointer
to the basic object to whom it corresponds. In order to execute the member function
whose name and arguments are on the stack (if it exists), the L object uses the proce-

FEM for coupled problems 491

r ..._.,......"-----
~ Reference Counter~

,---- -.......... ((
/ I Counter:in~

...__ I basic object:vc(~JJ: - - - - 1
' - ~ I ~lass BasicCiass
~~ ~ function &I_::ExecPromPather

/
- L ___ _j

/ I for Type)

II Namelnlnterpretor:String (
-........_ static List_of_Members:Vararray<Me

-.......... exec{Stack*,Arguments&) ___}

\ -
/~('--;-~ "" ----' ---.; ~
~

1
(__ exec{ ...) j

/sA (l/
"" ----' ..__/

Figure 10. I_ mechanism to interface basic objects with the command line interpreter

dure exec (Stack*, Arguments&) . Also, it manages a reference counter on
the basic object to allow deletion when appropriate.

The function I_ : : exec (. . .) is defined for each class L. It manages the trans­
fer of control and data to functions of the basic object which we want to make acces­
sible through the interpreter. If the basic object class inherits from another class, and
if I_: : exec (...) fails to find the member function, control is transferred to the
I_: : exec (...) corresponding to the base class. In this way, the inheritance mech-
anism is implemented in the interpreter.

Let us again consider the example of the class sA : which inherits from a class
A:. LsA:: exec (funcA, ...) makes a call to I_A:: exec (...) since it
does not find the member function funcAdefined for A: . The call is finally made
in I_A: :exec (...) . The mechanism has easily been extended to multiple inheri­
tance.

7.4. Example: Newton Algorithm

We next show an example of a function written in the high-level language of OoFE­
LIE, which describes an elementary implementation of the Newton algorithm to get
the solution of a non-linear algebraic problem.

492 Revue europeenne des elements finis. Volume 7- no 511998

while

do

= f- !int(qi)) II < ~:
= Ktan(q)- 1ri(Qi-1)
=q+qi

Function Vectstr Newton (Domain dom)
{

dom.set_analysis (NONLINEARSTATICS_PO);
Vectstr u(dom, GEN_DISPL); Vectstr f(dom, GEN_FORCE);
Vectstr du(dom) .set_to_zero(); Vectstr residue (dom);

} ;

int
double

itmax
tol

10
0.00001;

double nfext tol;

int iter
double prec

residue
nfext

f- du.int_forces();
+= f.norm() + du.norm();

Skymatstr k (dom, GEN TANG_STIFF);
while((iter<itmax) & (prec>tol))
{ iter++;

k.update();
k.factor();
k.back(residue , du) ;
u += du ;
residue = f - du.int_forces()
prec = residue.norm() I nfext;

} ;

iter.print();
return u;

0
1. 0;

Once a Domain has been defined -i.e., a notion embodying all data for a given
problem- a simple interactive call to this method returns the structural vector u for
which equilibrium is re-established. This short example shows that the interactive ex­
ecutor is able to manage function calls, iteration and conditional branching statements.

8. Applications

8.1. The MBB Beam: Example of Optimization Problem

We consider a simplified step of the MBB beam topological optimization problem
[OBR90] . It consists into finding the best position of two nodes that minimize the
work of external forces in an eight bars 2D truss (Figure 11).

FEM for coupled problems 493

1.2m

Figure 11. MBB domain

We next describe data for this problem. First, we define nodes, positions, bars,
loads, etc.:
float height=40; float width =120;
float aX2 width/2.; float aX5 =width;

Positset a { 1 0 0 0
2 aX2 0 0
3 width 0 0
4 0 height 0
5 aX5 height 0 } ;

2 BARELST 2 3 Elemset b { 1 BARELST 1 2
3 BARELST 3 5
5 BARELST 3 4

4 BARELST 4 5
6 BARELST 2 4

7 BARELST 1 5 8 BARELST 2 5 };
Set cha(FORCE) .define(4 1 2 1 -100);
Fixaset fix;
fix.define (11 TX); fix. define (11 TZ);

fix.define (2 1 TZ);
fix. define (3 1 TY); fix. define (3 1 TZ);
fix.define (41 TX); fix.define (4 1 TZ);

fix.define (51 TZ);

In order to have direct access to structural vectors defined over the set of positions we
want to optimize, we define an Interfaceset that comprises the selected dofs:
Interfaceset Moving_pos;
Moving_pos.define(2 1TX);
Moving_pos.define(5,TX);

494 Revue europeenne des elements finis. Volume 7- n6 5/1998

Then, a set of materials and elements properties is given:
Materset maters;
Material steel (ISOTROPIC);
steel.put (ELASTIC_MODULUS, 21e4);
steel.put (POISSON_RATIO, 0.3);
steel.put (MASS_DENSITY, 7.8e-6);

maters.put (l,steel);
Propelem prp(BARELST);
prp.put (CROSS_SECTION_l,l);
prp.put (MATERIAL,!);
b.add_properties(prp);

We next instruct the Domain about the particular problem to analyze:
Domain MBB { a b maters cha fix Depl_on_interf };
MBB.set_analysis (NONLINEARSTATICS);

A linear static analysis of the Domain MBB can be done by defining the function
LinStat:
Function Vectstr LinStat (Domain dom)
{dom.set_analysis(LINEARSTATICS);
Skymatstr k (dom, GEN_STIFF);
Vectstr u
Vectstr f

(dom, GEN_DISPL);
(dom, GEN_FORCE) ;

k. factor ();
k.back(f, u);
return u;

} i

In order to perform a non-linear static analysis, we may use function Newton defined
in Example 7.4

We remark that the interpreter allows quite involved computations to be very easily
expressed. For instance, the difference between the linear and non-linear solutions for
a given problem is written:
>> (LinStat(MBB)-Newton(MBB)) .print();
The result is:
Vectstr = Vect. Dim: 7

Node Component Value
===

1 y Trans. 0.0072476
2 X Trans. -0.00019790
2 y Trans. 0.00050828
3 X Trans. 0.00042267
4 y Trans. 0.0026230
5 X Trans. 0.0013617
5 y Trans. 0.00034099

FEM for coupled problems 495

We will now compute the horizontal position of nodes 2 and 5 that give minimal defor­
mation energy in the system. To this end, we use Newton's method for unconstrained
minimization[DS83] :

Given f : Rn ----t R twice continuously differentiable, x0 E Rn; for each
iteration k,

solve6.2 f(xk) sf: = -6.f(xk),
Xk+l = Xk +sf:

6.f and 6.2 f will be evaluated by finite differences.
We first define function ff which returns the work of external forces, for a given
configuration:
>> Function scalar ff (Domain dam

{ scalar p;

} i

Vectstr f(dom, GEN_FORCE);
p = f * newton(dom);
return p;

Displacement and force vectors are created for the Domain MBB:
>> Vectstr U (MBB, GEN_DISPL);
>> Vectstr F (MBB, GEN_FORCE);

\\e next define a second independent partition, that will allow us to have direct access
to positions x 2 and x5 :

>> Partition Pa ;
>> Pa.add_new_part(TX I IN) .print();
Partition Pa =
Field no 1
1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0
Field no 2
1

The connection for partition Pa is built and used to define the structural vector p,
which will reference positions x 2 and x 5 at the physical database:
>> Connection Co;
>> MBB.build_connect (Co, Pa);
>> Vectstr p (MBB, AB, Co);
p gives direct access to the independent parameters of the optimization problem, with
objective function ff.

In the following, we build the matrix of second-order derivatives of the objective
function by numerical differentiation, and iterate up to obtaining convergence for a
minimum work configuration, by updating the horizontal positions of nodes 2 and 5.

496 Revue europeenne des elements finis. Volume 7- n° 511998

>> double e=O.OOOl, Fp;
>> Vect xO(p.dirn), sN(p.dirn), Df(p.dirn);
>> Matsyrn DDf(p.dirn,p.dirn);
>> xO=p;
>>inti, j, Nbr!ter;
>>
>> while (sN.norrn>e)

{Nbre_d_iteration++;
p=xO; Fp=ff(MBB);
i=O;
while (i<p. dim)
{ i++; p=xO; p[i]+=e;

Df[i]=ff(MBB);
} ;

i=j=O;
while(i<p.dirn)
{ i++; j=i-1;

}

while(j<p.dirn)
{ j++; DDf[i,j]=Fp;

DDf[i,j]=DDf[i,j)-Df[i];
DDf[i,j]=DDf[i,j]-Df[j];
p=xO; p[i)+=e; p[j]+=e;
DDf[i,j]=(DDf[i,j)+ff(MBB))/e/e;

} ;

} i

i=O;
while(i<p.dirn)
{ i++;

Df[i)=(Df[i]-Fp)/e;
} ;

DDf.solve(Df,sN);

double exp=l. ;
p=xO-sN;
Fpp=ff (MBB);
while((Fpp > (Fp + le-4 *

&(sN.norrn>e)
exp * (Df * sN)))

exp/=2.;
p=xO-sN;

sN*=exp;
Fpp=ff {MBB);

} ;

xO=p;

FEM for coupled problems

Vect xO 60.0000 120.000 scalar Fpp
Vect xO 61.1483 98.6275 scalar Fpp
Vect xO 62.1338 103.560 scalar Fpp
Vect xO 63.3607 105.256 scalar Fpp
Vect xO 63.4108 105.171 scalar Fpp
Vect xO 63.4214 105.185

Results of computations are the positions of both nodes 2 and 5:
>> Nbre_d_iteration.print;
scalar Nbre_d_iteration = 5.00000
>> p.print;
Vectstr p = Vect. Dim: 2

Node Component Value
===

2
5

X Trans.
X Trans.

63.421
105.18

66.6880
66.3469
66.3148
66.3147
66.3147

8.2. The Ultrasonic Motor: Example of a Coupled Physical Problem

8.2.1. Description

497

The ultrasonic motor is based on an annular circular plate in free-vibrations state.

Figure 12. Transverse vibration wave in an annular plate

498 Revue europeenne des elements finis. Volume 7- no 5/1998

For a given k =1- 0, it can be seen that the sinus mode has the same frequency Wkn

as the cosine mode, where they are linearly independent. The combination of these
two modes gives:

Wk (r, 8, t) = Wknsin + Wkncoo

= AsinR(r) cos(k8) cos(wt) + AcosR(r) sin(k8) sin(wt + <p)
= !R(r) [(Asin + Acos cos<p) cos(k8- wt)

+(Asin - Acos cos <p) cos(k8 + wt)
+ 2Acos sin <p sin k8 cos wt]

with constants Asin,Acos and <p determined from the initial conditions. The two first
terms represent waves rotating with 8 while the third term is a stationary wave.

If we choose initial conditions such as Asin = Acos = A and <p = 0, we find

w(r, 8, t) = AR(r) cos(k8- wt)

which is a moving wave around the axis plate at the velocity of w / k (fig. 12).
Due to the Kirchhoff hypothesis for plates, the motion of a peripheral point Q is

given by

[
h8w h 8w]

[ur,UB,w]Q = -2 8r ,-2r 88 ,w

where his the plate thickness. Knowing w(r, 8, t), velocity at Q is given by

[un u9, w]Q = -Aw [-~ ~~ sin(wt- k8), ~: Rcos(wt- k8), Rsin(wt- k8)]

which describe an ellipse in plane (8, w).
By putting a rigid body (rotor) in contact with the plate, the contact point Q at the

top of the ellipse when cos(wt- k8) = 1, has a speed motion given by

[ur,uB,w]Q = [o,-Aw~:R,o].
Without slipping, the rotation speed of the rotor is given by B = - AwhkR(r) /2r2 .

Figure 13. Motion of the rotor

In practice, the vibration of the plate is obtained by distributing piezoelectric actua­
tors on opposite sides, to put in resonance the two linearly independent modes (opposed
by rr/2).

FEM for coupled problems 499

Figure 14. Set of piezo-actuators for each mode

8.2.2. Numerical Implementation

When simulating piezoelectric devices, we should be aware that there exists large
differences in magnitude between elastic, thermal and electric terms. In order to avoid
numerical troubles, we divide the equations according to the particular nature of the
involved degrees of freedom.

The finite element discretization of the stator of the ultrasonic motor, leads to the
system:

(t 0 0
0 0
0 0 L L)O)

?:~:)(:) (~·)
(1)

which connects the elastic field u, the electric field¢ and the temperature field 0. The
temperature field 0 may be uncoupled from the two first equations, leading to

(~uu ~) (~) + (~j: ~::) (:) = (~~~~0oO) (2)

and

{ c., c., C.,) (t) + K 666 ~ 0. (3)

By assuming that the temperature field response is much slower than that of fields u
and ¢, we may consider in a first approximation that 0 is constant inside each time
integration step of equation [2].

500 Revue europeenne des elements finis. Volume 7 - n° 5/1998

Figure 15. Selected pair of orthogonal modes (top and bottom view)

This allows the integration and updating of the temperature (8, 0) separately by

CooO + Koo8 = -Cuoil - Cq,o;p,

once u, ¢ are known. Note that in this way both systems of equations become sym­
metric.

Usually, potentials at some points are known a priori. They include both reference
neutral potentials ¢ 0 = 0 as well as particular potential values at some electrodes ¢ 1 .

We may thus write

(f.~~ nu:)+
(

~~:, ~:~;, ~;~;0 ~;~~~) (:i) _ (~ ~q,~o88)
Kuq, KJ.¢

0
K¢otl>o Kq,oq,, cPo - Qo

T
0 T Q Kuq,, Kq,,q,, Kq,0 q, 1 Kq,, ¢ 1 cP1 1

with u, ¢i, ¢ 0 respectively the elastic displacements vector, internal electric potentials
vector and the neutral reference potentials. Since ¢ 0 = 0, ¢ 1 are known, the system
above is reduced to

FEM for coupled problems 501

We may eliminate the second equation using K.p, .p, cp, = F .p - K;.p, u leading to the
final system

M,.,. ii + (K,.,. - K,.q,, K¢,~, K;q,,)u = F,. - K,.q,, K¢,~,
We remark that because of the difference of magnitude between elastic u and electric
cp fields, condensation is preceded by an inverse diagonal scaling.

Plots of vertical displacement of all Q points at the periphery of the motor during the
starting phase are given in Figure 16. We remark that the system requires a time delay
of nearly 3 x 10-4 sec to reach stationary vibration under the piezoelectric excitation.
Finally, in Figure 17 we plot the vertical displacement evolution in time for one Q
point.

150

100

[
50

~

f -50 5.
i

-100

-150

-200

1mo(..:) X10

Figure 16. lertical displacement variations (time) isovalues of all Q points at the
periphery during the starting phase

9. Concluding Remarks

The architecture of a new finite element software built around the idea of a pow­
erful commands intetpreter has been presented. A specialized high-level language for
describing data and computations has been developed. The program has been written
following object-oriented programming techniques and using the C++ programming
language.

The program has demonstrated to be able to adapt quite easily to a large variety
of applications. People involved in the project is working in such different topics as
thermoviscoplastic analysis, piezoelectricity, cable dynamics, structural optimization,
elasto accoustic coupling and modal updating methods. The program conception has
shown to be flexible enough to handle all these modeling problems without troubles.

502 Revue europeenne des elements finis. Volume 7- Q0 5/1998

·1.5

-2
0.5 1.5 2.5 3.5

Figure 17. Time evolution ofvenical displacement of one Q point together with plot
of the maximum value ofvertical displacement at the periphery

This flexibility in application was made possible thanks to the clear modulariza­
tion that can be reached in object-oriented programming, with a marked separation of
functionalities. Extensibility and reusability features of object oriented programming
are clearly shown off.

The interpreter has evidenced to be of extreme utility to users in by introducing
new functionalities and algorithms to the environment. Complex computations which
may require entirely reviewing a standard program have been introduced without pain
in OoFELIE. Users have been able to naturally incorporate new features, enlarging
the program's capabilities.

Examples illustrating the functionalities of the program have been shown. In par­
ticular, an example of structural optimization and a second example concerning the
modelization of the rotor of a piezoelectric motor have been developed.

Acknowledgements

The first and third authors acknoledge the partial supports of the Federal Services
for Thchnical and Cultural Affairs (SSTC) under contract PAI/P3-050 and of the Min­
istry of Research and Thchnology of the "R~gion \\hllonne" to perform this research.

The second author acknowledges also the support of the Belgian FNRS for provid­
ing the financial support of his visits to the University of Li~ge.

References

[AMM91] L. AMMERAAL, C++ for Programmers. John Wiley & Sons, 1991.

[BN94] J. BARrON, L. NACKMAN, Scientific and Engineering C++. Addison
\\esley, 1994.

[Boo94] G. BOOCH, Object Oriented Analysis and Design. 1994.

FEM for coupled problems 503

[CKG94] A. CARDONA, I. KLAPKA, M. GERADIN, Design of a new finite ele­
ment programming environment. Engineering Computations, 11:365-381, 1994.

[CY91] P. COAD, E. YOURDON, Object-Oriented Design. Yourdon Press Comput­
ing Series, 1991.

[DEVL0094] P.R.B. DEVLOO, Efficiency issues in an object-oriented programming
environment. Artificial Intelligence and Object-Oriented Approaches for Struc­
tural Engineering, Civil-Comp Press, pages 147-151, 1994.

[DF92] P.R.B. DEVLOO, J.S. RODRIGUES ALVES FILHO, An object-oriented
approach to finite element programming: a system independent windowing envi­
ronment for developing interactive scientific programs. Advances in Engineering
Software, 14:41-46, 1992.

[DLN+94] J. DONGARRA, A. LUMDSDAINE, X. NIU, R. POZO, K. REMING-
1DN, Sparse matrix libraries in C++ for high performance architectures. In Pro­
ceedings of the Second Annual Object-Oriented Numerics Conference (OON-SKI'94),
pages 122-138, April24-27, 1994.

[DPB90] Y DUBOIS-PELERIN, P. BOMME, T. ZIMMERMAN, Application de
Ia programmation orientee objet a Ia methode des elements finis - developpement
d'un logiciel pilote en Small talk. /REM- rapport interne 90/5, Ecole Polytechnique
Federate de Lausanne, 1990.

[FD91] J.S. RODRIGUES ALVES FILHO, P.R.B. DEVLOO, Object-oriented pro­
gramming in scientific computations: the beginning of a new era. Engineering
Computations, 8:81-87, 1991.

[FFS90] B.WR. FORDE, R.O. FOSCHI, S.F. STIEMER, Object-oriented finite ele­
ment analysis. Computers and Structures, 34:355-374, 1990.

[FR91] C. FARHAT, F.X.ROUX, A method of finite element tearing and intercon­
necting and its parallel solution algorithm. International Journal for Numerical
Methods in Engineering, 1205-1227, 1991.

[DS83] J.E.DENNIS, R.B.SCHNABEL, Numerical Methods for Unconstrained Op­
timization and Non-linear Equations. Prentice Hall Series, 1983.

[MAc92] R.I MACJKIE, Object oriented programming of the finite element method.
International Journal for Numerical Methods in Engineering, 35:425-436, 1992.

[MIL91] G.R. MILLER, An object-oriented approach to structural analysis and de­
sign. Computers and Structures, 40:75-82, 1991.

[MR90] M. METCALF, J. REID, Fortran 90 Explained. Oxford Science Publications,
1990.

[OBR90] N. OLHOFF, M.P. BENDSOE, J.RASMUSSEN, On Cad-integrated struc­
tural topology and design optimization. Report No 27, Inst. of Mech Eng, Aalborg
University, Denmark, 1990.

504 Revue europeenne des elements finis. Volume 7 - no 511998

[ROBISON96A] Arch D. ROBISON, The abstraction penalty for small objects in
C++. In POOMA'96: The Parallel Object-Oriented Methods and Applications
Conference, February 28- March I 1996. Santa Fe, New Mexico.

[RuM91] James RUMBAUGH, Object Oriented Modeling and Design. 1991.

[STR91] Bjarne STROUSTRUP, The C++ programming language. Addison W:sley,
2nd Edition, 1991.

[VEL95] Todd VELDHUIZEN, Using C++ template metaprograms. C++ Report,
7(4):36-43, May, 1995.

[ZDP91] T. ZIMMERMAN, Y DUBOIS-PELERIN, Object-oriented finite element
programming, i. governing principles; ii. a prototype program in Small talk. l.SC -
internal report 9112, Ecole Polytechnique Federate de Lausanne, 1991.

[ZDP92] T. ZIMMERMAN, Y DUBOIS-PELERIN, The object-oriented approach to
finite elements: concepts and implementations. Proceedings of the First European
Conference on Numerical Methods in Engineering, Brussels, pages 865-870, 1992.

[ZH94] G.W ZEGLINSKI, R.P.S. HAN, Object-oriented matrix classes for use in a
finite element code using C++. International Journal for Numerical Methods in
Engineering, 37:3921-3937, 1994.

