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ABSTRACT. Recent advances in computational hardware allow us to consider solving complex 
phenomena (e.g., coupled problems, large non linearities, optimization, etc.). Complexity of 
problems to be analyzed is constantly increasing due to cu"ent industrial demands that pose 
severe constraints to software developers. Object-oriented programming has emerged as a 
solution to manage complexity. In this paper, we describe aspects in the development of a 
finite element pro gram written in C++. Particular aspects of the fonnulation, as the concepts 
of partition and tools for the decomposition of the problem into several sub-parts, are 
introduced. Examples illustrating applications to the solution of piezoelectric motor 
modeling and of shape optimization are shown. 

RESUME. L'avance technologique et scientifique pennet de considerer Ia resolution de 
problemes de plus en plus complexes (p.e., problemes couples, problemes non lineaires, 
optimisation, etc.). Poussee par Ia demande industrielle, Ia complexite des problemes a 
analyser est en constante croissance, ce qui impose de serieuses contraintes aux 
developpeurs. La philosophie de programmation orientee objet propose de gerer cette 
complexite. Dans cet expose nous decrivons des aspects du developpement d'un code 
eliments finis ecrit en C++. Certains aspects particuliers de Ia fonnulation tels que les 
concepts de partition et d'outils de decomposition en sous-domaines sont developpes. Leur 
utilite est illustree a /'aide d'exemples de solution d'un modele de moteur piezo-electrique et 
d'une optimisation defonne. 
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1. Introduction 

The finite element method is currently used as an extremely valuable tool of analy­
sis in many fields of engineering and science. Since 1960, several research teams have 
developed analysis softwares based on this method, software which has continuously 
grown over the years leading to powerful packages that are in use today in industry 
and research. However, computers and software technology have changed a lot since 
the days when these programs were conceived, and propose new techniques to man­
age information. Also, new faster computers make way for more complex problems, 
requiring in turn modern information handling techniques. As a consequence, devel­
opers are evidencing an increasing difficulty in keeping their software up to date, with 
very high costs of maintenance and development. Yet, they are facing a growing de­
mand for user-friendliness in the form of graphics, menus, dialog boxes, etc. 

New software technology tries to remedy to deficiencies encountered with con­
ventional programming. In particular, object-oriented programming (O.O.P.) is cur­
rently seen as the most promising way of devising a new application. The objective 
of this work is to define and evaluate an architecture for the development of finite 
element methods using the C++ programming language. A new package named 
OoFELIE(for Object Oriented Finite Element method Led by Interactive Executor) 
has been created. Object-oriented programming techniques have been followed, trying 
to give the program a maximum of flexibility for accommodating future changes. 

In a first paper(CKG94] , emphasis was put on the computation engine. In this 
paper, we present results of our investigation into the design of finite element classes 
taking physical and mathematical aspects into account. A method to manage degrees 
of freedom, information and results accounting for partitioning in sub-domains is pro­
posed. In the second part, the description of a very powerful and easily extensible inter­
face to create and use objects is presented. 1\vo examples are presented to demonstrate 
benefits of this integration. 

2. Software Design Considerations 

This research is the result of several observations. The first one concerns the grow­
ing needs of complex modelization of interaction between different physical fields. 
The second one concerns the evolution of new computer technology which invites de­
velopers to reconsider the design of their current tools of analysis, for example, by 
using new languages features or by proposing adapted algorithms to distribute tasks 
between computers connected in parallel. The last two decades have been marked by 
the growing computer power, allowing us to consider modelization of more and more 
complex phenomena. Both from the point of view of model size and of the interaction 
between different models, management of information is more complicated and has 
become crucial. We emphasize that achieving a correct implementation is, at least, as 
important as developing a sound basis for the formulation of the method. 

Several people are involved in the development of large finite element software. 
They can be grouped as follows, from the point of view of their interests and skills: 
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I. final users of the code, who are interested into getting an answer to physical 
problem in hand, 

II. numerical analysts, who propose new finite element methods and algorithms, 
III. programmers, seen as users of classes and methods implemented by other peo­

ple, 
IV programmers of new classes and methods, to be used by people of the previous 

group. 

We should remark, however, that the same person may belong to more than one group. 
In fact, what makes the decision is the task being performed at a given moment. All 
of them should be taken into consideration, from the very beginning of the design of a 
new finite element program. 

The main concerns about software for each group can be described by the following 
table: 

Tasks 
Concerned by I II III IV 

Efficiency and performance ++ +++ ++ + 
User-friendliness +++ + +++ 0 

Extensibility + ++ + ++ 
Maintainability 0 0 0 +++ 

Since the code will be mainly used as a research tool in an academic environment, we 
have decided to give priority to extensibility and efficiency features as main criteria 
for code design. Whenever these two features collide, the numerical efficiency aspect 
has been retained. In second lieu, the maintainability and portability issues have been 
considered. 

3. Object-Oriented Programming 

3.1. A New Philosophy 

The object-oriented philosophy comes from the idea that tools (methods) must be 
associated with the information (data) they manage. In order to do that, some new 
concepts have been introduced: 

Class. A class defines an abstract data type. It may represent for example a family of 
objects in the real world. Classes are identified during the analysis phase of ap­
plication development. A class incorporates the definition of the structure as 
well as the operations on the abstract data type. For example, Element would 
be defined as a class in a finite element method application. 'JYpically, data 
which the system analyst would define relating to the class Element would 
include such items as localization, connected nodes, number of degrees of free­
dom, etc. Elements belonging to the collection of objects described by the class 
are called instances of the class. 
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Subclasses and Inheritance. A subclass is subordinated to a class and has all of the 
same elements of the class from which it is inherited. Therefore, the term in­
heritance indicates an 'is a ... ' relationship between two classes. A subclass 
is usually of a special type and has additional data elements relating to it. For 
example, an Isoparametric_Element is an Element in which both po­
sitions and displacements are interpolated from nodal values. 

Encapsulation. In an object-oriented application by which all data as well as func­
tions and services offered by a class( or subclass) are packaged together. This 
(independent) self-containment of classes and their functions and services (i.e. 
members) is called encapsulation. This full modularity both greatly enhances 
introducing changes during the development phase as well as performing on­
going maintenance. In addition, as we will see below, encapsulation makes it 
possible for the unique polymorphic capability of object-oriented applications. 

Polymorphism. As previously mentioned, functions and services required by a class 
are packaged (encapsulated) together. This modularity enables the same func­
tion or service to respond differently when performed on objects from different 
classes. For example, a single request to fill_stiffness will automati­
cally be computed differently for a bar than for a quad4 element. This is due 
to the fact that different calculation methods are encapsulated within subclasses 
bar and quad4. This unique capability of object-oriented applications to in­
terpret the same request differently depending on the object being processed is 
known as polymorphism. 

The two latter concepts may be used to get a complete data abstraction, implying 
for example that we can ask the elementary stiffness to a list of Element objects 
without knowing exactly what element types form each item in the list. 

3.2. The Methodology 

An essential factor of success in a large project is the employment of good analysis 
tools. As the complexity of systems increase, the analysis becomes even more impor­
tant. Object-oriented philosophy has brought new techniques in modeling and analysis 
like OOD [CY91, COAD91] , BoocH[Boo94] , OMT[RuM91] and OOSE 
(Object-Oriented Systems Engineering - Oden University). They all propose analysis 
methodologies to help in the design of the architecture of an object-oriented project. 
Thday, there is a tendency to use UML (Unified Modeling Language) which fuses the 
concepts of previously mentioned ones into a standardized modeling language. 

3.3. The Language 

Discussions on the different languages which currently propose object-oriented 
philosophy (OOPL) can be found in books like [RuM91, CH. 15 & 16] , [CY91, 
CH 7] , or [BN94] for a point of view on scientific applications. Amongst the many 
existing object-oriented languages, we have selected C++ for portability and effi-
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ciency reasons, and also for the large number of tools available (graphic interfaces 
library, network tools, etc.). We remark also that C++ revealed itself to be alan­
guage which the programmer imposes to such discipline that it allows one person to 
maintain more than 30,000 single lines of code [STR91] . 

Several researchers have worked in the application of object-oriented programming 
techniques to the finite element method in recent years [DF92] [ZH94] . T. Zimmer­
mann et al. used the SMALLTALK programming language (DPBZ90] [ZDP91] . 
Although it is considered as a pure object-oriented language, it is not used for real nu­
merical applications because of efficiency reasons [ZDP92] . Other researchers have 
presented object-oriented implementations of the finite element method using object­
oriented extensions of PASCAL [FFS90] (MAc92] or ADA. However, there exists 
a generalized concern that the C++ language -an extension to C developed by B. 
Stroustrup (STR91] -is the most widespread object-oriented language for numerical 
computations. Applications of finite element programming using C++ have been 
reported in references (FD91] (MIL91] (ZH94] . We should finally mention that 
the new standard FORTRAN 90 [MR90] includes also features which can be consid­
ered as object-oriented extensions, making this option appealing for who are strongly 
involved in FORTRAN programming. However, it has many limitations since, for in­
stance, it does not support inheritance or dynamic polymorphism. 

3.4. Numerical efficiency 

From a numerical efficiency point of view, it is important to understand that in 
C++ most of the object-oriented concepts do reach the compilation step. Only the 
polymorphism concept needs dynamic (during execution) binding. Historically, first 
versions of C++ compilers were simply translators to C, theoretically limiting ef­
ficiency to that of C. In fact, as announced by the creator of the language, C++ is 
designed to be a an improved C, supporting data abstraction and object-oriented phi­
losophy. This means more concepts to be understood by the programmer and thus, 
more sources of mistakes. \\e should bear in mind that object-oriented philosophy 
must be considered as a tool, and not a systematic obligation which could lad to make 
of each bit an object. 

We think that most of the criticisms of C++ efficiency are not valid. Practice has 
taught us, as also mentioned by P.R.B. Devloo (DEv94] , that inefficient implemen­
tation of C++ programs is the consequence of a bad understanding of the language. 
For example, when implementing a vector class you may be tempted to overload op­
erator [ i] so as to test if the index i is inside the vector range. It may be a useful 
feature in some cases, but you should not expect to get BLAS performance if you use 
this operator in a vector product. \\e must keep in mind that abstraction often comes 
with a loss of performance. Stepanov calls it the abstraction penalty and proposed a 
test to quantify it [Roa96] . 

For this reason, we chose to limit the non-anticipation principle proposed by Dubois­
Pelerin (DPBZ90] to objects accessed through the command-line interpreter and to 
high level methods. This principle tries to expand data abstraction to a state abstrac-
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tion concept, which implies verifying the state of each data entity before using it. 
This idea may result in the implementation of many costly tests which can be consid­
ered as not acceptable at execution time if used on often called functions or operators 
(operator [ J for example). Our choice seems to contradict the object-oriented phi­
losophy. However, we have verified this by using techniques of analysis as state dia­
grams (OMT)[RuM91] , we can gain a good knowledge about the state of the object 
before using it, which makes some tests unnecessary. 

Also, the user of classes has an unavoidable part of responsibility. For instance, 
many algorithms do not need zero initialization of matrices. This is why most matrix 
class implementations do not initialize matrix values by default, leaving the choice to 
the user (e.g., LAPACK++ ). 

In terms of pure computational efficiency, J.J.Dongarra and R.Pozo [DLN+94] 
obtained with the LAPACK++ library (a C++ extension of the Fortran LAPACK 
library for numerical linear algebra) exactly the same performance as with FORTRAN. 
However, the C++ implementation provided scalability, portability, flexibility and 
easy-to-use, features which were not so easy to obtain for large codes implemented in 
FORTRAN. Other research carried out by the BLITZ++ consortium [VEL95] gave 
in some cases, better performance than FORTRAN. 

To get these results, R. Pozo and T. \eldhuizen made frequent use of the templates 
mechanism which allows to define concepts (methods, algorithms) independently of 
the type of object being used. The main difference with the virtual inheritance mech­
anism consists in the fact that the connection between data and methods is made by 
the compiler; then it receives enough information to produce an optimized code. This 
technique does not only increases legibility without losing efficiency, but also allows 
to methods to be reused without considering how data are implemented. The templates 
concept is preferred to the class inheritance mechanism in order to implement static 
polymorphism. 

4. Numerical Solution of a Continuum Mechanics Problem 

The process of solving a continuum mechanics problem customarily involves a step 
of discretization followed by a step of searching the solution to a discrete algebraic 
problem. 

Discretization allows the behavior of continuum (e.g., space, time ) to be presented 
in terms of the behavior computed at a given number of points (we then talk of values 
computed at the degrees of freedom of the model). The original problem is transformed 
into a discrete algebraic one which can be effectively put and solved numerically. The 
components of this algebraic problem express values computed at the degrees of free­
dom (dof) of our model. Several kinds of algebraic problems have to be solved, de­
pending on the problem to analyze. For instance, the continuum mechanics problem 
in linear statics is expressed by a boundary value problem which is transformed after 
discretization into a system of linear algebraic equations. When dealing with linear 
vibration analysis, we have to solve a linear eigenvalue problem. In non-linear statics 
the problem to be solved is a system of non-linear algebraic equations. 
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These algebraic problems share several characteristics unique to finite element 
analysis. First to be mentioned, the number of equations and unknowns can be very 
large (e.g., it is not uncommon to talk of more than 100,000 unknowns in linear statics 
industrial applications). Also, the degree of coupling between unknowns is from mod­
erate to low, so that appropriate schemes to handle sparse coefficient matrices should be 
employed to reach maximum computational efficiency. Several strategies, specialized 
to finite element applications, exist: e.g., the skyline and frontal solution schemes. 
Systems of non-linear equations range from mildly non-linear, for which it is fairly 
easy to find a solution, to very badly conditioned ones. There exists a large number 
of algorithms to solve non-linear systems of equations in finite element applications, 
each one being adapted to a particular kind of problem. In order to get a solution to a 
practical industrial problem, the analyst should have a variety of algorithms at his dis­
posal, and should be able to switch from one to another even while advancing along 
the solution path. 

What has already been said for systems of non-linear equations in the preceding 
paragraph applies also to the methods for extracting linear eigenvalues, integrating sys­
tems of ordinary differential equations and so forth. Many specialized algorithms exist 
and new ones are continuously being proposed which take into account the peculiari­
ties of these systems and of new hardware technology. Finally we must mention that 
in many cases the problem to be solved consists of a sequence (or even nesting) of al­
gebraic problems of the kind described in the previous paragraphs. Examples of these 
situations can be found, for instance, in optimization, stability analysis of non-linear 
structures and dynamic stability analysis of mechanisms and structures. 

5. Basic Classes 

The finite element method is an analysis tool for many different problems of contin­
uum mechanics, most widely used for structural analysis. The method essentially con­
sists into discretizing the continuum and transforming the system of partial differential 
equations into an algebraic problem. 

In OoFELIE, we distinguish between two large basic class families: mathematical 
and physical classes. The foremost family is formed by classes specific for treating 
algebraic problems, e.g., vector and matrix manipulation. The latter family is a set 
of classes used for the description of the physical problem under study. Section 5.2 
describes the physical classes family. 

Besides the above-mentioned class families, there is a third group whose function 
is to establish the relationship between the two first class families. Within them, we can 
mentiontheclassesDof, Dofset, Partition, Connection, Vectstr, 
Matrstr, Domain. They are described in the subsequent sections. 

Some utility classes have also been developed to manage variable size arrays of 
objects ( ternpla te vararray<> ), stacks, buffers, pool for memory management, 
read and write protection on objects and execution time measurement, among others. 
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5.1. Mathematical Classes 

At present the library consists of 30 classes organized into two groups: 

1. The first group consists of different types of matrices. Most of them inherited 
from a virtual class rnoth_rnat. 

- Matrix: full matrices. 
- Matrixcx: full complex matrices. 
- Sparse: sparse matrices. 
- SparseCx: sparse complex matrices. 
- Ma tsyrn: symmetric matrices. 
- Ma tband: symmetric banded matrices. 
- Skyrna t: symmetric skyline matrices 
- Skyrnatcx: symmetric skyline complex matrices. 
- SkyrnatNs: non-symmetric skyline matrices. 
- SkyrnatCxNs: non-symmetric skyline complex matrices. 
- MatTri (U/L): lower/upper triangular matrices. 
- Vect: vectors. 
- VectSet: set of vectors (Vect). 
- BlocSet: set ofVectSet. 
- Vect3 I Matr3: three-dimensional vectors and matrices. 
- VectN<N> 1 MatrN<N>: N-dimensional vectors and matrices (tem-

plate implementations for high performance in tiny dimensions). 
- VarVect 1 VarVectSet 1 VarVarVectSet: variable size vectors 

implemented by template VarList<type>. 
2. The second group concerns calculation methods. These classes serve as black 

boxes defining robust user interfaces to the method, and taking into account 
particular aspects such as, e.g., memory management. 

- StatSyst: base class for linear systems solvers 

- Direct solvers 
- Iterative solvers (implementations ofGMRES, BiCg, BiCgStab, CGS, 

CG from SIAM Templates book.) 

- DynarnSyst: base class for all eigenvalue and eigenvector calculations. 

- Jacobi: Jacobi method for symmetric (eventually banded) matrices 
- QR: QR method for banded matrices 
- SVD: singular value decomposition implementation 
- Lanczos: Lanczos algorithm with single iteration vector and restart, 

or blocks Lanczos algorithm 

- Opti: optimization functions. 
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Figure 1. Hierarchy of matrix classes 

The hierarchy of matrix classes is described in Figure 1. Classes Physet and 
Structural are described later in Sections 5.2 and 3. We note that this figure fol­
lows Grady Booch diagram conventions. 

5.2. Physical Classes 

The set of physical classes is used to describe the problem under analysis and the 
system state. A list of some of the currently available physical classes in OoFELIE 
follows: 

Node state: virtual generic class providing standard interface to access state vari-
ables of a node, including: 

Position: coordinates of a point in Cartesian space, 
Displacement: displacements at a point, 
Force: data and methods to handle loads, 
Temperature: temperature at a point. 

Also, time derivatives of the above are accessed through Nodes tate. 

Element : virtual master class of the finite elements library. It provides methods 
of access to their attributes, and of computation of the different finite element 
arrays and tables (e.g., fill_stiffness (), fill_mass (),etc.). 

Material: master class for description of materials of various kinds. 
Propelem: master class for description of element properties. 
Fixation: master class for information concerning boundary conditions of the model. 
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The objects of physical classes can be grouped to form sets of objects of the same 
kind. For instance, the set of Material objects can be grouped under an instance 
of the class MaterSet. The notion of Set makes easier to manipulate data. For 
instance, it allows us to make operations on sets such as giving a common property to 
all objects in a set (e.g., a given material can be assigned to a whole set of elements). 

The implementation of Sets is based on the concept of a templates to simplify 
programming. Different classes were implemented for the various kinds of physical 
classes. Some of them are: PosiSet, ElemSet, FixaSet, MateSet, TempSet, 
DispSet. Any values of sets of classes inherited from NodeSta te may be accessed 
with the structural vectors. 

5.2.1. The Class Physet: Stack of Propenies and Parental Recursion 

In many situations, physical objects need to make references to properties, which 
usually are physical and therefore are represented as objects of the physical family 
(for example, an element can reference a set of nodes or a set of materials). These 
properties can be attributed to a single physical object or to a set of objects (e.g., a 
Material can be attributed to a single Element or to an ElemSet). 

To establish such links, the virtual base class Physet has been created, from which 
every physical object inherits. This class manages, for each Physet object, a list of 
references to other Physet objects. 

The search for a particular property is done using a mechanism called parental 
recursion implemented in the Physet class. In this mechanism, the object looks first 
for the searched property in its own list of properties (pointers to other Physets). If it 
is not found, the query is passed to a parent object (for example, from an Element to 
an ElemSet). The mechanism is applied recursively until either finding the property, 
or until arriving the lineage root. 

If the property is not found in any object up in the lineage, the virtual function Phy­
set: : i f_not_found () is called (see Figures 2 and 3). This function is provided 
to allow the designer of a physical class implement a default action to be followed in 
case of failure (e.g., create a default object of the searched property and issue a warning 
message). 

Properties can be identified by using either their type (Ph_Ob_id code) or their 
Key, which distinguish physical fields in a same type of properties. 

lock Phvaet enum Ph_Ob_id 
features:Field II properties:Stack {Nodeset_po, 
first_comp:unsigned she II pere:Physet* Elemset_po, 

operators I, &, "· =, != Lock Qet_key() Materset_po, 

~ 
void add_properties(Phvset * l Fixaset_po, 
Physet* Qet_properties(Ph_Ob_id} 000 

Phvset* Qet_properties(lock) "J} 
I Kev _I Phvset* il_not_found(Ph_Ob_id} 

Physet* if_not_found(Lock} 
I I 

Figure 2. Wrtual class Physet 
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ui father; 

Physet:: 

Physet *father; 

Physet properties[]; ---------------·-··---···------; 

physet• get_property(Ph_Ob_idlkey ); 

nturu (Phyaet1) property; return lOLL; 

Figure 3. Parental recursion mechanism implemented in Physet 

6. Coupled Fields Management 

6.1. Degrees of Freedom 

The discretization process establishes a set of generalized coordinates or degrees 
of freedom for the continuum fields: i.e., displacements, temperatures, velocities. The 
class Dof implements the concept of degree of freedom. This is an essential concept 
in the method, so that the design of this class deserves special attention. 
A degree of freedom is characterized by following aspects: 

Physical nature: is it a displacement along the x, y or z-axis, a rotation, a temperature, 
an electrical potential, a Lagrange multiplier, ... ? 

Differentiation level: does it correspond to the primary variable or to its first or second 
time-derivative? In other words: is it a generalized displacement, a generalized 
velocity or a generalized acceleration ? 

State: is it fixed or free? is it located at an interface or not?, is it a measured dof or 
not? (the latter concept is used in modal identification methods). 

Note that the number of degrees of freedom for a given problem can be very large, 
so that the information of a Do f should be stored in a minimum of space. Also, a Do f 
object should be capable of answering as fast as possible to queries concerning its own 
characteristics as for instance: does this dof correspond to a fixed displacement? The 
set of characteristics of a Do f is stored in an object of the class Key, designed to satisfy 
the above-mentioned requirements. 

Groups of Dofs are managed by objects of the class Dofset. A Dofset instance 
is automatically generated upon declaration by the user of a structural object (i.e., a 
structural vector or matrix, see Section 3). Any modification of the mesh implying 
modification of the dof numbering is forbidden after generation of the degrees of free­
dom set, unless explicitly stated, in which case the dof information will need to be 
recomputed. 
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Pos. Sub-field Abc Flags meaning 
1:10 NATURE TX Displacement x 

TY Displacement y 
TZ Displacement z 
RX Rotation x 
RY Rotation y 
RZ Rotation z 
TO Thmperature 
EP Electric potential 
LM Lagrange multiplier 
TM Time (for space time-finite element) 

11:12 REFERENCE AB Reference (absolute) 
RE Incremental (relative) 

13:14 FIXATION FR Free 
FR Fixed 

15:16 INTERFACE IN Interface 
NI Not-interface 

17:18 BOUNDARY BO Boundary 
IL Internal 

19:20 MEASURE ME Measured 
NM Not-measured 

21:24 DEGREE GD Generalized displacement 
GV Generalized velocity 
GA Generalized acceleration 
GF Generalized force 

25:28 JOKERS Jl Joker 1 (user defined) 
J2 Joker 2 (user defined) 
J3 Joker 3 (user defined) 
J4 Joker 4 (user defined) 

Th.ble 1: Flags in field 

6.1.1. Qualifying Degrees of Freedom: Classes Key and Lock 

Sets of physical characteristics and their states are described by instances of the 
class Key. On the other hand, acceptance criteria are described by objects of the class 
Lock. The latter class is quite similar to the former one, from which it is derived 
by inheritance. Both classes work by binary encoding the information. Then, the 
satisfaction of a given criterion is verified by logical operations on the binary flags 
(which are performed very fast). Queries concerning the characteristics of a given 
dof can be translated into the following question: does this key match the lock? This 
section describes some details of implementation. 

In an object of the class Key, each characteristic item (e.g., displacement x) is 
assigned a two-states flag. In order to keep the memory requirements to a minimum, 
these flags are encoded and grouped together into an instance of a class named Field. 
An instance of Field defines 32 bit-flags and occupies 5 bytes. 
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The class Field is actually made of several sub-fields. A Key allows the setting 
to on only one flag at each sub-field. Currently, the eight sub-fields mentioned in Thble 
1 have been defined. By setting to on one (and only one) bit at each sub-field, we fully 
specify the nature and characteristics of the corresponding degree of freedom. 

The program has several predefined keys. For instance, there is a predefined key 
for each elementary bit information; 

Key TX {OxlOOOOOOO); Key TY {Ox20000000); 
Key TZ {Ox40000000); 

with the constructor of the class Key initializing the Field. 
Fields describing more complex concepts can be generated as the result of logical 

operations between elementary Fields. 
The result from operating two Fields objects is a new Field object, whose 

flags are issued from logical operations between the corresponding flags of the original 
Field objects. 

Keys for typical degrees of freedom are also predefined: 
Key DISPL_X{TXIGD); Key DISPL_Y{TYIGD); 
Key DISPL_Z{TZIGD); 

We note that values for sub-fields not defined at construction are given by the de­
fault Key: 

Key DEFAULT {REIFRINIIILINMIJl); 
For instance, the full description of a free displacement degree of freedom on the 

y direction is made as follows: 

NATURE 
0100000000 

6.1.2. Class Lock 

The class Lock defines a criterion of acceptance for objects of the class Key. The 
implementation of Lock is similar to that of Key, with the difference that it allows to 
set to on several flags per sub-field. 

For instance, the following are valid Locks: 
Lock DISPLACEMENT {TXITYITZIGD); 
Lock FORCE {TXITYITZIGF); 

Lock NATURE{TXITYITZIRXIRYIRZITOIEPILM); 
Lock FIXATION{FRIFI); 

Lock ALL{Oxffffffff); Lock NOTHING{OxOOOOOOOO); 
The function int Key: :match {Lock &) verifies matching of a Key with a 

Lock. This function makes a logical OR between corresponding flags of both objects. 
If the result is different from zero for each sub-field, the function returns 1 (i.e. the 
key opens the lock ). 
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The following examples illustrate a case in which a key succeeds into opening a 
lock and a case which it does not: 

NATURE REF FIX INT 
1000000000 0 1 1 0 0 I 

1111110000 0 1 1 0 0 1 

1000000000 0 I I 0 0 I 

NATURE REF FIX INT 
1000000000 0 I I 0 0 I 

1111110000 0 I 01 0 I 

1000000000 0 I 00 0 I 

BND MEA DEG 
01 0 1 1000 

0 I 0 I I 1 1 I 

0 I 0 I 1000 

BND MEA DEG 
0 I 0 I 1000 

0 I 0 I I I I I 

0 I 0 I 1000 

JOK 
1000 

I I I I 

1000 

JOK 
1000 

I I I I 

1000 

(key) 

(lock) 

=*'Ihle 

(key) 

(lock) 

'*False 

Certain acceptance criteria cannot be expressed by a single Lock. Think, for in­
stance, in a case in which we ask a Key to be either a free displacement along x or 
a fixed displacement along y (a Lock built following these notions would also ac­
cept non-desired combinations, as fixed displacements along x). In such cases, we 
are obliged to test against several Locks. The class UnionLock was introduced to 
simplify these operations. 

An instance of the class UnionLock expresses in a single entity a set of Locks. 
Then, the function int Key: :match (UnionLock & ) verifies matching of the 
Key with the sequence of Locks, and returns 1 (true) whenever the Key matches any 
one of them. 

A Uni onLoc k can be built by making the addition (operator '+')of several Locks. 
Lock txyfree (TXITYIFR); 
Lock rzfix (RZIFI); 
UnionLock rxfr_or_ryfi 

6.2. The Mathematical Point of Wew 

txyfree + rzfix; 

Solving numerically a physical problem leads to the problem of solving a system of 
algebraic equations. The solution is expressed in terms of local values of the physical 
variables (i.e., the degrees of freedom of the model). When the behavior at all degrees 
of freedom is known, the model is fully determined. 

In many cases, we need to split and sort the degrees of freedom into groups fol­
lowing different criteria and according to the solution method. This corresponds to 
dividing the domain into sub-domains. These sub-domains may for instance result 
from geometric considerations or may also correspond to grouping of dofs according 
to their physical nature. They can be use, for example, to solve an interface problem 
either in primal form (in terms of global interface unknowns) or in dual form (in term 
of interface Lagrange multipliers)[FR91) , or to build specials preconditioner. Cri­
teria to make the sub-domain splitting are implemented using the classes Lock and 
Partition. 

The connection operation consists in sorting the degrees of freedom at each sub­
domain and localize them inside the sub-domain(s) to which they belong. It has been 
implemented introducing the class Connection. 
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6.2.1. The Concept of Partition 

Degrees of freedom may be classified in partitions following different criteria. This 
information is used to link the Dof to the associated mathematical unknowns. 

Different criteria of partitioning can be defined, namely: 

according to the nature of dof (e.g., translation I rotation I internal dot), 
according to its fixity state (e.g., fixed I free), 
according to geometric or physical partitioning (e.g., substructuration for par­
allel computations, substructuration for constructing super-elements), 
or any combination of the above-mentioned criteria. 

I ObjectTyp;- ) ------- _/ \........ 
r- __ ~ _ _!::L~o~ck~_ ) 

/ Vararray ~ -)- ~ 
,.---.___ f41 .. n 

"--- -----... T& operator[](int \ ) . '----- ) , l Umonlock 
~ ------

\_____ ..------

aii:Field ( 

\ / __/ 

~_h_ 
Key ) 

) 

Figure 4. Implementation of class Partition 

The class Partition has been created to implement this concept. This class al­
lows the defining of a distribution of the degrees of freedom set in separate subsets 
following one or more criteria. An object of the class Partition gives an exclu­
sive mapping between dofs characteristics and part numbers. It can be built simply by 
giving the sequence of Locks (or UnionLocks) that define each part. A dofbelongs 
to the part whose Lock is first matched, when verifying the parts assignment in as­
cending order. The last part is conventionally defined to be the Lock all, so that 
this part comprises all those degrees of freedom not included in the preceding ones. 

The following example illustrates a case in which we partition the degrees of free­
dom set into four parts: 

Group 1: 
Group 2: 
Group 3: 
Group 4: 

free displacement dofs along x 1 y and z axes 
free rotation dofs along x 1 y and z axes 
free temperature dofs 
remaining dofs (fixed displacements, rotations and temperatures). 
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Each of the first three groups is characterized by a particular Lock, while the fourth 
one is characterized through the Lock all which has all bits set to on. An example 
of the set of instructions defining an object P of the class Partition follows: 
>> Partition P; 
>> P.add_new_part( TXITYITZ I FR ) i 
>> P.add_new_part( RXIRYIRZ I FR ) i 

>> P.add_new_part( TO I FR ) ; 
>> P.print(); 
Partition = 
Field no 1 
1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 
Field no 2 
0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 
Field no 3 
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 
Field no 4 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6.2.2. The Connection 

Each dof is individualized by a unique global label. Structural matrices and vec­
tors are assembled separately for each part. The connection establishes to which part 
and in which position inside its part, should be assigned each dof. This concept is 
implemented by an object of the class Connection. 

' Domain teach 

/Creation of a Connexion object 

manage this dot in that part (dot number, part number) 

Restitution state 
int: in which part in the partion is that dof(dof number) 
int: where is that dot in his part( dol number) 
dot: which dot is there(number of the part, order number in this part) 

Figure 5. State diagram for class Connection 

We may distinguish two phases when using an instance of the class. During the 
first phase, the learning phase, we teach the Connection to which part belongs each 
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dof. In this phase, we are able to modify the dofs ordering at each part (e.g., using 
different bandwidth optimization algorithms) or even the dof/part assignment. 

In the second phase, the restitution phase, we inquire the object to get information 
about the particular connection. For instance, we may ask to which part does a given 
dof belong, what is the order number inside its part, etc. 

Both phases are separated by a call to the member function manage_ end ( ) , 
which enables the user to make inquiries and disables any further intent to modify 
the connection. 

The domain has a member function void build_connect (Connection&, 
Partition&, Opt_ReOrder_Type=Sloan) which is responsible for the first 
learning phase of Connection. 

lllocinv:Locinv* 
llloc:int* 

Ct 12 

void mana~e_dof_j1_in_part(int _j1 ,int _part) 
void mana~e_end() 
int ~et_NoOfPart(int i) 
int ~et_NoOfDoflnPart(int i) 
int get_NoOfDofGiobal(int i,int j) 

Figure 6. Interfaceforclass Connection 

An example of construction of an object of the class Connection follows. 
>>Domain BarTher{ ... }; 
>> Partition P; 
>> P.add_new_part(TX FR); 
>> P.add_new_part(TO FR); 
>> Connection C; 
>> BarTher.build_connex(C,P); C.print(); 
Connection = Number of parts: 3 

Number of dofs : 30 
- part 1 8 dofs 
- part 2 2 dofs 
- part 3 20 dofs 

First, we defined a partition with three parts: free x-displacements, free temperatures 
and the rest of dofs. Then, based on this partition, we built a connection for the domain 
barther. 

6.2.3. Structural lectors and Matrices 

Knowing a DofSet and a corresponding Connection we can construct struc­
tural vectors and matrices which will be used in the numerical solution phase. If no 
sub-domain has been defined using partitions and connections, matrices and vectors 
for the whole domain are constructed. 
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Figure 7. Structural vectors and matrices 

6.3. The Physical Point of Wew 

6.3.1. Storage Sets 

To solve a problem we need to manage information on the model. we may consider 
we have a database with already known information which represents the model, and 
from which we evaluate new pieces of information during computations, that are to 
be stored later in the database. A mechanism has been designed to manage, store and 
recall nodal results, and interface them to the mathematical classes. This mechanism 
is implemented using the structural vector, which is in fact a vector of pointers on 
values stored in the database. 

The structural vector is built from three kinds of data: the domain, the connection, 
and the part number in the partition. For instance, we may define a structural vector 
that comprises all degrees of freedom in the second part of domain A, for the connection 
Co. In this way, we may have different vectors for the different parts in which a given 
domain has been partitioned. we can also define several connections on a same domain 
and different structural vectors for each one. we use these notions, for instance, in 
optimization problems (see Example 8.1). 

In order to completely define the structural vector we should give also its type; that 
is, we have to indicate further qualifiers that apply to all dofs in the structural vector. 
These qualifiers are: the differentiation degree (i.e. generalized displacements, gen-
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eralized velocities, accelerations ), absolute or relative quantities, measured quantities 
or not? Normally, all this information is contained in the Key associated to each dof. 
We have limited the possibilities of constructing structural vectors to cases in which 
all dofs are of the same type, for instance, they have all the same differentiation degree 
(i.e. they are all displacements). This is the most usual situation and does not introduce 
any practical limitation. The rest of the sub-fields in the Key (NATURE, FIX, INT, 
BND and JOK ) are used to define the index number inside the structural vector by an 
appropriate algorithm. The situation is illustrated next. 

In the following example, we define a structural vector v for the domain BarTher, 
covering all the generalized displacements of the model. 

>> Vectstr v (BarTher, GEN_DISPL); 

where GEN_DISPL is a key that indicates degree of differentiation 0. 
Figure 8 gives a brief description of the data structure implementation through flow 

diagram. For instance, the identifier and coordinates of each node are stored into an 
object of the class Position. The set of nodes of the discretization is then grouped 
into an object of the class Posi tSet. And the set of node coordinates is put together 
with the other objects that form the discrete model (sets of elements, fixations, loads, 
materials, etc.) to form an object of the class Domain. The class Domain contains 
also pointers to objects of classes that describe results of computations; e.g., displace­
ments, stresses, velocities, accelerations, etc. 

Set Analysis 
( ., 

Figure 8. Domain and physical data 
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6.3.2. The Physical Space: the Domain 

The domain contains all information about the representation and modelisation of 
physical space. It acts as a container for references to all data sets of a given compu­
tation (see Figure 8), and provides methods of access to any physical data. Physical 
data is accessed by using the stack of properties mechanism (see Section 1). An ob­
ject for each one of classes Posiset, of Elemset and of Fixaset are minimally 
required to build a Domain. But several other physical properties may be added to 
extend the capabilities of analysis, for example, Partition, Connection, In­
terfaceset, etc. The Domain is also the class that constructs the Dofset. 

Once a Domain is defined, structural objects like instances ofvectstr of Sky­
matstr may be built with reference to it, giving reference to the corresponding Dof­
set or subset of the Do f set if a partition is defined. 

Domain l Node's DOFs & 

set_ analysis 
1 Standalone DO 

'II set_step 
set_iteration Dofset 

0 II dofs:Vararray<Dof* : 

~Reference to 1 
cuffent analysil 1 I Steo 

Ansolv"'l"' I Reference 
to domain I steps:Vararray<Step* ' IV' 1 .. n 
which set_ step 

"created it ;,. 
lsuoerEiementlllnearStatic! LinearVIbratiorl 

I 

A 
~ iJ fNnni:J ll Dvnamics I 
r lf 11 I 

Figure 9. Classes Domain and Analysis 

7. Dialog with Objects 

The software we have built tries to answer the following requirements of design: 

users have to dispose of a fairly large variety of algorithms to be applied in 
many changing situations; 
it should be easy to incorporate new algorithms to the program; 
linking and chaining the execution of different solution algorithms ought to be 
easy and transparent to the user. 
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The answers we gave to these demands is by means of a language interpreter which 
accesses data usually restricted to internal use in a standard program. The language 
can be used to describe both data and algorithms. In other words, it is able to define 
in detail the methods by which data should be transformed to reach the final results. 

7.1. The Command Line Interpreter 

The main program works in dialog with two modules: an interpreter -which em­
ploys a specialized high-level language- and an execution manager. The interpreter 
translates user instructions into a low-level language internal to the program. A first 
detection of errors is made at the interpreter level, followed by appropriate error re­
covering. If the command is correct, the equivalent command in low-level language 
is transmitted to the execution manager, which gives course to the required action. 

We distinguish between three different kinds of commands: flow-control, decla­
ration and expression statements. Flow control actions are directly taken by the ex­
ecution manager. Declarations require the construction of an object, followed by the 
storage of its name and address into a symbol table. These actions are also taken by 
the execution manager, after calling the appropriate constructor of the class. 

For the other statements, which involve algebraic operations and function calls, 
the execution manager simply invokes the appropriate method of the concerned class. 
This is programmed using the dynamic binding capability of an object-oriented lan­
guage [ AMM91] . For instance, when the user asks for the addition of two scalars, 
the execution manager will call the addition method of the scalar class. But when the 
addition of two vectors is required, the execution manager will make use instead of 
the addition method for the vector class, by simply recognizing the type of variables 
involved in the algebraic operation. 

7.2. Choice of Grammar 

The command interpreter was defined in terms of a language whose grammar is 
as close as possible to C++. Therefore, once an algorithm is implemented and tested 
(interactively or through a commands file), the resulting procedure can be easily added 
to the compiled part of the software (for example, as a member function). 

Here is a list of functionalities which have been given to the interpreter-executor': 

creation of objects from classes and use of their members functions, 
use of inheritance and polymorphism, 
execution of algebraic operations through operators ( + - * / [] & I A), 

use of Stream capabilities ( « ») [STR91] , 
possibility to add and/or to overload member functions, 
material or element properties may depend on o!her properties, through func­
tions declared with the interpreter. 

1 a description of the parser/interpreter implementation itself is made in reference[ CK G94] 
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1Wo major problems have been encountered in the specification of the interpreter 
capabilities. They have requested special adaptations of the grammar and are briefly 
discussed below. 

7.2.1. Function Definition 

We can see there exists an analogy between the prompt command line in the inter­
preter and the main ( ) { ... } function in a C++ program. The only exception is that 
in C++, functions cannot be declared and/or defined inside the main program. 
A declaration such as 

Complex csqrt(float x, float) 

leads to an ambiguity, since the parser cannot see the difference between the declaration 
of a Complex variable whose name is csqrt with constructor (float, float) 
and the declaration of a function csqrt which returns a Complex from two argu­
ments. For this reason, a new reserved key word Function has been introduced in 
the language. 

7.2.2. Inheritance 

In a compiled program, the name of an object is specified at its creation (e.g., 
float a;). That name will never appear in the object file resulting from the compi­
lation, since the executable file no longer needs that information at run time. 

In an interpreted language, however, we need that information. Therefore, accord­
ing to encapsulation philosophy, each object must have a member function which re­
turns its name given at declaration time. 

The same problem happens when finding the name of public data and member 
functions, in which cases the problem of inheritance is encountered. Supposing we 
have a class sA: inheriting from a class A: . A: has a member function funcA which 
does not need to be redefined in sA: (Figure 10). How could the interpreter know that 
sA: has a member function funcA due to its inheritance from A: ? 

In a compiled use of class, static information on polymorphism, encapsulation and 
inheritance does not survive to compilation; thus, it no longer exists in the executable 
file. In an interpreter, compilation and execution co-exist, in which case, this infor­
mation has to be stored and controlled to maintain the object-oriented concept in the 
interpreted language. This fact naturally leads to the concept of L classes. 

7.3. I_ Classes 

Each class to be accessed through the interpreter, has a corresponding Lclass 
which inherits from the virtual class L (see Figure 10). 

Objects on the interpreter stack are of type L. Each one has a name and a pointer 
to the basic object to whom it corresponds. In order to execute the member function 
whose name and arguments are on the stack (if it exists), the L object uses the proce-
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r ..._.,......"-----
~ Reference Counter~ 
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/ I Counter:in~ 

...__ I basic object:vc( ~JJ: - - - - 1 
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/ 
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II Namelnlnterpretor:String ( 
-........_ static List_of_Members:Vararray<Me 
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~ 
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/sA ( l/ 
"" ----' ..__/ 

Figure 10. I_ mechanism to interface basic objects with the command line interpreter 

dure exec (Stack*, Arguments&) . Also, it manages a reference counter on 
the basic object to allow deletion when appropriate. 

The function I_ : : exec ( . . . ) is defined for each class L. It manages the trans­
fer of control and data to functions of the basic object which we want to make acces­
sible through the interpreter. If the basic object class inherits from another class, and 
if I_: : exec ( ... ) fails to find the member function, control is transferred to the 
I_: : exec ( ... ) corresponding to the base class. In this way, the inheritance mech-
anism is implemented in the interpreter. 

Let us again consider the example of the class sA : which inherits from a class 
A:. LsA:: exec ( funcA, ... ) makes a call to I_A:: exec ( ... ) since it 
does not find the member function funcAdefined for A: . The call is finally made 
in I_A: :exec ( ... ) . The mechanism has easily been extended to multiple inheri­
tance. 

7.4. Example: Newton Algorithm 

We next show an example of a function written in the high-level language of OoFE­
LIE, which describes an elementary implementation of the Newton algorithm to get 
the solution of a non-linear algebraic problem. 
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while 

do 

= f- !int(qi)) II < ~: 
= Ktan(q)- 1ri(Qi-1) 
=q+qi 

Function Vectstr Newton (Domain dom) 
{ 

dom.set_analysis (NONLINEARSTATICS_PO); 
Vectstr u(dom, GEN_DISPL); Vectstr f(dom, GEN_FORCE); 
Vectstr du(dom) .set_to_zero(); Vectstr residue (dom); 

} ; 

int 
double 

itmax 
tol 

10 
0.00001; 

double nfext tol; 

int iter 
double prec 

residue 
nfext 

f- du.int_forces(); 
+= f.norm() + du.norm(); 

Skymatstr k ( dom, GEN TANG_STIFF ); 
while( (iter<itmax) & (prec>tol) ) 
{ iter++; 

k.update(); 
k.factor(); 
k.back( residue , du ) ; 
u += du ; 
residue = f - du.int_forces() 
prec = residue.norm() I nfext; 

} ; 

iter.print(); 
return u; 

0 
1. 0; 

Once a Domain has been defined -i.e., a notion embodying all data for a given 
problem- a simple interactive call to this method returns the structural vector u for 
which equilibrium is re-established. This short example shows that the interactive ex­
ecutor is able to manage function calls, iteration and conditional branching statements. 

8. Applications 

8.1. The MBB Beam: Example of Optimization Problem 

We consider a simplified step of the MBB beam topological optimization problem 
[OBR90] . It consists into finding the best position of two nodes that minimize the 
work of external forces in an eight bars 2D truss (Figure 11 ). 
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1.2m 

Figure 11. MBB domain 

We next describe data for this problem. First, we define nodes, positions, bars, 
loads, etc.: 
float height=40; float width =120; 
float aX2 width/2.; float aX5 =width; 

Positset a { 1 0 0 0 
2 aX2 0 0 
3 width 0 0 
4 0 height 0 
5 aX5 height 0 } ; 

2 BARELST 2 3 Elemset b { 1 BARELST 1 2 
3 BARELST 3 5 
5 BARELST 3 4 

4 BARELST 4 5 
6 BARELST 2 4 

7 BARELST 1 5 8 BARELST 2 5 }; 
Set cha(FORCE) .define(4 1 2 1 -100); 
Fixaset fix; 
fix.define ( 11 TX); fix. define (11 TZ); 

fix.define (2 1 TZ); 
fix. define (3 1 TY); fix. define (3 1 TZ); 
fix.define (41 TX); fix.define (4 1 TZ); 

fix.define (51 TZ); 

In order to have direct access to structural vectors defined over the set of positions we 
want to optimize, we define an Interfaceset that comprises the selected dofs: 
Interfaceset Moving_pos; 
Moving_pos.define(2 1TX); 
Moving_pos.define(5,TX); 
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Then, a set of materials and elements properties is given: 
Materset maters; 
Material steel (ISOTROPIC); 
steel.put (ELASTIC_MODULUS, 21e4); 
steel.put (POISSON_RATIO, 0.3); 
steel.put (MASS_DENSITY, 7.8e-6); 

maters.put (l,steel); 
Propelem prp(BARELST); 
prp.put (CROSS_SECTION_l,l); 
prp.put (MATERIAL,!); 
b.add_properties(prp); 

We next instruct the Domain about the particular problem to analyze: 
Domain MBB { a b maters cha fix Depl_on_interf }; 
MBB.set_analysis (NONLINEARSTATICS); 

A linear static analysis of the Domain MBB can be done by defining the function 
LinStat: 
Function Vectstr LinStat (Domain dom) 
{dom.set_analysis(LINEARSTATICS); 
Skymatstr k (dom, GEN_STIFF ); 
Vectstr u 
Vectstr f 

(dom, GEN_DISPL ); 
(dom, GEN_FORCE ) ; 

k. factor (); 
k.back(f, u); 
return u; 

} i 

In order to perform a non-linear static analysis, we may use function Newton defined 
in Example 7.4 

We remark that the interpreter allows quite involved computations to be very easily 
expressed. For instance, the difference between the linear and non-linear solutions for 
a given problem is written: 
>> (LinStat(MBB)-Newton(MBB)) .print(); 
The result is: 
Vectstr = Vect. Dim: 7 

Node Component Value 
=========================================== 

1 y Trans. 0.0072476 
2 X Trans. -0.00019790 
2 y Trans. 0.00050828 
3 X Trans. 0.00042267 
4 y Trans. 0.0026230 
5 X Trans. 0.0013617 
5 y Trans. 0.00034099 
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We will now compute the horizontal position of nodes 2 and 5 that give minimal defor­
mation energy in the system. To this end, we use Newton's method for unconstrained 
minimization[DS83] : 

Given f : Rn ----t R twice continuously differentiable, x0 E Rn; for each 
iteration k, 

solve6.2 f(xk) sf: = -6.f(xk), 
Xk+l = Xk +sf: 

6.f and 6.2 f will be evaluated by finite differences. 
We first define function ff which returns the work of external forces, for a given 
configuration: 
>> Function scalar ff (Domain dam 

{ scalar p; 

} i 

Vectstr f(dom, GEN_FORCE); 
p = f * newton(dom); 
return p; 

Displacement and force vectors are created for the Domain MBB: 
>> Vectstr U ( MBB, GEN_DISPL ); 
>> Vectstr F ( MBB, GEN_FORCE ); 

\\e next define a second independent partition, that will allow us to have direct access 
to positions x 2 and x5 : 

>> Partition Pa ; 
>> Pa.add_new_part( TX I IN) .print(); 
Partition Pa = 
Field no 1 
1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 
Field no 2 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

The connection for partition Pa is built and used to define the structural vector p, 
which will reference positions x 2 and x 5 at the physical database: 
>> Connection Co; 
>> MBB.build_connect (Co, Pa ); 
>> Vectstr p ( MBB, AB, Co); 
p gives direct access to the independent parameters of the optimization problem, with 
objective function ff. 

In the following, we build the matrix of second-order derivatives of the objective 
function by numerical differentiation, and iterate up to obtaining convergence for a 
minimum work configuration, by updating the horizontal positions of nodes 2 and 5. 
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>> double e=O.OOOl, Fp; 
>> Vect xO(p.dirn), sN(p.dirn), Df(p.dirn); 
>> Matsyrn DDf(p.dirn,p.dirn); 
>> xO=p; 
>>inti, j, Nbr!ter; 
>> 
>> while (sN.norrn>e) 

{Nbre_d_iteration++; 
p=xO; Fp=ff(MBB); 
i=O; 
while ( i<p. dim) 
{ i++; p=xO; p[i]+=e; 

Df[i]=ff(MBB); 
} ; 

i=j=O; 
while(i<p.dirn) 
{ i++; j=i-1; 

} 

while(j<p.dirn) 
{ j++; DDf[i,j]=Fp; 

DDf[i,j]=DDf[i,j)-Df[i]; 
DDf[i,j]=DDf[i,j]-Df[j]; 
p=xO; p[i)+=e; p[j]+=e; 
DDf[i,j]=(DDf[i,j)+ff(MBB))/e/e; 

} ; 

} i 

i=O; 
while(i<p.dirn) 
{ i++; 

Df[i)=(Df[i]-Fp)/e; 
} ; 

DDf.solve(Df,sN); 

double exp=l. ; 
p=xO-sN; 
Fpp=ff (MBB); 
while( (Fpp > (Fp + le-4 * 

&(sN.norrn>e) 
exp * ( Df * sN) ) ) 

exp/=2.; 
p=xO-sN; 

sN*=exp; 
Fpp=ff {MBB); 

} ; 

xO=p; 
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Vect xO 60.0000 120.000 scalar Fpp 
Vect xO 61.1483 98.6275 scalar Fpp 
Vect xO 62.1338 103.560 scalar Fpp 
Vect xO 63.3607 105.256 scalar Fpp 
Vect xO 63.4108 105.171 scalar Fpp 
Vect xO 63.4214 105.185 

Results of computations are the positions of both nodes 2 and 5: 
>> Nbre_d_iteration.print; 
scalar Nbre_d_iteration = 5.00000 
>> p.print; 
Vectstr p = Vect. Dim: 2 

Node Component Value 
=========================================== 

2 
5 

X Trans. 
X Trans. 

63.421 
105.18 

66.6880 
66.3469 
66.3148 
66.3147 
66.3147 

8.2. The Ultrasonic Motor: Example of a Coupled Physical Problem 

8.2.1. Description 

497 

The ultrasonic motor is based on an annular circular plate in free-vibrations state. 

Figure 12. Transverse vibration wave in an annular plate 
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For a given k =1- 0, it can be seen that the sinus mode has the same frequency Wkn 

as the cosine mode, where they are linearly independent. The combination of these 
two modes gives: 

Wk (r, 8, t) = Wknsin + Wkncoo 

= AsinR(r) cos(k8) cos(wt) + AcosR(r) sin(k8) sin(wt + <p) 
= !R(r) [(Asin + Acos cos<p) cos(k8- wt) 

+(Asin - Acos cos <p) cos(k8 + wt) 
+ 2Acos sin <p sin k8 cos wt] 

with constants Asin,Acos and <p determined from the initial conditions. The two first 
terms represent waves rotating with 8 while the third term is a stationary wave. 

If we choose initial conditions such as Asin = Acos = A and <p = 0, we find 

w(r, 8, t) = AR(r) cos(k8- wt) 

which is a moving wave around the axis plate at the velocity of w / k (fig. 12). 
Due to the Kirchhoff hypothesis for plates, the motion of a peripheral point Q is 

given by 

[ 
h8w h 8w ] 

[ur,UB,w]Q = -2 8r ,-2r 88 ,w 

where his the plate thickness. Knowing w(r, 8, t), velocity at Q is given by 

[un u9, w]Q = -Aw [ -~ ~~ sin(wt- k8), ~: Rcos(wt- k8), Rsin(wt- k8)] 

which describe an ellipse in plane ( 8, w). 
By putting a rigid body (rotor) in contact with the plate, the contact point Q at the 

top of the ellipse when cos(wt- k8) = 1, has a speed motion given by 

[ur,uB,w]Q = [o,-Aw~:R,o]. 
Without slipping, the rotation speed of the rotor is given by B = - AwhkR(r) /2r2 . 

Figure 13. Motion of the rotor 

In practice, the vibration of the plate is obtained by distributing piezoelectric actua­
tors on opposite sides, to put in resonance the two linearly independent modes (opposed 
by rr/2). 
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Figure 14. Set of piezo-actuators for each mode 

8.2.2. Numerical Implementation 

When simulating piezoelectric devices, we should be aware that there exists large 
differences in magnitude between elastic, thermal and electric terms. In order to avoid 
numerical troubles, we divide the equations according to the particular nature of the 
involved degrees of freedom. 

The finite element discretization of the stator of the ultrasonic motor, leads to the 
system: 

(t 0 0 
0 0 
0 0 L L)O) 

?:~:)(:) (~·) 
(1) 

which connects the elastic field u, the electric field¢ and the temperature field 0. The 
temperature field 0 may be uncoupled from the two first equations, leading to 

( ~uu ~ ) ( ~ ) + ( ~j: ~:: ) ( : ) = ( ~~~~0oO ) (2) 

and 

{ c., c., C., ) ( t ) + K 666 ~ 0. (3) 

By assuming that the temperature field response is much slower than that of fields u 
and ¢, we may consider in a first approximation that 0 is constant inside each time 
integration step of equation [2]. 
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Figure 15. Selected pair of orthogonal modes (top and bottom view) 

This allows the integration and updating of the temperature (8, 0) separately by 

CooO + Koo8 = -Cuoil - Cq,o;p, 

once u, ¢ are known. Note that in this way both systems of equations become sym­
metric. 

Usually, potentials at some points are known a priori. They include both reference 
neutral potentials ¢ 0 = 0 as well as particular potential values at some electrodes ¢ 1 . 

We may thus write 

(f.~~ nu:)+ 
( 

~~:, ~:~;, ~;~;0 ~;~~~ ) ( :i ) _ ( ~ ~q,~o88 ) 
Kuq, KJ.¢

0 
K¢otl>o Kq,oq,, cPo - Qo 

T
0 T Q Kuq,, Kq,,q,, Kq,0 q, 1 Kq,, ¢ 1 cP1 1 

with u, ¢i, ¢ 0 respectively the elastic displacements vector, internal electric potentials 
vector and the neutral reference potentials. Since ¢ 0 = 0, ¢ 1 are known, the system 
above is reduced to 
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We may eliminate the second equation using K.p, .p, cp, = F .p - K;.p, u leading to the 
final system 

M,.,. ii + (K,.,. - K,.q,, K¢,~, K;q,, )u = F,. - K,.q,, K¢,~, 
We remark that because of the difference of magnitude between elastic u and electric 
cp fields, condensation is preceded by an inverse diagonal scaling. 

Plots of vertical displacement of all Q points at the periphery of the motor during the 
starting phase are given in Figure 16. We remark that the system requires a time delay 
of nearly 3 x 10-4 sec to reach stationary vibration under the piezoelectric excitation. 
Finally, in Figure 17 we plot the vertical displacement evolution in time for one Q 
point. 

150 
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~ 

f -50 5. 
i 

-100 

-150 

-200 

1mo(..:) X10 

Figure 16. lertical displacement variations (time) isovalues of all Q points at the 
periphery during the starting phase 

9. Concluding Remarks 

The architecture of a new finite element software built around the idea of a pow­
erful commands intetpreter has been presented. A specialized high-level language for 
describing data and computations has been developed. The program has been written 
following object-oriented programming techniques and using the C++ programming 
language. 

The program has demonstrated to be able to adapt quite easily to a large variety 
of applications. People involved in the project is working in such different topics as 
thermoviscoplastic analysis, piezoelectricity, cable dynamics, structural optimization, 
elasto accoustic coupling and modal updating methods. The program conception has 
shown to be flexible enough to handle all these modeling problems without troubles. 
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·1.5 

-2 
0.5 1.5 2.5 3.5 

Figure 17. Time evolution ofvenical displacement of one Q point together with plot 
of the maximum value ofvertical displacement at the periphery 

This flexibility in application was made possible thanks to the clear modulariza­
tion that can be reached in object-oriented programming, with a marked separation of 
functionalities. Extensibility and reusability features of object oriented programming 
are clearly shown off. 

The interpreter has evidenced to be of extreme utility to users in by introducing 
new functionalities and algorithms to the environment. Complex computations which 
may require entirely reviewing a standard program have been introduced without pain 
in OoFELIE. Users have been able to naturally incorporate new features, enlarging 
the program's capabilities. 

Examples illustrating the functionalities of the program have been shown. In par­
ticular, an example of structural optimization and a second example concerning the 
modelization of the rotor of a piezoelectric motor have been developed. 
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