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ABSTRACT
The acoustic-based separation has attracted considerable
attention in biomedical research, such as sorting of cells and
particles. Current design principles used for acoustic systems are
based on the steady Stokes theory, equating the Stokes drag
with the primary radiation force. However, this approach is not
valid for large cells/particles or in the presence of particle–particle
interaction. In thiswork, we analytically examine unsteady inertial
affects and particle–particle hydrodynamic interaction on the
particle motion in a viscous fluid in the presence of an acoustic
standing wave field. Comparing our results to the steady Stokes
theory, we find that the unsteady inertial force decreases the
particle’s velocity, while particle–particle interaction enhances it.
For a particular acoustic-based separation approach ‘tilted-angle
standing surface acoustic waves (taSSAW)’, we find that both
effects of unsteady inertial force and particle–particle interaction
are evident and should be considered for O(10µm) particles or
larger. Our study improves the current predictions of particle
trajectory in acoustic-based separation devices.
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1. Introduction

Many underlying ideas and concepts associated with acoustic-based separa-
tion have been known and investigated for several decades, but widespread
commercial usage have not yet been achieved (Coakley, Whitworth, Grundy,
Gould, & Allman, 1994; Johnson & Feke, 1995; Yeo & Friend, 2009, 2011).
Acoustic-based separation focuses on the sorting/isolating specific cells/particles
from different samples. Recently, acoustic separation of circulating tumour cells
(CTCs) has been studied (Ding et al., 2014; Guo et al., 2016; Li et al., 2015).
CTCs have become the established liquid biopsy target for cancer diagnosis
and prognosis (Plaks, Koopman, &Werb, 2013). The selection of CTCs requires
high-throughput separation techniques due to their extremely low concentration
in the peripheral blood. Acoustic-based cell separation methods in microfluidic
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devices are a potential way to distinguish cells based on both their geometry and
physical properties. Although acoustic-based separation techniques have been
progressively improved (Li et al., 2015), their efficacy has remained low for large
cells and high-throughput situations.

Tilted-angle standing surface acoustic waves (taSSAW) separation strategies
have been applied to study blood samples obtained from cancer patients (Li et al.,
2015). The design of optimumdevices is based on the steady Stokes theory, which
neglects both unsteady inertial effects and hydrodynamic interactions due to the
presence of relatively large particles and high-throughput analysis, respectively.
Nevertheless, the advances in microfluidics have fostered the development of
more precise acoustic resonator systems needed for particles of cellular size.
More in-depth theoretical and numerical treatments are sought for the design of
acoustic resonator systems.

For acoustic-based separation, the particle motion is the result of primary
radiation force based on its specific physical properties. The primary radiation
force originates from the scattering interaction between the particles and the
incident sound field. The theory of acoustic radiation force follows from the early
work by King (1934) which considered incompressible particles. For particle
sizes much smaller than the acoustic wavelength, incompressible formulations
can be used to study particle trajectories. For these spatial scales, the flow
field in the close proximity of the particle is approximated as incompressible.
These assumptions have been the basis for manymodelling efforts for evaluating
particle trajectories (Settnes & Bruus, 2012).

The importance of the unsteady force on the particle motion was first de-
scribed by Temkin and Leung (1976), Temkin (1981, 2005) who illustrated the
effects of history force in the Basset–Boussinesq–Oseen (BBO) equation on a
spherical particle in an acoustic field. Subsequently, BBO equation has been
applied to study the unsteady motion of a particle in an acoustic standing wave
(Aboobaker, Blackmore, &Meegoda, 2005; Allen, Kobayashi, & Coimbra, 2006),
which assumes a constant acoustic force in the long wavelength limit. To date,
the problem of the unsteady particle motion accounting for the variation in the
acoustic force has remained unresolved, and this study aims at resolving this
issue.

The role of unsteady forces on particle trajectories in an acoustic field remains
a topic for ongoing research especially with respect to the particle–particle
interactions (Bruus, 2012). The variation in the unsteady forces due to the
hydrodynamic interaction between particles is currently unknown (Temkin,
2005). In this work, we analytically examine the unsteady motion of rigid,
spherical particles suspended in an acoustic standing wave field due to the
primary radiation force. By combining both approaches of Laplace transformand
convolution, we are able to study particle’s motion with the variation of acoustic
radiation force. The role of particle–particle interaction in an acoustic standing
wave field is further investigated for the unsteady case when two particles are
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moving along their lines of centre and side by side. Since the problem of interest
is linear due to small values of particle Reynolds number, the solution to an
arbitrarymotion of two particles can be obtained from the superposition of these
two problems. Finally, we apply our model to the taSSAW-based particle motion
to account for the effect of large particle size and particle–particle interaction.

2. Equation of motion for particles in an acoustic field

We consider the motion of spherical particles in an acoustic standing wave
field. Particles in a viscous fluid are driven by an acoustic force, which is a sum
of primary and secondary radiation forces. For the flow acoustophoresis, the
primary radiation force is the dominant acoustic force for particle manipulation
(Augustsson et al., 2011; Bruus, 2012; Laurell, Petersson, &Nilsson, 2007). In this
case, the influence of secondary acoustic force, which is caused by the reflected
soundwave in aparticle suspension, is relativelyweak (Laurell et al., 2007;Weiser,
Apfel, & Neppiras, 1984). The primary radiation force is given as

F∗
ac = 3ṼE∗

acKG sin (2KX∗), (1)

where Ṽ is the volume of the particle, and E∗
ac is the acoustic energy density.

The factor sin (2KX∗) captures the variation of the primary radiation force with
the spatial coordinate X∗, where K = 2π/λ is the wave number of the acoustic
radiation force, and λ is the wavelength of the acoustic standing wave field.
Acoustic contrast factorG determines the direction of the motion of the particle.
Rigid particles (Augustsson et al., 2011) and red blood cells (Laurell et al., 2007)
have positiveG andmove towards the pressure nodal line. Particles with negative
G values (e.g. lipid capsules (Laurell et al., 2007)) move towards the pressure
antinodal line. In this work, we focus on positive G values and consequently,
the resultant particle motion is towards the nodal line. A sketch of the primary
radiation force is provided in Figure 1(a), where the solid line indicates the nodal
line of the acoustic field. We first investigate the motion of a single particle by
considering unsteady inertial effects, and subsequently formulate the equation
of motion for two-particle configurations.

2.1. Equation ofmotion for a single spherical particle

The equation of motion for a small spherical particle in an acoustical field in a
viscous fluid can be written as (Maxey & Riley, 1983)

mp
dV∗

dt∗
= −6πμRV∗ − 1

2
mf

dV∗

dt∗
− 6πμR2

∫ t∗

0
dτ ∗ dV∗/dτ ∗

[πν(t∗ − τ ∗)]1/2
+ F∗

ac , (2)

where superscript ∗ refers to dimensional variables,V∗ = dX∗/dt∗ is the velocity
of the particle, X∗ is the position of the particle and mp is the mass of particle.
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We should note that Equation (2) does not incorporate compressibility of the
particle and is valid in the long wavelength limit. The first term in the right-hand
side of Equation (2) is the Stokes drag, where μ is the dynamic viscosity of the
fluid, and R is the particle radius; next two terms are the added mass force and
history force, where mf is the mass of displaced fluid, and ν is the kinematic
viscosity of the fluid. These three forces represent unsteady forces acting on an
isolated particle in a viscous fluid, which have been extensively studied for rigid
(Ardekani & Rangel, 2006; Lovalenti & Brady, 1993) and self-propelled (Wang
&Ardekani, 2012) particles. The corresponding dimensionless form of Equation
(2) is

St
(
2γ + 1

9

)
dV
dt

+ V + √
St
∫ t

0
dτ

dV/dτ
[π(t − τ)]1/2 = sin (kX), (3)

where t = t∗(V+/R) is the dimensionless time, V = V∗/V+ is the dimension-
less velocity, X = X∗/R is the dimensionless position and γ = ρp/ρf is the
ratio of the particle density ρp to the fluid density ρf . The characteristic velocity
scale V+ = 3ṼE∗

acK |G|
6πμR is derived from the balance between the acoustic force

and Stokes drag, where |G| is the magnitude of G. In this work, we consider
neutrally buoyant particles, γ = 1. The Stokes number in Equation (3) is
defined as St = V+tν/R = V+R/ν, and the dimensionless wave number
is k = 2KR = 4πR/λ. tν = R2/ν is the viscous damping time scale. For
applications of acoustophoresis (Aboobaker et al., 2005; Augustsson et al., 2011;
Li et al., 2015) (see Table 1), typical ranges of parameters are St ∼ O(10−3−101),
and k ∼ O(10−2 − 100). Unless otherwise stated, hereafter equations and
associated parameters such as time, location, velocities and forces are expressed
in dimensionless forms. We should note that the current work focuses on rigid
particles, and an extension to deformable cells is of future interest.

We use a Laplace transform to solve Equation (3). For a particle starting from
rest, the Laplace transform of Equation (3) becomes

[
St
(
2γ + 1

9

)
s + 1 + √

St · s
]
V̂ = f̂, (4)

Table 1. Physical and dimensionless parameters for acoustophoresis.

R (µm) V+ (mm/s) St k

Tracer particle Augustsson et al.
(2011)

2.5 .7 .0019 .082

Hollow microspheres (potters 60P18)
Setayeshgar, Lipsett, Koch, and
Nobes (2015)

9 9.5 .086 .11

MCF-7 breast cancer Li et al. (2015),
Moon et al. (2011)

8–12 38–75 .30–1.0 .50–.75

WBCs Li et al. (2015) 6 21 .12 .37
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where ˆ represents variables in the Laplace space, and s is the Laplace variable.
The temporal evolution of particle velocity is calculated using the convolution
V = ∫ t

0 f(t − τ)g(τ )dτ = f ∗ g , and

g = L−1

⎧⎨
⎩ 1

St
(
2γ+1
9

)
s + 1 + √

St · s

⎫⎬
⎭ , (5)

where L−1{·} is the Laplace inverse operator.

2.2. Equation ofmotion for a pair of interacting spherical particles

The arbitrary motion of two particles in a viscous fluid can be decomposed into
the motion along and perpendicular to their line of centres (Kim & Karrila,
1991). We use the coordinate system shown in Figure 1(b), where z and ρ are
coordinates measured along and perpendicular to the particles’ line of centres,
respectively.

In order to include the effect of hydrodynamic interaction between the par-
ticles, the method of reflections (Happel & Brenner, 1983) is used to satisfy

(a)

(b)

Figure 1. (a) Acoustic force f acting on two particles moving side by side or in tandem; (b)
schematic of the problem and coordinate system.
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boundary conditions on both particles. The detailed derivation of the hydrody-
namic force acting on two interacting particles is provided in Appendix 1. The
equation of motion for particle a in Laplacian space is written as

2γ
9
Sta(sV̂a) = −�̂a

(
V̂aρ − ÂbV̂bρ

1 − ÂaÂb
eρ + V̂az − B̂bV̂bz

1 − B̂aB̂b
ez

)
+ f̂a, (6)

where Va = Vaρeρ + Vazez , and f̂a is the acoustic force acting on particle
a; Sta = V+

a Ra/ν and Ra are the Stokes number and radius for particle a,
respectively. Similarly, the equation of motion for particle b is

2γ
9
Stb(sV̂b) = −�̂b

(
V̂bρ − ÂaV̂aρ

1 − ÂaÂb
eρ + V̂bz − B̂aV̂az

1 − B̂aB̂b
ez

)
+ f̂b. (7)

�̂a, �̂b, Âa, Âb, B̂a and B̂b are functions of the Laplace variable s, and their exact
forms are given in Appendix 1.

Consider two identical particles side by side (see Figure 1(a)) moving along
ρ direction and Vaz = Vbz = 0, Vaρ = Vbρ = V . For two identical particles
(a = b), we haveRa = Rb = R, Âa = Âb = Â, B̂a = B̂b = B̂, and �̂a = �̂b = �.
The equations of motion for the two particles are the same

2γ
9
s̃V̂ = −�̂

(
V̂

1 + Â

)
+ f̂, (8)

where s̃ = St · s. The velocity of the particle can be obtained as

V = f ∗ L−1

{
1 + Â

2γ
9 s̃(1 + Â)+ �̂

}
. (9)

Next, we consider two identical particles in tandem moving along z axis
(Vaρ = Vbρ = 0). Since the acoustic force acting on each particle depends
on its instantaneous position, the equations of motion for particles a and b are
different

2γ
9
s̃V̂a = −�̂

(
V̂a − B̂V̂b

1 − B̂2

)
+ f̂a, (10)

and

2γ
9
s̃V̂b = −�̂

(
V̂b − B̂V̂a

1 − B̂2

)
+ f̂b. (11)
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The temporal evolution of particle velocities is given as

Va = L−1

⎧⎨
⎩1
2

⎛
⎝ f̂a − f̂b

2γ
9 s̃ + �̂

1−B̂

+ f̂a + f̂b
2γ
9 s̃ + �̂

1+B̂

⎞
⎠
⎫⎬
⎭ , (12)

Vb = L−1

⎧⎨
⎩−1

2

⎛
⎝ f̂a − f̂b

2γ
9 s̃ + �̂

1−B̂

− f̂a + f̂b
2γ
9 s̃ + �̂

1+B̂

⎞
⎠
⎫⎬
⎭ . (13)

3. Results and discussions

3.1. Motion of an isolated particle

The motion of a solitary particle strongly depends on its Stokes number,
St = 2R3ρf E∗

acKG
3πμ2 . For a given acoustic resonator system, the relevant Stokes

number is proportional to the particle volume. First, we quantify the unsteady
effects on the particle motion by comparing the results to the solution of the
steady Stokes theory. The steady Stokes theory, widely used in the literature
(Augustsson et al., 2011; Bruus, 2012; Ding et al., 2014), corresponds to a quasi-
steady state regime, where the acoustic force is balanced with the Stokes drag,
and Equation (3) is simplified to V = sin (kX). When St = .1, the particle
trajectory is close to the one predicted by the steady Stokes theory which neglects
the unsteady inertial forces (see Figure 2(a)). On the other hand, the trajectory
of a particle at St = 1 (corresponding to 10µm particle) deviates from the
quasi-steady solution. Interestingly, instead of approaching the pressure nodal
line before coming to rest at kX/π = 1 as a small particle would do, a particle
at St = 10 passes the pressure nodal line at the first encounter due to the strong
unsteady inertial force. The particle velocity (see Figure 2(b)) for St = 10 remains
positive at the pressure nodal line. This positive velocity drives the particle away
from the nodal line. Eventually, the particle returns to the nodal line due to the
acoustic force. Note that, the dimensionless time at which the particle stops at the
pressure nodal line increases with the particle Stokes number and consequently
particle radius (see Figure 2(a)).

The unsteady inertial force reduces themaximumvelocity of the particleVmax.
The relationship between St and Vmax is given in Figure 2(c). In a quasi-steady
regime (St = 0), the particle maximum velocity occurs at kX/π = 1/2. At
large St, the location at which the particle reaches its maximum velocity deviates
from kX/π = 1/2, resembling a ‘phase lag’ (see Figure 2(b)). Furthermore, we
examine the effect of St on the forces acting on the particle: Stokes drag (V ),
history force (

√
St
∫ t
0 dτ

dV/dτ
[π(t−τ)]1/2 ), and addedmass force ( St9

dV
dt ).When St = 0,

the Stokes drag balances the acoustic force. At St = 10, the magnitude of the
addedmass force is minute, but the history force is comparable to the Stoke drag
thus it cannot be neglected (see Figure 2(d)). Therefore, the particle motion is
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(a) (c)

(b) (d)

Figure 2. The motion of an isolated particle in an acoustic field in a viscous fluid: (a) time, (b)
velocity and (c) forces are plotted as a function of particle’s transverse position X(t), where the
solid straight line in (a) indicates the nodal line of the acoustic system. (d) The maximum particle
velocity is plotted as a function of St.
Note: The particle starts from rest at kX/π = 1/8, for k = .1.

significantly affected by the history force in the presence of an unsteady inertial
effect.

In addition, we investigate the motion of a solitary particle under different
dimensionless wave numbers k in the presence of unsteady inertial effects. We
note that in the quasi-steady regime, the particle velocity is independent of k.
However, the particle velocity is reduced for larger wave numbers when unsteady
inertial effects are included (see Figure 3(a)). By comparing unsteady forces for
different wave numbers in Figure 3(b), we find that the history force is larger for
large wave numbers.

3.2. Particlemotion due to pair hydrodynamic interaction

We can investigate hydrodynamic forces acting on a particle in a dilute sus-
pension in the presence of unsteady inertial effects where pair particle inter-
action is dominant. The particle motion (black filled circle in Figure 4(a))
in the presence of a second particle (dashed unfilled circle) is obtained for
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(a) (b)

Figure 3. The effect of wave number k on the motion of an isolated particle in an acoustic field in
a viscous fluid: (a) velocity and (b) forces are plotted as a function of particle’s transverse position
X .
Note: The particle starts from rest at kX/π = 1/8, for St = 10.

a side-by-side configuration, denoted as ‘A’ and two in-tandem configurations
(‘B’ and ‘C’). Configuration ‘B’ corresponds to the case in which the second
particle is in front of the main particle moving towards the nodal line, while in
configuration ‘C’, the second particle is behind the main particle. Figure 4(a)
compares the motion of the main particle in three different configurations (‘A’,
‘B’, and ‘C’) against themotion of a solitary particle in absence of particle–particle
hydrodynamic interaction. Two in-tandem particles eventually collide near the
nodal line, but we should note that the method of reflections used here holds for
large particle distances (Ardekani & Rangel, 2006). Therefore, in Figure 4, we
show the particle trajectory when the distance between particles is larger than
4 radii (ε ≤ 1/4), where ε is the inverse of dimensionless distance between
particles. The solid circle and triangle in Figure 4(a) show the final calculated
positions for configurations ‘B’ and ‘C’, respectively. The trajectories of both
particles in configurations ‘B’ and ‘C’ are given in Figure 4(b).

Next, we investigate the effect of the hydrodynamic interaction on the un-
steady forces in configuration ‘C’ by comparing the results to the ones for the
solitary particle. It is well known that the hydrodynamic interaction reduces
the Stokes drag in the quasi-steady case (Kim & Karrila, 1991). Similarly, the
hydrodynamic interaction reduces the Stokes force in the presence of unsteady
inertial effects (see Figure 4(c)). On the other hand, the history force is enhanced
in the presence of the neighbouring particle. The strength of the hydrodynamic
interaction is influenced by the distance between two particles. Particle velocity
for different Stokes number and particle initial distance is plotted in Figure 4(d).
The particle velocity is enhanced when particle hydrodynamic interaction is
included and note it is reduced when unsteady inertial effects are considered. In
the presence of unsteady inertial effect, the particle’smaximumvelocity decreases
as the dimensionless wave number increases (see Figure 5).
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(a)

(b) (d)

(c)

Figure 4. (a) The particle motion is affected by the particle–particle hydrodynamic interaction.
(b) Trajectory of both particles is shown for two different in-tandem configurations; the solid and
dashed lines correspond to the main particle and the neighbouring particle, respectively. (c) The
effect of particle–particle hydrodynamic interaction on unsteady forces acting on the particles in
configuration ‘C’. (d) The effect of distance between particles on their motion.
Notes: The wave number is k = .05. For (a), (b), and (c), the initial distance ε0 = 1/4 and St = 10. The particles
start from rest at kX/π = 1/7.

3.3. Tilted-angle standing surface acoustic waves

We consider particles that are exposed to a uniform flow and experience a
standing acoustic field along the X axis (see Figure 6(a)) to analyse a taSSAW
separation approach. The established pressure nodal and antinodal lines have an
angle with respect to the imposed flow direction, and the total driving force is
f = fFeθ + faceX , where fF is the magnitude of the force imposed by the uniform
flow, eθ is the unit vector along the flow direction and θ indicates the angle
between the flow direction and X axis. Note that for a typical taSSAW (Li et al.,
2015), fFfac

∼ O(1) and the angle θ remains small (∼ 5◦). The combination of
hydrodynamic and acoustic forces affects the particle displacement�X and�Y .

To understand the role of unsteady inertial forces on the trajectory of a solitary
particle, we compare our results to the trajectory predicted by the steady Stokes
theory (St = 0). At St = 1, the unsteady inertial forces reduce�Y for the same
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Figure 5. The effect of dimensionless wave number k on the interacting particles.
Note: The particles start from rest at kX/π = 1/7, for St = 10.

(a) (b)

Figure 6. (a) Schematic of the taSSAW-based particle motion. The pressure nodal and antinodal
lines are indicated as solid and dashed lines, respectively. (b) taSSAW-based particle motion can
be significantly modified by unsteady inertial effects (St), particles hydrodynamic interaction, and
dimensionless wave number (k).
Notes: The acoustic force is along X axis, and the angle θ between the flow direction and X axis is 5o . The imposed
force is fF = 1.5, and the particles start from rest at k�X/π = 1/8.

displacement �X. A larger Stokes number leads to a larger deviation from the
quasi-steady case (see Figure 6(b)). The lateral displacement of particles reduces
with Stokes number, resulting from reduction of particle velocitiesVX andVY for
large values of Stokes number (see Figure 7). Similarly, the lateral displacement
of particle reduces with the dimensionless wave number (see Figure 7).

Finally, we investigate the effect of the particles’ hydrodynamic interactions.
At St = 10, we compare the particle trajectory between solitary case and in-
tandem configuration ‘C’ in Figure 6(b). The particle lateral displacement �Y
for the in-tandem configuration is smaller than the solidary particle. The particle
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(a) (b) (c)

Figure 7. Effect of unsteady inertial forces on (a) lateral displacement�Y , (b) velocity VX and (c)
velocity VY at k�X/π = 6.
Notes: The parameters corresponding to taSSAW are θ = 5◦ , k = .1, fF = 1.5, and the particles start from rest at
k�X/π = 1/8.

(a) (b)

Figure 8. Effect of particle hydrodynamic interaction on (a) velocity component VX , and (b)
velocity component VY .
Notes: The initial distance between particles is ε0 = 1/4, and St = 10. The parameters corresponding to taSSAW
are θ = 5◦ , k = .1, fF = 1.5, and the particles start from rest at k�X/π = 1/8.

velocity is on the other hand larger if the hydrodynamic interaction is included
(Figure 8).

4. Conclusions

In this work, we investigated effects of unsteady inertial forces on the particle
motion in an acoustic standing wave field. We considered the effect of particle–
particle interaction in the presence of unsteady inertial effects. The hydrody-
namic interaction reduces the Stokes force and enhances the history force,
leading to larger particle velocities. In taSSAW-based separation designs, we
illustrated that the particle trajectory significantly deviates from the prediction of
the steady Stokes theory due to both unsteady inertial effects and hydrodynamic
interactions. Bothunsteady inertial forces andhydrodynamic interactions reduce
the particle lateral displacement �Y . Such considerations will be important for
the design of optimal acoustic separation devices.
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Appendix 1. Derivation of hydrodynamic forces on two interacting
particles
For micrometer-sized acoustic particles (∼ O(10µm)) submerged in a fluid, the convective
terms can be neglected (Maxey & Riley, 1983), and the dimensionless governing equations
for an unsteady Stokes flow can be written as,

St
∂u
∂t

= −∇p + ∇2u, (A1)

∇ · u = 0, (A2)

where u is the flow velocity, and p is the dynamic pressure. The particle in general undergoes
translation and rotation, which can be considered separately due to the linearity of governing
equations andboundary conditions.Here,we restrict our attention to the translationalmotion
without rotation. For a particle pair in a quiescent fluid (see Figure 1), the boundary conditions
are

u = Va, onparticlea, (A3)
u = Vb, onparticleb, (A4)

u|r→∞ = 0, (A5)

where r = √
ρ2 + z2. To solve this boundary value problem, we use themethod of reflections

to approximately satisfy the boundary conditions on both particles. Since the governing equa-
tions and boundary conditions are linear, the flow velocity and pressure can be decomposed
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as

u = u(1) + u(2) + u(3) + u(4) + u(5) + . . . , (A6)
p = p(1) + p(2) + p(3) + p(4) + p(5) + . . . , (A7)

where (u(i), p(i)) satisfy the equations ofmotion associatedwith an isolated particle and vanish
at infinity. For example, (u(1), p(1)) satisfy the boundary condition on particle a, V(1) = Va.
The reflection of this field fromparticle b can be defined by the boundary condition on particle
b, V(2) = Vb − u(1)

∣∣
b, where u(1)

∣∣
b is velocity u

(1) evaluated at the centre of particle b. The
third-order term can be found through the reflection of u(2) from particle a and its boundary
condition on particle a, V(3) = − u(2)

∣∣
a. Again, the next order term can be calculated by

defining the boundary condition on particle b,V(4) = − u(3)
∣∣
b. Similarly, higher order terms

are calculated to satisfy boundary conditions on the surface of both particles with the required
accuracy. Once u(i) is computed, the drag force due the flow field u(i) can be written as

F(i) = −St
9
dV(i)

dt
− V(i) − √

St
∫ t

0
dτ

dV(i)/dτ
[π(t − τ)]1/2 , (A8)

or in Laplace space (i = 1, 2, 3, . . .),

F̂(i) = −
(
1 + √

s̃ + s̃
9

)
V̂(i),

= −�̂V̂(i), (A9)

where s̃ = St · s. The total force exerted on a given particle (e.g., particle a) can be obtained
using the summation of the drag force generated by each flow field u(i). Therefore, the total
drag on particle a can be calculated as

Fa = F(1) + F(3) + F(5) + · · · , (A10)

where F(1) is the unsteady force acting on an isolated particle due to flow field u(1), and the
sum of higher order terms accounts for the hydrodynamic interaction between two particles.

For the motion of an isolated spherical particle, the flow field generated by the particle
is given by the Burger’s solution that satisfies the unsteady Stokes equation with boundary
condition u = (0, 0, δ(t)) on the particle surface. By utilising the Burger’s solution, we are
able to analytically calculate u(i) for each order.

The Burger’s solution in a dimensional form can be written as

ûB =
(
e(3) · ∇

)
∇ψ̂ − e(3)∇2ψ̂ , (A11)

ψ̂(r, s̃) = Q1

r
+ Q2

r
e−

√
s̃r , (A12)

where e(3) is the unit vector (0, 0, 1), Q1 = 3
2s̃ (1 + s̃1/2)+ 1

2 , Q2 = − 3
2s̃ e

√
s̃ and ψ̂ = ψ̂∗/R3.

If particle amoves with velocityVa = Vaρeρ +Vazez , V̂(2) can be calculated using Equations
(A11) and (A12)

V̂(2) =
(
V̂bρ − V̂aρÂa

)
eρ +

(
V̂bz − V̂azB̂a

)
ez , (A13)
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and Âa and B̂a are given as

Âa = Â(s̃, ε)
∣∣∣
s̃=s̃a ,ε=εa

= 3ε3

2s̃

[
−1 − √

s̃ − s̃
3

+ e
√
s̃(1−ε−1)

(
1 +

√
s̃
ε

+ s̃
ε2

)]
, (A14)

B̂a = B̂(s̃, ε)
∣∣∣
s̃=s̃a ,ε=εa

= 3ε3

s̃

[
1 + √

s̃ + s̃
3

− e
√
s̃(1−ε−1)

(
1 +

√
s̃
ε

)]
, (A15)

where εa = Ra/l, s̃a = Sta · s, Sta = V+
a Ra/ν and Ra is the radius of particle a.

Higher order velocity fields are given as

V̂(3) =
(
−V̂bρÂb + V̂aρÂaÂb

)
eρ +

(
−V̂bz B̂b + V̂azB̂aB̂b

)
ez , (A16)

V̂(5) =
(
−V̂bρÂb + V̂aρÂaÂb

)
ÂaÂbeρ +

(
−V̂bz B̂b + V̂azB̂aB̂b

)
B̂aB̂bez ,

.

.

.

V̂(2n+1) =
(
−V̂bρÂb + V̂aρÂaÂb

) (
ÂaÂb

)n−1
eρ

+
(
−V̂bzB̂b + V̂azB̂aB̂b

) (
B̂aB̂b

)n−1
ez .(n ≥ 1) (A17)

and total force F̂a is

F̂a = F̂(1) + F̂(3) + F̂(5) + . . .

= −�̂a

(
V̂(1) + V̂(3) + V̂(5) + . . .

)
= −�̂aV̂aρ

(
1 + ÂaÂb +

(
ÂaÂb

)2 + . . .

)
eρ

+�̂aV̂bρÂb

(
1 + ÂaÂb + . . .

)
eρ − �̂aV̂az

(
1 + B̂aB̂b +

(
B̂aB̂b

)2 + . . .

)
ez

+�̂aV̂bzB̂b
(
1 + B̂aB̂b + . . .

)
ez

= −�̂a

(
V̂aρ − ÂbV̂bρ

1 − ÂaÂb
eρ + V̂az − B̂bV̂bz

1 − B̂aB̂b
ez

)
, (A18)

where the term in the right-hand side of Equation (A18) represents the total drag force,
incorporating the hydrodynamic force due to the particlemotion as well as the hydrodynamic
interaction caused by the neighbouring particle.
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