
Object-Oriented Programming Applied
to the Finite Element Method
Part I. General Concepts

Jacques Besson * - Ronald Foerch **

* Ecole des Mines de Paris, Centre des Materiaux
CNRS URA 866, F-91003 Evry cedex

**North West Numerics Inc., 444 N.E. Ravenna Blvd
Suite 301-A, Seattle, WA 98IJ5, USA

ABSTRACT. This paper examines the application of object-oriented programming techniques to
the finite element method. First a tool library is briefly presented: it includes mathematical
objects such as vector, matrix and tensor, as well as generic types such as array, list and
encapsulated pointer. Design patterns are then presented. They allow the defining of reusable
implementation strategies which help to obtain a flexible extensible code. Finally the paper
demonstrates the use of the different patterns in the case of objects describing finite elements
and object representing material behaviors.

RESUME. Cet article examine ['application des techniques de programmation orientee objet a
Ia methode des elements finis. En premier lieu, une bibliotheque d'utilitaires est brievement
presentee. Elle comprend des objets mathematiques tels les vecteurs, les matrices et les
tenseurs, ainsi que des types generiques tels que les tableaux, les listes ou les pointeurs
encapsules. Des schemas de conception sont ensuite presentes. /Is pennettent de definir des
strategies d'implantation reutilisables qui pennettent d'obtenir un code flexible et extensible.
Finalement, /'article montre ['utilisation des differents schemas dans le cas des objets de type
« elements finis » et des objets de type « comportement ».

KEY WORDS: object oriented languages, finite element method, programming patterns,
constitutive equations, C++.
MOTS-CLEs : langages orientes objet, methode des elements finis, schemas de programmation,
equations de comportement, C++.

Revue europeennc des elements finis. Volume 7- n° 5/1998, pages 535 a 566

536 Revue europeenne des elements finis. Volume 7- no 511998

1. Introduction

The need for highly structured, extensible and reusable simulation tools for
engineers and scientists has been an important issue for a long time. Early
in the 60s, large finite element (FE) codes were developed using FORTRAN
(IV, then 77). Although this language allows for a structured programming, it
became soon obvious that it was lacking some very useful characteristics such
as the to handle of handling sets of data as typed structures or easy dynamic
memory allocation.

In the 80s, solutions have been proposed to solve these difficulties: Specific
languages dedicated to the Finite Element Method (FEM) were introduced to
ease programming. These languages were based on FORTRAN and allowed both
the use of structured data sets and dynamic memory allocation. Indeed, the
C language was already offering these possibilities. However, the programming
effort needed to rewrite thousands of existing FORTRAN lines was thought
prohibitive compared to the cost of developing pre--processors allowing to
translate these specific languages into native FORTRAN. These pre--processors
were similar to "C-front" pre--processors which were first developed to translate
C++ into C before compilation. However, these specific languages were limited
to procedural programming.

At the end of the 80s, Object Oriented Programming (OOP) techniques
were first applied to the FEM using languages such as C++, Smalltalk or
Eiffel. Objects consist in both data and methods allowing the manipulation
of these data. They also implement inheritance, polymorphism and
abstraction [RUM 91]. A programming language which does not allow these
functionalities, should not be considered as an object-oriented language.
Therefore, the difference between C and C++ is much more important than
the difference between FORTRAN and C. OOP was first applied to windowing
systems, text processors or data bases [GAM 94, BOO 97]. It was shown efficient
in solving problems encountered using procedural programming such as easily
supporting multiple window systems. However, the use of OOP to scientific
programming such as the FEM, still remains very limited. The main limitation
is indeed the cost of (re)designing new softwares. Obviously, a mere translation
from FORTRAN to C++ would not achieve the desired goals.

The present research work about the application of OOP to the FEM,
was carried out using the FE software Zebulon developed by the Centre des
Materiaux since 1982. The redesign of the code started in 1992. This paper
first presents a definition of objects with respect to structures. Base objects
such as vectors, files, arrays, etc., are then described. The second part of the
paper deals with generic programming patterns and demonstrates their use in
the case of elements and material behaviors.

Object-oriented programming applied to the FEM. Part I 537

2. Structures and Objects

It is first necessary to define what objects are and, in particular, to present
the difference between objects and structures. A structure is essentially a set
of data. This data can either be types defined by the language (int, double,
char, char*, etc.) or other structures. Procedures are used to handle these
structures. This technique is used in FE codes such as CASTEM2000 [VER 88]
and SIC [BRE 92].

Objects contain both data sets and member functions used to handle their
data. With these functionalities only, an object would be equivalent to the set
{data+ procedures}. The new features proposed by object-oriented languages
(OOL) are [STR 88, RUM 91, BOO 97]:

- The ability to encapsulate data and member functions (public,
protected, private et const declarations).

- The possibility to use inheritance to define object hierarchies. An object
can have many children which inherit its data and member functions. It
can also have one or several parents (single or multiple inheritance).

-The possibility of defininf abstract objects using virtual member functions.
This is one of the most important characteristics of OOLs. Abstract
objects allow the writing of generic algorithms and the easy extension
the existing code. The object then have a polymorphic behavior.

These characteristics are mandatory in order to have a true object-oriented
language. Some other features can greatly ease programming such as:

- The ability to overload member functions and operators such as =, +, +=,
<,etc.

-Object and function templates (generic types) can also be included. These
are, for instance, generic arrays. Templates greatly ease and improve the
use of objects while requesting few lines of code.

Java, for the sake of simplicity, does not allow overloading and templates.
Operator overloading appears to be mandatory in the case of an OOL applied
to scientific computations.

In the following, objects will be designated using uppercase letters, and
instances using lowercase letters. For instance OBJ will represent an object:

OBJ obj1,obj2; declaration of two instances obj1 and
obj2 of OBJ.

obj1=obj2 affectation of an instance.

C++ or C++-like notations will be used.

538 Revue europeenne des elements finis. Volume 7- no 511998

3. Choosing a Programming Language

The usefulness of OOP for scientific computations has nowadays been
recognized. However actual programming still faces the problem of choosing a
language. It is also obvious that the programming language can influence the
code organization and even the used algorithms.

FORTRAN 77, C and FORTRAN 90 are clearly not OOLs. It is however
possible, by storing function pointers in structures, to create structures that
simulate the behavior of objects. This has the advantage of easily reusing the
existing code; on the other hand it is undoubtedly a very constraining technique
as the programmer has to perform a part of the task that is devoted to the
compiler. Ada has also been applied to the FEM (LUC 92, LUC 94); however
the language does not easily allow obtaining inheritance and abstraction. The
numerical efficiency of the resulting software remains poor. In addition, the
availability of Ada compilers remains limited. One can also notice the use of
LISP (MIL 88), which remains undoubtedly limited.

The use of Smalltalk has been carefully examined by Zimmer
mann et al. [ZIM 92, DUB 92b, DUB 92a.). This language is simple
and emphasized the key concept of OOP: encapsulation, inheritance,
abstraction (DUB 93). It remains, however, very slow as it is interpreted and
not compiled.

C++ seems to be, nowadays, the language allowing both numerical
efficiency and the use of 00 techniques. Efficiency relies on low-level
programming similar to C. Polymorphism is the main cause that can lower
performances as it requires run time linking. A C++ code can therefore use
high-level abstraction while optimizing some critical steps. This is clearly
the case of the FEM where an important fraction of the CPU time can be
spent in solving linear systems such as [K){U} = {F}. In addition, C++
is widely used and available on numerous platforms. The standards are not
fully defined which can sometimes cause porting problems. As far as numerical
efficiency is concerned, it is clear that C++ compilers do not optimize the code
as much as FORTRAN compilers which has been developed for more that 40
years (HAN 94, STR 94). Availability, wide use and efficiency dictated the choice
of C++ for the development of Zebulon.

Java has been recently introduced [LAF 97, COM 96) as a platform
independent language. It has a C++-like syntax. It implements garbage
collecting which does not exist in C++ as it is time consuming (STR 94). Java
supports neither multiple inheritance nor templates nor operator overloading.
This can be cumbersome in the case of scientific programming. Pointers are
missing; this somehow eases programming but limits code optimization.

Object-oriented programming applied to the FEM. Part I 539

4. Programming Pattern

Programming pattern are programming methods which aUow solving, in a
somehow standardized way, problems which are often encountered [GAM 94].
For clarity, patterns are usually named (e.g., composite, visitor, etc.). Patterns
proposed in literature, were initially proposed and applied to text processors,
window managers or drawing tools (GAM 94, BOO 97]. Patterns are indeed not
limited to OOP; dealing with memory allocation in FORTRAN often obeys a
pattern.

Problems encountered during the development of Zebulon were, in most
cases, related to the organization of the different objects and to their
interactions, so that it could be possible to obtain a high factorization of tasks
while keeping the ability of extending an existing hierarchy without affecting
the existing code.

As it was often noticed (RUM 91, BOO 97], OOP follows (undoubtedly more
than procedural programming) a cyclic design so that object hierarchies or the
organization must be regularly modified. A typical cycle period is between 6
months to one years; it tends to increase as the project matures (or gets out of
control). A whole object organization often collapses when new functionalities
are added to the code. This cannot be avoided in the case of a research code
which does not have well predefined objectives on a long time period. The .
following programming patterns address these problems.

The code also uses some "basic tools" such as vector, matrix, arrays, strings,
etc. They are briefly presented in Appendix A. In the following, the code
examples will use these objects.

4.1. Object Hierarchies and Factorization

Figure 1 shows three types of object hierarchies:

Single inheritance. This is the simplest organization (tree-like) where an
object has only one parent. The base class A is usually abstract. Zebulon
uses this construction in most cases.

Multiple inheritance. This is an object hierarchy where each object can have
one or more parents. There are many base classes (A and B) which are
often abstract. The result is usually a complex construction which is
difficult to maintain (see Figure 1). This construction is not often used
in Zebulon. It is used when the different base classes fulfil separate
tasks. In most cases, one of the classes, is a utility class. For instance,
material behaviors derive from both the base class BEHAVIOR and a class
encapsulating a numerical integration method such as RUNGE..XUTI'A or
THETA...METHOD.

Virtual base class. This is probably the most complex construction for object
hierarchies. Base classes A et B both derive from class v which is virtual.

540 Revue europeenne des elements finis. Volume 7- no 511998

®

Figure 1. Three organizations of object hierarchies: (A) single inheritance,
(B) multiple inheritance, (C) multiple inheritance with virtual base dass {class
v)

(see (STR 86] Sections 6.5.1 and 6.5.3). The result is highly complex
programming which (after some unfruitful attempts) was not used in
Zebulon. We believe that it can only be used in the case of well designed
class hierarchies which will not be modified (for instance the base class
ios of C++).

Note that multiple inheritance is not supported by all OOL: Java prohibits
it. Some papers dealing with the application of OOP to the FEM (e.g.,
(KON 95]) propose complex object hierarchies based on multiple inheritance
which leads to objects such as:

ELEMENTJ\XI_8NODE_ELASTIC

This indeed leads to an unnecessary large number of classes. One should
never forget the difference between inheritance and data member. It is clear
that a car has tires and does not derive from tire. In the previous case,
ELEMENT should not derive from ELASTIC but should have a behavior as a data
member (even if it is purely elastic). Note, indeed, that each Gauss point can
have a different behavi~

cl~li~ TIRE
{.-.~

class CAR { ~~
ARRAY<TIRE> tires; Jl ~

};

In an object hierarchy, the base class plays a particular role as it defines
the user interface for all derived objects. The interface consists in all the

Object-oriented programming applied to the FEM. Part I 541

CONT...A
PTR<A> a; "
createA(char•);
dol() { a->dol(); }
do2() { a->do2(); }

A
protected:
virtual dolO;
virtual do20;
friend CONTJ.;

Figure 2. Encapsulation of a hiemrchy (base A) by a container class CONTJ.

member functions of the base class and in particular in the virtual functions
which can be redefined by the different derived classes. It defines a grammar
for the hierarchy user. In order to ease and secure the use of interface, the
hierarchy can be encapsulated in a container class. In the example shown on
Figure 2, the hierarchy derived from the base class A is encapsulated by the
class CDNT...A which is declared friend. The whole interface of A is protected
so that is can only be accessed by CDNT...A. Instances of CONT...A are initialized
by the member function create! which creates an instance of type A using for
instance a key word. This function often uses the object factory pattern (see
below).

Factorization is a corollary of object organization using hierarchies. The
role of factorization is to avoid, when adding a new object to the hierarchy,
to duplicate existing code to implement the new object functionalities. The
scenario, which is often encountered, is summarized in the following (see
Figure 3). The initial hierarchy (base B) is, for instance, defined as follows:

class BASE {
virtual f()=O;

};

class B1 :
public BASE {

virtual f();

class B2 :
public BASE {

virtual f();
}; };

A new object B3 is added; however its member function f 0 strongly
duplicates the f () function defined in Bl (this usually results in a large
"Copy&Paste"). Indeed, all "bugs" contained in B1: : f () are consequently
also infecting B3: : f (), causing numerous maintenance problems. To avoid
this problem, a new intermediate object BC is introduced in the hierarchy. f ()
is now implemented at this level; it uses new virtual functions (fbc) allowing
the specification of the differences between Bl and B3:

class BC :

};

public BASE {
virtual f();
virtual fbc()=O;

class B1 :

};

public BC {
virtual fbc();

class B3

};

public BC {
virtual fbc 0 ;

BASE and B2 remain unchanged. The process is indeed somehow intrusive;
in some cases it is necessary to modify the arguments of the interface functions

542 Revue europeenne des elements finis. Volume 7- n° 5/1998

0----~·®~-------·@

~
~ ~

Figure 3. An example of code factorization: (A) initial hierarchy,
(B) hierarchy after adding the new object B3, (C) hierarchy after factorization
of classes B1 and B3 using BC

(i.e. f) and consequently lead modifications at several locations in the code.
We, nethertheless, believe that this greatly helps in keeping a clean code and
often leads to simplifications and clarifications.

4.2. Creation of Objects (Object Factory)

Patterns related to object creation are used to obtain an abstract object
instantiation. It helps to make the system independent in the way the different
objects are created. Some methods (creational patterns) are listed in (GAM 94).

The problem encountered most during the development of Zebulon is
schematically depicted on Figure 4. A new object (BEXP) has to be added
to an existing hierarchy (base object BASE), but it should be used by the rest of
the code without being explicitely named. These problem is indeed solved, as
far as its use is concerned, thanks to the common user interface of the hierarchy
declared in BASE using virtual member functions. The problem remains in the
case of the creation of an instance of BEXP from a character string (read for
instance in the input file). The most obvious solution consists in declaring
a static member function belonging to the base class BASE which returns a
pointer on an object of type BASE.

BASE• BASE: :create_object(cont STRING& name) {
if (name=="b1") return new B1();
else if(name=="b2") return new B20;
else if(name=="bexp") return new BEXP();
else return NULL;

}

This solution considerably limits the creation of librairies and the
extensibility of the code. For instance, the base object BASE can represent the
base for all elements used in the FEM. In order to use the previous creational

Object-oriented programming applied to the FEM. Part I 543

Figure 4. Adding a new "experimental" class BEXP in an existing object
hierarchy

pattern, the implementation of the base class should include the definition of all
derived classes: mechanical, thermal, post-processing, etc., elements. Which
means that it would include almost all the class declarations of the code. This
simple pattern should clearly be limited to very specific hierarchies.

One solution consists in centralizing object creation in one object: the
Object Factory [BES 97]. The method uses functions returning void* pointers.
Their type (DBJECT...FACTDRY..FUNC) is defined using a typedef declaration:

typedef void* (•OBJECT_FACTORY_FUNC)(void);

Such a function has then to be associated to a base class, a derived class
and a key word. For instance, in the case of the new class BEXP:

void* OF_BASE_BEXP_bexp() { return new BEXP; }

A global instance of a utility class (DBJECT...FACTDRY_FIECE) is then declared;
the arguments of its creator are the name of the base class, the key word and
the address of the function used to create the instances (i.e., DF..BASE..BEXP_bexp):

OBJECT_FACTORY_PIECE
OFP_BASE_BEXP_bexp("BASE","bexp",OF_BASE_BEXP_bexp);

During the instantiation of DFP ..BASE..BEXP _bexp, the different arguments of
its creator are stored by the class DBJECT...FACTDRY using its interface function
declare_object:

OBJECT_FACTORY_PIECE::OBJECT_FACTORY_PIECE(
const STRING& base,
const STRING& keyword,
OBJECT_FACTORY_FUNC f)

{ OBJECT_FACTORY::Instance().declare_object(base,keyword,f);}

The member function Instance() enforces the fact that the OBJECT ...FACTORY
class has only one instance [GAM 94]. The OBJECT...FACTDRY class also has a
member function (make_object) which is used to instantiate objects using
the name of a base class and a key word. This function only retrieves the
function pointer (type DBJECT...FACTDRY..FUNC) associated to both names and calls
the function. This allows theo centralization of the object creation. The return
argument of make_object is a void* pointer which has to be explicitly cast:

544 Revue europeenne des elements finis. Volume 7- no 5/1998

STRING key= ... ; II read in input file
BASE• b=(BASE*)OBJECT_FACTORY:: Instance() .make_object ("BASE", key);
b->initialize(...);

where key is a key word which can be read in the input file. The whole process
results in a "virtual constructor" of classes derived from BASE. Specific "macros"
are defined to hide the declaration of functions of type OBJECT....FACTORY...FUNC
and of object of type OBJECLFACTORY_FIECE to make the pattern user-friendly.
In addition, macros help to limit the risk of wrong implementation (such as
misspelling key words).

It is important to notice that all objects created using the proposed object
factory pattern must have a constructor taking no arguments. Instantiation
must therefore be followed by an initialization. This can be seen as a limitation
but turns out to be an advantage as initialization can then make use of virtual
functions which cannot be called during construction. Separating instantiation
from initialization is probably a good programming rule.

4.3. Composite

The composite pattern is frequently used. It allows the representation
of hierarchies as tree structures. This methodology is easily applied to text
processors or graphics applications (GAM 94]. In an object hierarchy, the base
class defines a set of virtual functions (doB) and manages the storage of object of
the same type (children). The base class is therefore used both as a primitive
and a container. The base class can also contain a pointer on the object it
depends on (boss); this defines a fully recursive tree:

~~~~< PTR<BASE> > children; ~ !~rtual doB(); 
BASE• boss; 
virtual doB () ; -- etc. 

The implementation of the function doB in the base class generally consists 
in applying the same function to the stored objects. Derived classes call the 
method of the base class and execute their own instructions: 

BASE: :doB() 
{ for(int i=O;i<children.size;i++) children[i]->doB();} 

Bl: :doB() 
{ BASE: :doBO; 

II my own stuff 
} 



Object-oriented programming applied to the FEM. Part I 545 

4.4. Association 

It is often necessary, in order to define an object, to inherit properties 
from different objects. Multiple inheritance is the usual solution to this 
problem; however, as already mentioned, it can cause several difficulties. 
One of them is encountered (Figure 5), when "mixed" objects AI:B are to be 
created from two (or many) existing object hierarchies (A and B). The solution, 
based on multiple inheritance, consists in explicitly implementing all possible 
associations: A1B1. •• AnBm. This is indeed very constraining and induces strong 
dependences between the different modules. Extensibility is therefore reduced. 

A much more flexible solution relies a dynamic association where both 
hierarchies are cooperating. Two implementations are however possible. In 
the first case, one object controls the other one. The master class A contains 
an encapsulated pointer on the slave class B which contains a pointer on its 
master. Both base classes usually define virtual functions doAO, doBO). A 
can behave like B (and vice--versa) using the following method: 

class A { 
PTR<B> its_B; 
virtual doA 0 ; 

class 8 { 
A* its_A; 
virtual doB 0 ; 

doB() { its_B->doB(); } doA() { its_A->doA(); } 
}; }; 

In the second case, it is not desirable to define a master object. A container 
object is then defined which holds instances of A and B. Using the same 
technique as in the previous case, the resulting object behaves as desired. The 
object factory pattern eases the initialization of the AB object. 

class AB { 

}; 

PTR<A> its_A; 
PTR<B> its_B; 
doA() { its_A->doA(); } 
doB() { its_B->doB();} 
initialize( ... ); 

AB::initialize( ... ) 
{ 

} 

its_A=Create_object(A,keyA); 
its_A->initialize( ... ); 
its_B=Create_object(B,keyB); 
its_B->initialize( ... ); 

Create_object is a macro which eases the use of OBJECT..FACTORY. keyA 
(resp. keyB) is a key word specifying the object deriving from A (resp. B) 
to be created. 

Inside an association, the collaboration between associated objects is usually 
done using interface functions. In order to avoid numerous function calls and 
data copying, which may slow down the computation, data members can be 



546 Revue europeenne des elements finis. Volume 7- n° 5/1998 

classes to be associated 

association using multiple inheritance 

.... .. .... .. .. 
~...._ ___ .of( 

IA2BEXPI 

I 
I 

-...,..--- .... I 
I BEXPI--1 

K-----' 

dynamic association (1) dynamic association (2) 

A8 
A 

PTR<8> its8; 
1'---;:==~==-::;; 

\~ h :tsA; r 
PTR<A> itsA; 
PTR<8> its8; 

Figure 5. Three ways of associating objects 

shared between the different objects. 

class A { 
PTR<8> its8; 
DATA8* dataB; 
DATAA dataA; 

}; 

class 8 { 
A* itsA; 

--+ DATA8 data8; =I A&B I 
~ DATAA* dataA; 

}; 

In this example, the data member A: : dataB (resp. 8: : dataA) points on 
8: : dataB ( resp. A : : dataA). In this case, encapsulation is intentionally broken. 
The result is a more efficient code, which is usually more difficult to understand 
and maintain. 



Object-oriented programming applied to the FEM. Part I 547 

4.5. Run time type identification. Transversal inte1TO{Jation of an 
object hierarchy 

C++ allows, thanks to dynamic_cast<> and typeid functions, the 
identification of object types during execution. The introduction of these 
functionalities in the language was necessary as C++ is compiled and 
not interpreted ( STR 94]. Problems envisaged in this section are therefore 
not relevant in the case of Smalltalk. Unfortunately, few C++ compilers 
implements Run Time Type Identification (RTTI). It is however, easy to 
partially simulate this behavior with virtual functions using character strings 
to name the different objects. 

The use of RTTI can usually be avoided (and should be) thanks to virtual 
functions. An object hierarchy is designed to perform a limited number of 
tasks. However, when the hierarchy is large, some of the derived objects 
can implement functionalities whose factorization, using an additional virtual 
function in the base class, would corrupt the hierarchy. For instance, in the 
case of the material behavior hierarchy, this could be the computation of the 
elastic deformation, the plastic dissipation, etc. In the case of finite element 
(base class ELEMENT, see Figure 6), it can be the calculation of the stored energy 
or the energy release rate (PAR 74, DEL 85]. In the case of the calculation 
of Rice J integral ( rue 68, DEL 85], only few elements can perform this task. 
The calculation is done after convergence and is quick. It is therefore possible 
to use, without risk, time consuming methods. The calculation consists in a 
volume integral over an element set (ELSET~ARRAY<ELEMENT•>) surrounding the 
crack tip. In this example, it is assumed that the standard "small deformation" 
element (MCESD...STD) can perform the task. The implementation could look like: 

double J_INTEGRAL::compute(const ELSETt set) 
{double J=O.; MCESD_STD• elem; 

} 

for(int i=O;i<set.size;i++) { 

} 

elem = dynamic_cast<MCESD_STD•>(set[i]); 
if(!elem) ERROR("element is unable to compute J integral"); 
J += elem->compute_J_integral(); 

return J; 

This solution helps avoid perturbing the hierarchy while implementing a 
minor functionality (transversal interrogation). However, in the case where 
the computation of the J-integral has to be implemented for another element 
type the previous function has to be modified. Note that the factorization 
of the functionality by the introduction of a "mechanical element" allowing, 
at this level, the definition of a virtual function called compute_J_integral, 
would also fail in the case of elements implementing strong thermo-mechanical 
coupling. In addition, the proposed factorization could conflict with other 
needs. 

A more flexible method, but slightly more difficult to implement, consist in 
defining a virtual function in the base object (virtual void ask(MESSAGE&);) 



548 Revue europeenne des elements finis. Volume 7- n° 5/1998 

which allows the possibility to "ask" an object any question. This function 
can indeed be overloaded in order to be able to respond a particular request. 
The default implementation in the base class issues an error message. The 
implementation of the calculation of the J-integral, uses the following code: 

double J_INTEGRAL::compute(const ELSETt set) 
{ double J=O. ; 

} 

T_MESSAGE<double> Jask("J-integral"); 
for(int i=O;i<set.size;i++) { 

set[i]->ask( Jask ) ; 
J += Jask.x; 

} 

return J; 

The MESSAGE object and the template class T ...MESSAGE<T> are defined as 
follows: 

class MESSAGE { 
public : 

}; 

STRING message; 
MESSAGE(const STRINGt msg) 

{ message=msg; } 

template class <T> class T_MESSAGE 
: public MESSAGE { 
public : 

}; 

T x; 
T_MESSAGE(const STRINGt msg) 

MESSAGE(msg) {} 

The member function MCESD_STD: :ask is then implemented as follows: 

void MCESD_STD::ask(MESSAGEt msg) 
{ if(msg.message=="J-integral") { 

T_MESSAGE<double>• _msg = dynamic_cast<T_MESSAGE<double>•>(tmsg); 
if(!_msg) ERROR("vrong message type"); 
compute_J_integral(•_msg); 

} else MCESD::ask(msg); 
} 

MCESD is the object, MCESD...STD immediately derives from. This method 
is safe as it uses dynamic_cast<> which allows the checking of the message 
type. The only possible error would be to give a wrong message name (here 
J-integral) or to misspell it. This error will be detected at run time as it 
will be impossible to interpret the message. This simulates the behavior of an 
interpreted language. 

5. Examples of Object Hierarchies 

In this section, a part of Zebulon is described in order to illustrate the 
previous programming patterns. Two parts of the code are described: the 
elements and the material behaviors. The object factory pattern has been 
widely used in the code, in particular in order to create association and 
composites. 



Object-oriented programming applied to the FEM. Part I 549 

The first papers dealing with the application of OOP to the FEM, 
immediately introduced objects representing nodes, elements, meshes, degrees 
of freedom (dofs) (FOR 90, MAC 92, DUB 92a, CAR 94, KON 95). In some cases, 
the object description also included CAM/CAD concepts in order to create 
a graphic interface (BET 96, GAJ 96). Zebulon uses similar concepts but the 
resulting objects slightly differ from their precursors. 

Papers dealing with material behaviors are very few. In most cases, the 
material is assumed to be isotropic linear elastic so that the behavior is included 
in the element which has data members representing the Young's modulus and 
the Poisson's ratio. A treatment of the Von Mises plasticity with isotropic 
hard.ening is proposed by ( MEN 93). This formulation does not however 
clearly separate the behavior from the FEM. Consequently, the behavior object 
J2Plasticity handles Gauss points and the class GaussPoint checks if the 
yield surface is reached (function GaussPoint: : computeTr ialStress). The 
result is an interdependent structure which is likely not to be flexible and 
difficult to extend. 

In all cases, published papers on OOP applied to the FEM, deal with 
prototypes whose aim is to demonstrate the feasibility of such a project, to 
propose some objects or to estimate computational efforts. However, difficulties 
tend to rapidly increase as the code grows and as new unplanned functionalities 
are added ( BOO 97). The principal danger is the duplication of existing 
code. 'While developing Zebulon, we have experienced the cycles described 
by Booch (BOO 97). The code presently manages non-linear mechanical, 
thermal and diffusional problems. It includes a large number of constitutive 
equations. Besides solving FE problems, it deals with pre-and post-processing 
and optimization problems. It includes about 150, 000 C++ lines. 

The present description of the elements is the result of 

5.1. Elements 

numerous iterations. Comparison with earlier papers ( AAZ 93, BES 97) shows 
the evolution. Two main lessons can be drawn from this experience: 
reorganizing the existing software is necessary if it avoids the treatment of 
special cases and code duplication; this reorganization is usually done quite 
easily if done every 6 months or year (in particular, if compared to a FORTRAN 
code). 

Figure 6 depicts objects deriving from the base type ELEMENT. This hierarchy 
is an example of strong factorization. The main objects are the following: 

ELEMENT. This object is responsible for the geometrical description of the 
element. It follows the association pattern according to the following diagram: 

!ELEMENT & GEOMETRY & INTEGRATION! 

ELEMENT is in charge of the element connection and contains pointers on 
its nodes and a pointer on the mesh to which it belongs. GEOMETRY deals 



550 Revue europeenne des elements finis. Volume 7- no 511998 

EL ENT /L...----., 
BOUNDARY 

---

DOT------- ~FACE . / ' DOT1D DOTCYL DOTSPH LINE2D LINEAXI 

D..EL HENT 

CONTACT ..ELEMENT 

CST ..ELEMENT• 

PS_SD 

PS..SD_FER 

.- HINDLIN_SHELL• 
P..ELEMENT-SECTION ~ 

TIHO...BEAM 

Figure 6. Element hierarchy. • indicates that the tree has been truncated 

the actual geometrical description. It contains an interpolation function and 
is the base object of a hierarchy used to describe the different geometrical 
situations. It consists of a geometrical type: dot, ID, spherical, cylindrical, 
2D, axisymmetric or 3D, and of a space type: dot, line, surface, space. A 3D 
shell therefore corresponds to the (3D, surface) set. There is no need to use the 
association pattern to build all the different geometry/space couples, as they 
are well defined. INTEGRATION is in charge of the Gauss quadrature. It contains 
a set of reference Gauss points [ WAL 96). It is important to note that none of 
the three parts of the association refers to a fixed number of nodes and fixed 
number of Gauss points. These are specified by the interpolation functions and 
the reference Gauss points. It is important to make the distinction between 
interpolation, quadrature and geometry. A plane continuous element and a 3D 
shell can share the same. Therefore the code does not implement such objects 
as "20 nodes/27 Gauss points" elements. It is dynamically created thanks to 
the association of several instances. The code can therefore be easily extended 
by adding new shape functions and reference Gauss points; in addition code 
duplication is avoided. In the association, ELEMENT is considered as the master 
object and therefore contains interface functions to access the other associated 
objects. 



Object-oriented programming applied to the FEM. Part I 551 

BOUNDARY. This object factorizes functionalities such as flux or pressure 
calculations, needing by boundary conditions. Each element is able to create a 
BOUNDARY object corresponding to one of its sides. 

D...ELEMENT. This object handles degrees of freedom (dofs) associated to 
a variational principle. It therefore contains a new virtual interface function 
compute_R_K allowing to compute reactions associated to its dofs {Re} as well 
as the stiffness matrix of the element [Ke]· Dofs are represented by three 
objects: 

do£ associated to a node 

do£ associated to a group of elements (ELSET) 

do£ associated to an element 
~.;;.:::.:..:::::.::;;=:::....J 

Dofs at nodes allows to discretize continuous fields such as displacements 
and temperatures. Dofs at ELSET are used, for instance, to represent generalized 
plane strain conditions. Dofs at elements are used, for instance, to deal with 
plane stress conditions ( BES 97]. 

P ...ELEMENT. This object introduces the behavior of the material 
constituting the element. It is important to make the distinction between 
D...ELEMENT and P...ELEMENT. For instance, contact elements deal with dofs but does 
not possess any behavior. In order to be able to deal with various situations, 
each Gauss point can have a different behavior. P...ELEMENT is also responsible 
of the storage on the variables describing the state of the material. It also 
manages the local material orientation. 

MCESD. This object represents small deformation mechanical elements. 
Computation of the elementary stiffness matrix [Ke] and of the internal forces 
{ Re} can be summarized by the following steps: 

time increment: t -----+ t' 
loop over the Gauss points 

I f' 
f..t = [B]{q} 
behavior: l -----+ rzt' 

vt -----+ vt' 
[Ke] + = [BJT Q [BJ w 

T- t' 
{Re}+ = [BJ rz w 

{ q} vector of the element dofs 
f._ deformation tensor 
rz stress tensor 

V state variables 
IJ tangent matrix 

w "volume" attached 
to a Gauss point 

Figure 7 gives the source code needed to implement this element. The 
code uses factorized members functions such as get:_elem_coord (returning the 
element nodes coordinates as a vector). The set start(.), ok(), next(.) 



552 Revue europeenne des elements finis. Volume 7 - no 511998 

elem._coord: node coordinates 

void MCESD: : computeJCR ( ... ) elem....dof: {q} 
{ 

get...elem_coord(elem..coord); ~ elem_ddof: {.6.q}) 
get_elem....d_dof_tot (elem...dof) ; 
get_elem_d_dof_incr(elem....ddof); illtegration loop 

(;\__ for(start(elem_coord);ok();next(elem..coord)) { 
~ TENSOR2& eto = behaviorO->get_prim_var("eto"); 
~ TENSOR2& sig = behaviorO->get....duaLvar("si ") · 

compute . ..ILand..Bt (B,Bt); f = [B]{q}, .6.£. = [B]{.6.q} 

} 

compute..Bu(B,elem....dof,eto); 
compute..Bu(B,elem....ddof,delta...eto); 
behavior()->integrate(mat....data(),delta...eto,D); 

{ compute..BtDB(Bt,D,B,dK); t ~ t r"7l Lf'i)) 
integrate(dK,K); ~ ~ ~ 
compute..Bts(Bt,sig,dR); }~ 
integrate(dR,R); ~ 

} behavior(): gives the behavior attached to the current Gauss point 

Figure 7. Source code implementing the small deformation element. 
Management of local material orientations has been omitted. 

manages the integration loop. The different integrate functions allow the 
integration of scalar, vectors and matrices over the element. This set, which is 
defined in the base class ELEMENT, frees the developer of the explicit management 
of volumes associated to each Gauss point. The function get_elem_d_dof_tot 
(resp. get_elem_d_dof_incr), defined in D..ELEMENT, allows the obtaining of 
get the values of the dofs at t' (resp. the increment of the dofs over the 
time increment t ---t t') in the order of declaration. At this level, no specific 
assumption is made on the nature of the dofs. They will be specified in the 
different objects deriving from MCESD. In the case of the standard formulation 
(MCEsn_srn) and in the case of selective integration (HUG 80] (MCESDDIL) dofs 
are defined at nodes and represent displacements. Generalized plane strain 
elements (E2_6) and periodic elements ( BES 88] (MCESDPER) have dofs defined 
over an element set, representing the average deformation, and nodal dofs, 
representing the local perturbation (displacements). The RVE..MECHANICAL is an 
element whose geometry is a "dot" and whose dofs represent deformations. It 
allows, for instance, the testing of material constitutive equations [ LER 97]. 

Management of the plane stress conditions (Ps_so) is done without modifying 
the material constitutive equations as it is usually done. Dofs, representing 
the deformation in the plane stress direction, are associated with the element 
for each Gauss point in order to enforce the plane stress condition [ BES 97]. 



Object-oriented programming applied to the FEM. Part I 553 

This solution allows the writing of the material behavior without any reference 
to the FEM. Using this formulation, any newly developed behavior can 
be immediately used in plane stress calculations. Finally, the plane stress 
periodic element (PS..SD.PER) uses the three different kinds of dofs: DOF .ELSET to 
represent the average deformation, DOF ..NODE to represent the perturbation and 
DOF .ELEMENT to enforce the plane stress condition. 

The (B) matrix which related the dofs and the deformation tensor, is then 
defined according to the type of geometry. It is computed using the virtual 
function compute_B_and_Bt. Except for plane stress elements, it is then 
necessary to derive additional objects to specify the geometry: MCESD_STD..AXI, 
MCESD_STD_2D, MCESD..STD_3D,.... The virtual functions compute_Bu and 
compute_Bts are performing the products (B) {q} and [Bf e;.; their default 
implementation used the standard matrixxvector product. They can be 
overloaded it order to optimize this operation as the (B) matrix contain a 
large number of null terms. 

The evaluation of the material behavior is done using the member function 
BEHAVIOR: :integrate which performs the evaluation of the stress tensor at 
the end of the increment rzt' as well as of the tangent stiffness matrix [ SIM 85] 

D = 8~e; 
::: 8~!, 

Once again, it is important to note that the calculation of the element 
stiffness matrix and the internal reactions can be formulated independently of 
the space dimension and of the geometry. In addition, no specific assumption is 
made on the type of material behavior which is used, except that it is a "small 
deformation mechanical" behavior. An error message is issued if the behavior 
is not consistent with the element. 

Other elements. Figure 6 indicates all physical elements (P..ELEMENT) 

presently implemented in Zebulon. All these elements obey the same rules 
as MCESD. In particular, the type of behavior should not be specified. They 
include thermal elements (TCE), diffusional elements (DIFFUSION), updated/total 
Lagrangian mechanical finite strain elements (MCEUL and MCETL). Plane stress 
conditions under finite strain, can be managed using the same method as for 
the small strain elements. MCETL.JIIXTE_u_p represents total Lagrangian elements 
with mixed displacement-pressure formulation used to handle incompressible 
materials. 

The MCOSSE..SD object represents the small deformation Cosserat 
elements [DEB 91]. In this case, dofs represent displacements and micropolar 
rotations. They are associated with nodes. However, the variational principle 
is similar to the case of standard small deformation elements. This object can 
therefore be factorized using the MCESD object ( Figure 7). At the present time, 
this element and the associated material behaviors are still undergoing tests 
and evaluations [ FOR 97]; it will be factorized during the next development 
cycle. 



554 Revue europeenne des elements finis. Volume 7- no 511998 

Gauss point 

o• shell eo section 

Figure 8. Mesh of a 2D quadratic shell using reduced integration whose section 
consist in five linear element with one Gauss point 

MINDLIN...SHELL and TIMD..BEAM object represent Mindlin shells and 
Timoschenko beams [BAT 91]. These elements are very often used with 
elastic or perfectly plastic materials in order to be able to easily express 
the constitutive relation between forces/moments and displacements/rotations. 
It is, however, possible to reuse the proposed treatment of the plane stress 
conditions in order to be able to use any kind of behavior with shell and beam 
elements. In this case, cross-sections are meshed (P..ELEMEN'LSECTION object); 
different nodes and Gauss points are then used to model the shell and its 
sections (Figure 8). For each Gauss point of the section, an extra dof (normal 
deformation) is added to obtain a null stress in the direction normal to the 
shell. An other solution consist in adding only one do£ per section; in this case 
the normal deformation is assumed to be constant in the section. The average 
normal stress is null. The material behavior is then evaluated for each Gauss 
point of each section, using the same interface as in the case of the MCESD object 
(Figure 7). 

Elements of type POST..ELEMENT are used for post-processing computations 
(such as some failure criterion). They have neither dofs nor behaviors, but 
specific data structures allowing the handling of results. As they inherit 
from the object describing the geometry of the element, they can easily 
perform volume integrals using the start, ok, next and integrate members 
functions already presented in the case of the MCESD element (Figure 7). 

5.2. Material Behaviors 

The various material behaviors were designed so that they do not refer to 
the FEM. This libraries can therefore be used in other softwares. Indeed, a 
generic interface for behaviors must be defined. 



Object-oriented programming applied to the FEM. Part I 555 

behavior type 
small deformation (mechanical) 
finite strain (mechanical) 
Cosserat 
thermal 
electrostatic 
magnetostatic 

primal variable 

~ 

!' 
(!J, IS) 

(T,gradT} 
gradV 
rotA 

dual variable 

!Z 
§ 

(!Z, p.) 
(H,g) 

E 
H 

~' !l deformation tensor, !' transformation gradient, T temperature, V electric 
potential, A potential vector, !Z Cauchy stress tensor, § first Piola-Kirchoff 
stress tensor, ,_ curvature tensor, p. couple stress tensor, H enthalpy, q heat 
flux, E electri; field, H ma.gnetic field. -
Table 1. Some example of primal/dual variables 

5.2.1. Interface. Definition of a Behavior 

A behavior is in charge of the computation, using as input a primal variable 
(primal), of the dual (dual) variable as well as the behavior "stiffness matrix" 
which can be formally expressed as: 

8~dual 

8~primal 

Examples of primal/dual variables are shown in Table 1. 
The state of the material is defined by a set of internal variables Vint. They 

are, for instance, the elastic deformation tensor or the cumulated plastic strain. 
However, auxiliary variables Vaux, such as the plastic deformation tensors or 
the stress triaxiality, can also be defined for post-processing purposes or to 
simplify the calculations. Finally, the user may wish to impose some external 
parameters EP such as the temperature (in a mechanical computation), the 
grain size, etc. The behavior is expressed using coefficient (CO) such as the 
Young's modulus or hardening parameters. Coefficients are allowed to depend 
on the set (Vint, Vaux, EP) (Figure 9). The material behavior is used to make 
time increments t -t t + ~t = t'. The behavior interface can be expressed as 
follows, in the most general case: 

Input Output 
primalt, ~primal 

behavior 
dualt 

dualt 
Vint 

t' , Vaux 
t' 

Vintt, Vaux t 

EP0 , EPt, EPt' 
8~dual 

a~primal 

The task of the behavior is therefore to compute the updated dual, Vint 
and Vaux quantities for a given value of the increment of the primal variables. 



556 Revue europeenne des elements finis. Volume 7- n° 511998 

derived type 
___,-fCol 

•isotropic function RO~ ~ 
(200.+100.(1.-~40.*)rcum)))•(1-T/400.); 

~~ 
Figure 9. Declaration of an isotropic hardening variable (base object 
ISOTROPIC} corresponding to the derived type function. This object requires a 
coefficient named RO. In this particular example, the coefficient depends on an 
internal variable epcum (cumulated plastic strain) and on an external parameter 
T (temperature) 

External parameters are fully determined. It also has to compute an estimate 
of the tangent matrix. 

The material constitutive equations are usually a differential equations 
system on the internal variables: 

dVint ( . dprimal) dt = :F Vint, Vaux,EP,pr1mal, dt [1] 

The dualt' variable is computed after integration of the previous equation. 
Integration can be straightforward, as in the case of thermo-linear elasticity; 
in most cases numerical integration has to be performed. An explicit scheme 
(Runge-Kutta method) or an implicit scheme (9-method/mid-point method) 
can be used. in the second case, equation 1 has to be rewritten incrementally 
as: 

~ Vint- Q ( Vin/, Vau/, EP8 , primal9, ~primal, ~t) = 0 [2] 

9 lies between 0 and 1 allowing to go from a explicit Euler scheme (9 = 0) 
to a fully implicit scheme (9 = 1). x 8 is defined as xt + 9~x. Equation 2 
has then to be solved with respect to ~Vint· This is usually achieved using a 
Newton-Ra.phson method which requires the calculation of the Jacobian: 

[3] 

5.2.2. Implementation 

The element objects were representative of a programmation method 
strongly based on factorization. On the other hand, behaviors are essentially 
implemented using the composite and association pattern. Behaviors are build 
as a dynamic assembly of object of type MATERIAL_piECE; this object follows the 
composite pattern (Figure 10). Scalar, vectorial and tensorial primal, dual, 



Object-oriented programming applied to the FEM. Part I 557 

Vint and Vaux variables are represented by objects: SCALAR_FRIMAL, SCALAR....DUAL, 

TENSOR2_VINT, etc. These are data members of a MATERIAL_FIECE object which 
is part of a composite; using the recursive tree associated with the composite 
pattern, the variable can then be attached to the object controling the all 
tree (usually a BEHAVIOR object). This mechanism, which locally associates 
a MATERIAL_FIECE and its variables and builds the composite tree, allows to 
dynamically create behaviors. 

Figure 10 illustrates this mechanism in the case of plastic/viscoplastic 
behaviors (GEN....EVP) 1 with various inelastic mechanisms including both isotropic 
and kinematic hardening [CON 89, SAi' 95, FOE 97]. In this example, the object 
describing kinematic hardening (KINEMATIC) holds an internal variable ~ of 
type TENSOR2_VINT. The object describing isotropic hardening (ISOTROPIC) has a 
scalar internal variable (SCALAR-VINT). When adding to an inelastic dissipation 
potential (POTENTIAL), a new kinematic hardening mechanism, the local variable 
~ is automatically linked to the potential and then to the behavior. Memory 
allocation, output management, etc., are therefore completely handled by the 
base object MATERIAL_FIECE. 

The integration of the constitutive equations (Equation 1 or 2) has then 
to be handled. The developer can use objects (RUNGE..KUTTA and THETA..METHOD) 
managing both numerical integration scheme (explicit/implicit). Behaviors 
can derive for one or both of these objects; multiple inheritance is then used. 
They declare virtual functions whose task is to compute Equationl or 2, 
and 3. In the example shown on Figure 10, the set GEN....EVP+POTENTIAL (i.e., 
behavior/deformation mechanism) builds an association. An object of type 
GEN....EVP can control several POTENTIAL objects. KINEMATIC and ISOTROPIC are, on 
the other hand, used using interface functions. A potential may have one or 
more kinematic hardening variables but only one isotropic hardening variable. 
There are other objects used to describe the behavior. FLOW specifies the type 
of flow (plastic, Norton, etc.). CRITERION specifies the yield surface; Von Mises 
is used as default. These objects use the object factory pattern to create the 
different derived types: linear or non-linear, with or without recovery, etc. 

Coefficients are an example of an encapsulated hierarchy. The base class 
COEFFICIENT defines an interface allowing the computing of the value of the 
coefficient and its derivative with respect to the different variables. The derived 
types include coefficient which are constant, defined by a table, defined by a 
function or random. The COEFF object is used as a container class to encapsulate 
the whole hierarchy. MATERIAL_FIECE usually have COEFF data members. 

5.3. Other Objects 

At the present time, Zebulon contains about 800 objects (not including the 
different template classes). Most of them are however, part of the 50 object 
hierarchies following the object factory pattern. The principal base objects are: 
1 Generic elasto-viscoplastic 



558 Revue europeenne des elements finis. Volume 7- no 5/1998 

b.. 
inheritance -one -one to many 

Figure 10. OMT diagrom [BOO 97] showing the organization of some of the 
different objects using to build material behaviors. Intermediate objects between 
BEHAVIOR and GEN..EVP are used to factorize functionalities describing thermo
elastic properties. The FLOW object also derives from MATERIAL_FIECE 

GMESH. This object represents meshes. A hierarchy has been created in order 
to separate the tasks related to the geometry (GMESH), to the dofs (MESH), 
or to the post-processing (POST....MESH), etc.: 

Specialized meshes {MECHANICAL-MESH and THERMAL....MESH) can perform 
special tasks. For instance, MECHANICAL..MESH can create and store contact 
elements. 

BC. This object handles Boundary Conditions. 

RELATIONSHIP. This object handles linear relationship between dofs. 



Object-oriented programming applied to the FEM. Part I 559 

BASE...PROBLEM. This object is the common base from all problems. These 
include the FE calculations, but also optimization [ LER 97, BES 98], pre
and post-processing. Its user interface has three principal functions: 
initialization, verification and execution. PROBLEM is the base for all FE 
problems. It contains a mesh (MESH), a list of boundary conditions and 
relationships and a resolution algorithm (ALGORITHM). 

ALGORITHM. The ALGORITHM hierarchy contains resolution algorithms associated 
with the different FE problems. In the case of mechanical problems 
Newton, BFGS [ BAT 82] and Riks [ RIK 79] methods have been 
implemented. 

GLOBAL ..MATRIX. This object handles the storage and assembly of the elementary 
stiffness matrices [Kel· Derived objects can solve linear systems 
[K]{U} = {R}. Frontal and skyline methods have been implemented. 

6. Concluding Remarks 

The present work has attempted to propose design principles of object
oriented finite element codes, particularly in the case where the project is large 
and the desired code is to be a flexible general purpose tool. The following 
topics have been discussed: 

Base library. A basic library must be used to handle the bulk of 
the mathematical operations, the repetitive input/output tasks, string 
manipulation and storage. Templates are powerful tools which simplifies 
programming. The proposed library introduces a tensor object which will 
greatly aid the programming of complex constitutive equations. 

Patterns. Patterns are design methodologies which help to hve a consistent 
development strategy. Defining patterns appears to be an important task as 
they tend to remain stable while the code organization may change rapidly. 
This work introduces some design patterns which intend to ease extensibility 
and flexibility. 

Numerical efficiency. Efficiency has been shown to be good when using 
C++ compared to other OOLs [DUB 93, BES 97]. However, better results are 
still obtained using FORTRAN [ HAN 94]. This is due to both the fact that 
FORTRAN is highly optimized and to abstraction which requires "dynamic 
linking". Small objects, which are often created and destroyed, must be 
implemented carefully. In some cases, it is worth losing numerical efficiency in 
order to obtain a simple and safe implementation. The plane stress elements, 
presented in the work, require more dofs (an consequently an increased 
computational effort) than is required using a standard treatment of plane 
stress conditions. However, this permits avoiding of treating "special cases" 



560 Revue europeenne des elements finis. Volume 7- no 5/1998 

while implementing material behaviors which clearly allows obtaining a safer 
extensible code. 

A language dedicated to the FEM. No language can claim to be 
specifically dedicated the to FEM. Although FORTRAN 77 still seems to be 
the preferred language for scientific programming, this is principally due a long 
practice and a high numerical efficiency. By itself, the language syntax does not 
ease scientific programming as it does not easily allow handling quantities such 
as vectors, tensors, nodes, meshes, etc. FORTRAN 90 and Ada now implement 
these functionalities. Object-oriented languages are not dedicated to the FEM. 
However, they naturally allow defining objects whose interfaces form a new 
programming syntax. The results is a new "macro-language" which is used for 
new developments (see Figure 7). 

7. References 

[ AAZ 93] K. AAzizou, J. BESSON, G. CAILLETAUD, F. HOURLIER. "Une approche 
C++ du calcul par elements finis". In Colloques national en calcul des 
structures, Giens, France, May 11-14, 1993. Hermes, Paris. 

[BAT 82] K.J. BATHE. "Finite element procedures in engineering analysis". Prentice 
Hall, Inc., 1982. 

[BAT 91] J.L. BATOZ G. GHATT. "Modelisation des structures par elements finis, 
J-Ill'. Hermes, 1991. 

[ BES 88] J.-M. BESSON, M. JAEGER, 0. DEBORDES. "Homogeneisation de 
composites a base de tissus de fibres" 0 In D. GAY c BORD, editors, 
Composite Structures, pages 77-90, 20-22 June 1988. 

[ BES 97] J. BESSON R. FOERCH. "Large Scale Object-Oriented Finite Element 
Code Design". Computer Methods in Applied Mechanics and Engineering, 
142:165-187, 1997. 

[ BES 98] J. BESSON, R. LE RICHE, R. FOERCH, G. CAILLETAUD. "Application of 
object-oriented programming techniques to the finite element method. 
Part II- Application to material Behaviors". Rewe europenne des 
elements finis, to be published, 1998. 

[BET 96] B.P. BETTIG R.P.S HAN. "An object-oriented framework for interactive 
numerical analysis in a graphical user interface environment". Int. J. for 
numerical methods in engineering, 39:2945-2971, 1996. 

[ BOO 97] G. BoocH. "Des solutions objets". International Thomson Publishing 
France, Paris, 1997. 

[ BRE 92] P. BREITKOPF G. TouzoT. "Architecture des logiciels et langages de 
modelisation". Revue Europeenne des elements finis, 1{3):333-368, 1992. 

[CAR 94] A. CARDONA, I. KLAPKA, M. GERADIN. "Design of a new finite element 
programming environment". Engineering computations, 11:365-381, 1994. 

[COM 96] S. COMMEND T. ZIMMERMANN. "Finite element preprocessing with Java". 
Technical Report, EPFL, 1996. 



Object-oriented programming applied to the FEM. Part I 561 

[ CON 89] E. CONTEST! G. CAILLETAUD. "Dest-Tiption of creep-pli!Sticity interaction 
with non-unified constitutive equations". Nuclear Eng. and Design, 
116:265, 1989. 

[DEB 91] R. DE BORST. "Simulation of strain localization: a reappraisal of the 
Cosserat continuum". Eng. Computations, 8:317-332, 1991. 

[DEL 85] H.G. DELORENZI. "Energy release rate calculations by the finite element 
method". Engineering Fracture Mechanics, 1985. 

[ DUB 92a] Y. DuBOIS-PELERIN, T. ZIMMERMANN, P. BOMME. "Object-oriented 
finite element programming: II. A prototype program in Smalltalk". 
Computer Methods in Applied Mechanics and Engineering, 98:361-397, 
1992. 

[ DUB 92bj Y.-D. DUBOIS-PELERIN. "Object-oriented finite elements: programming 
concepts and implementation". PhD thesis, Ecole Polytechnique Federale 
de Lausanne, 1992. 

[DUB 93] Y. DUBOIS-PELERIN T. ZIMMERMANN. "Object-oriented finite element 
programming: III. An efficient implementation in C++". Computer 
Methods in Applied Mechanics and Engineering, 108:165-183, 1993. 

[ FOE 97] R. FOERCH, J. BESSON, G. CAILLETAUD, P. PILVIN. "Polymorphic 
Constitutive Equations in Finite Element Codes". Computer Methods in 
Applied Mechanics and Engineering, 141:355-372, 1997. 

[FOR 90] B.W.R. FORDE, Foschi R.O., Stiemer S.F.. "Object-Oriented Finite 
Element Analysis". Computers 8 Structures, 34(3):355-374, 1990. 

[FOR 97] S. FOREST. "Mechanics of Generalized Continua: Construction by 
Homogeneization". In 4d'me Colloque de Metallurgie, Comportement 
Mecanique et Effets d'Echelle, INSTN. to appear in Journal de Physique 
IV., June 24-26, 1997. 

[ GAJ 96] R.R. GAJEWSKI T. KowALCZYK. "A prototype object-{)riented finite 
element method program: cla!:i!:l hierarchy and gTaphic user interface". 
Computer assisted mechanics and engineering science, 3:65-74, 1996. 

[ GAM 94] E. GAMMA, R. HELM, R. JOHNSON, J. VLISSIDES. "Design Patterns: 
elements of reusable object-oriented software". Addison Wesley 
professional computing series, 1994. 

[HAN 94] S.W. HANEY. "Is C++ fi!St enough for scientific computing?". Computers 
in physics, 8(6), 1994. 

[HUG 80] J.R. HuGHES. "Generalization of selective integration procedures to 
anisotropic and non linear media". Int. J. Numerical Methods in 
Engineering, 15:1413-1418, 1980. 

[ KON 95] X.A. KONG D.P. CHEN. "An object-oriented design of FEM programs". 
Computers 8 Structures, 57:157-166, 1995. 

[ LAF 97] C. LAFFRA. "Advanced Java". Prentice Hall PTR, 1997. 

[ LER 97] L. LE RICHE, F. FEYEL, J. BESSON, G. CAILLETAUD, M. GUTMANN, 
R. FOERCH. "L'objet materiau, de l'identification au calcul de structures". 
In J.P. Pelle B. PESEUX, D. Aubry M. TOURATIER, editors, Actes du 



562 Revue europeenne des elements finis. Volume 7- no 5/1998 

'Iroisieme Colloque National en Calcul des Structures, pages 583-588. 
Presses Academiques de !'Ouest, 20-23 Mai 1997 1997. 

[ LUC 92] D. LucAs, B. DRESSLER, D. AUBRY. "Object-oriented finite element 
programming using the ADA language". In Ch. Hirsch et AL., editor, 
Numerical Methods in Engineering'92, pages 591-598. Elsevier Sdence 
Publishers B.V., 1992. 

[ LUC 94] D. LUCAS. "Methode des elements finis et programmation orientee objet. 
Utilisation du langage Ada". PhD thesis, Ecole Centrale de Paris, 1994. 

[ MAC 92] R.I. MACKIE. "Object-oriented programming of the finite element 
method". Int. J. for Numerical Methods in Engineering, 35:424-436, 1992. 

[ MEH 97] K. MEHLHORN, S. NAHER, C UHRIG. "The LEDA User Manual, version 
3.5.1"' 1997. 

[MEN 93] P. MENihREY T. ZIMMERMANN. "Object-Oriented Non-Linear Finite 
Element Analysis: Application to J2 Plasticity''. Computers & Structures, 
49:767-777, 1993. 

[MIL 88] G.R. MILLER. "A LISP-Based Object-Oriented Approach to Structural 
Analysis". Engineering with Computers, 4:197-203, 1988. 

[ PAR 74] D.M. PARKS. "A stiffness deriv-"tive finite element technique for 
determination of crack tip stress intensity factors". Int. J. Fracture, 
10( 4):487-502, 1974. 

[RIC 68] J.R. RICE. "A path independant integral and the approximate analysis 
of strain concentration by notched and !..Tacks". J. Appl. Mech., 35:379, 
1968. 

[ RIK 79] E. RIKS. "An inl.Temental approach to the solution of snapping and 
buckling problems". Int. J. Solids Structures, 15:529-551, 1979. 

[RUM 91] J. RUMBAUGH, M. BLAHA, w. PREMERLANI, F. EDDY, w. LORENSEN. 
"Object-Oriented Modeling and Design". Prentice Hall, New Jersey, 1991. 

[SAl 95] K. SAl G. CAILLETAUD. "Study of Plastic/Viscoplastic Models with 
Various Inelastic Mechanisms". Int J. Plasticity, 11(8):991-1005, 1995. 

[ SCH 92] S.-P. SCHOLZ. "Elements of an Object-Oriented FEM++ program in 
C++". Computers & Structures, 43:517-529, 1992. 

[ SIM 85] J.C. SIMO R.L. TAYLOR. "Consistent tangent operators for rate-
independent elastoplastidty". Computer Methods in Applied Mechanics 
and Engineering, 48:101-118, 1985. 

[ STR 86] B. STROUSTRUP. "The C++ progmmming language". Addison-Wesley 
Publishing, Reading, Mas., 1986. 

[ STR 88] B. STROUSTRUP. "What is object-oriented programming ?''. IEEE 
Software, 5:10-20, 1988. 

[ STR 94] B. STROUSTRUP. "The Design and Evolution of C++". Addison-Wesley 
Publishing Company, Inc., Reading, Mass, 1994. 

[ VER 88] P. VERPEAUX, T. CHARRAS, A. MILLARD. "CASTEM 2000: une approche 
modeme du calcul des structure!!". In J.M. FOUET, P. LADEVEZE, 
R. OYAHON, editors, Conference, Calcul des Structures et Intelligence 
Artificielle, volume 2. Pluralis, 1988. 



Object-oriented programming applied to the FEM. Part I 563 

( WAL 96] L. WALTERTHUM. "Programmation orientee objet et calculs par ~lements 
finis. Application d la conception d'un logiciel de simulation en mise en 
forme des materiaui'. PhD thesis, Universite de Franche-Comte, 1996. 

[ ZIM 92] T. ZIMMERMANN, Y. DuBOIS-PELERIN, P. BOMME. "Object-oriented finite 
element programming: I. Governing principles". Computer Methods in 
Applied Mechanics and Engineering, 98:291-303, 1992. 

Appendix 

A Basic tools 

Basic tools used in Zebulon are briefly described. They include character 
string, files, different mathematical objects such as matrices, vectors, second
order tensors, square matrices and generic types such as arrays, encapsulated 
pointers, lists, dictionaries, etc. 

Similar objects can be found elsewhere. The Standard Template Library 
(STL) can be used. Free packages, such as the LEDA [ MEH 97] library, can also 
be used. These libraries are not used in Zebulon. The STL was not available 
when the code started to be redesigned. The LEDA library does not include 
the possibility to define sub-matrices and sub-vectors which are widely used 
in Zebulon. Second-order tensors are also missing. 

Al. Run time verification 

The code can easily be debugged at run time using the assert C instruction. 
However, verification can be time consuming, and should consequently only be 
used for debugging purposes. For instance it is possible to check array overflow: 

VECTOR v(4); II vector of size 4 
v[4]=0.; II run time error (overflow) 

Note that FORTRAN 90 and Java automatically check for overflow. 

A2. Encapsulation of pointers 

In C++, like in C, handling of pointers is difficult as they are not 
automatically destroyed (absence of a garbage collecting mechanism). Memory 
allocation must however be handled carefully, as very large objects (as big as a 
whole FE problem) can be dynamically created and destroyed. The template 
class PTR<T> helps solving this problem as it encapsulates a pointer of type T• 
which is automatically freed as the destructor of the encapsulating object is 



564 Revue europeenne des elements finis. Volume 7- no 511998 

called: 

void f() 
{ OBJ• p_obj = new OBJ; 

} 

Allocated memory is not 
freed. Erroneous code. 

void f() 
{ PTR<OBJ> p_obj = new OBJ; 
} 

void f() 
{ OBJ• p_obj = new OBJ; 

delete p...obj; 
} 

Allocated memory is freed. 
Correct code. 

Correct code as the 
destructor of PTR<> frees the 
encapsulated pointer 

Run time verification can also be used to avoid loosing addresses. Use of 
standard pointers is limited to cases involving the use of objects but not their 
actual storage. 

template <class T> class PTR { 

OBJ• p_obj1 = f(); T• x; 
PTR<DBJ> p_obj; ~ PTR() : x(NULL) {} 
p_obj = nev OBJ;---....... -pTR() {delete x; } 
p_obj = p_obj1; -.______.A void operator=(T• p) 

{ assert(!x); x=p; } 

A3. A rroys and lists 

Arrays (ARRAY<>) and lists (LIST<>) (i.e., arrays that can grow and shrink) 
are implemented as templates. Lists are frequently implemented as chained 
lists; however, in the case of the FEM, lists are, in most cases, created and 
filled during the creation of the problem. During resolution, they are used as 
arrays of fixed size. In order to avoid using the chained list mechanism to 
get a given item, lists derive from arrays. Adding or removing items can be 
done by resizing the storage zone (with some buffer mechanism). The following 
inheritance hierarchy is then obtained: 

ARRAY<> - CARRAY<> ---LIST<> 

where CARRAY<> is a class representing arrays of objects for which the == 
operator is defined. Arrays of pointers can be defined as ARRAY<OBJ•> or 
ARRAY< PTR<OBJ> >. For instance, the mesh object MESH handles the storage of 
elements. To easily perform this task, it uses the class ARRAY< PTR<ELEMENT> > 

so that elements are destroyed when the mesh is itself destroyed. On the other 
hand, the node objects contain the table of the elements to which they belong. 
Storage of the corresponding addresses is done using the class ARRAY<ELEMENT*>. 



Object-oriented programming applied to the FEM. Part I 565 

A4. Mathematical objects 

One of the many advantages of C++, which is immediately perceived by 
the programmer, is the ability to define overloaded operators which allow the 
writing of clear, dimension independent, formulas such as: 

TENSOR2 n = 1.5 * deviator(sigma)/mises(sigma); 

TENSOR4 N = n~n; 

double x = (vlv); 
NODE middle= (node1+node2)/2.; 

3 s 
n=----
- 2 J(tz) 
~=!!®!! 
x=y:y 

Similar objects are often found in different object libraries [ MEH 97, SCH 92]. 

In addition, Zebulon uses second-order tensors. They are stored using a Voigt 
notation modified for symmetric tensors: 

1D (tu, t22, t33) 

2D (tu, t22, t33, v'2t12) 

3D ( tu, t22, t33, v'2t12, v'2t23, v'2t31) 

Use of such objects allows, for instance, the implementation pf material 
constitutive equations and elements without having to explicitly deal with the 
space dimension. It is, however, necessary to carefully implement these small 
objects which are widely used in the code. For instance, the following code: 

VECTOR v=v1+v2+v3+v4; 

can be much less efficient than 

VECTOR v=vl; v+=v2; v+=v3; v+=v4; 

due to the excessive number of copies and destruction requiring dynamic 
memory allocation. Indeed, the first solution should always been used as it 
achieves the higher readability. These difficulties can, however, be overcome 
using techniques such as reference counting and by explicitly handling memory 
allocation during the creation and the destruction of these objects. This is 
indeed very important in the case of small objects, such as second-order tensors, 
as many instances are created, initialized and destroyed [HAN 94]. 

Zebulon also allows the definition of sub-matrices and sub-vectors. For 
instance: 

MATRIX m(6,6); 
VECTOR v(12); 
MATRIX sm(3,3,m,1,1); 

VECTOR sv(3,v,2); 

VECTOR res = sm•sv; 

matrix of size 6 x 6 
vector of size 12 
sub-matrix of size 3 x 3 starting at 
position (1,1) 
sub-vector of size 3 starting at position 
(2) 
sub-matrixxsub-vector product 



566 Revue europeenne des elements finis. Volume 7- n° 5/1998 

v 

m 
sv 

res = sm X SV 

A5. Other objects 

The code also contains objects such as character strings (STRING) and file 
objects used to manage input/output (ASCII..FILE, ZFSTREAM, ZIFSTREAM and 
ZOFSTREAM). ZFSTREAM files behave like standard C++ fstream objects and allow 
the handling of input/output in the case of parallel computations. 

Lists indexed by other objects (dictionary) are also used (DICT<S,K>) [ MEH 97]. 
For instance, sets of nodes (NSET) are stored in the GMESH object as a dictionary 
indexed by strings (STRING). 

class GMESH { ... 
DICT<.PTR<NSET>, STRING> nset; 

0 0 0 }; 

nset ["bottom"] = ... ; 

The code also has numerical integration methods (Runge-Kutta, B
method), methods to find roots of functions (Newton-Raphson) encapsulated 
in objects. 




