
Object-Oriented Approach and Distributed 
Finite Element Simulations 

Piotr Breitkopf *-Yves Escaig ** 

* Codiciel, UPS CNRS 856 
BP 511, PAT de Ia Valine 
32, rue Raymond A ron 
F-76824 Mont-Saint-Aignan cedex 

** INSA de Rouen, Laboratoire de Mecanique de Rouen 
Place Emile Blonde/, BP 8 
F-76131 Mont-Saint-Aignan 

ABSTRACT. We present an application of object-oriented approach in the context of distributed 
computing in the field of structural engineering problems. In this work, conducted within the 
framework of a general purpose finite element code, we consider two types of distributed 
algorithms: the cooperation of heterogeneous computing systems and an algorithm for 
distributing the resolution of the finite element problem. In the first case, the major issue is 
the transparent distribution of the data base involving data structures and algorithms. In the 
first part of the present work, we present DDSM (Distributed Data Structures Manager) 
dealing with this first issue. The second case addressed is that of solution of linear systems by 
a domain decomposition direct method. Performance results given are those of a Cray T3D 
system. Communications and process control are implemented using the PVM library. 

JU.:SUME. Une application de !'approche objet dans le contexte de Ia modelisation distribue 
des problemes de mecanique est presentee. Ce travail est effectue dans le cadre d'un logiciel 
de simulation numerique utilisant Ia methode des elements finis. On considere deux types 
d'algorithmes distribues: Ia cooperation de systemes informatiques heterogenes et Ia distri­
bution de Ia resolution de problemes par elements finis. Dans le premier cas, Ia question 
centrale est celle de Ia distribution transparente de Ia base de donnees. Dans Ia premiere 
partie de !'article, on aborde cette question en presentant le logiciel DDSM (Distributed 
Data Structures Manager). Le second type d'algorithmes distribues est illustre par une 
application de Ia methode de decomposition de domaines a Ia resolution de grands systemes 
d'equations par une methode directe. Des mesures de performance obtenues sur Cray T3D 
sont presentees. Les communications et le con/role des processus distants sont implantees en 
utilisant Ia bibliotheque PVM. 

KEY WORDS: distributed computing, object-oriented programming, finite element method, 
domain decomposition methods. 

MOJ:~-CLES : calcul distribue, programma/ion orientee objet, methode des elements finis, 
methodes de decomposition de domaines. 

Revue europeenne des elements finis. Volume 7- n° 5/1998, pages 609 a 626 



610 Revue europeenne des elements finis. Volume 7- n° 5/1998 

l. Introduction 

The maturity of the field of computational engineering entails the user having to 
deal with a growing complexity of individual software components. The simulation 
process involves a number specialized tools such as pre- and post-processors, linear, 
non-linear and dynamic solvers or auto-adaptive mesh generators. On the hardware 
side, multiple architecture systems are available: networks of RISC processor sys­
tems, vector processor systems, shared memory multiprocessor systems, massively 
parallel systems, networks ofworkstations and arrays (or clusters) of shared memo­
ry systems. 

These two aspects are evidence of the need for new programming paradigms. 
TAn object-oriented approach permits the partition programs into manageable pie­
ces that closely match the concepts of computational engineering. Objects interact 
and communicate with each other by exchanging messages. The interesting aspect 
of the object-oriented approach is that objects do not need to be in the same process 
or even on the same machine to send and receive messages back and forth to each 
other. In this sense, objects match well with distributed computing. The adoption of 
an object-oriented methodology may therefore lead to the distribution of the current 
centralized numerical simulation's process, limiting at the same time its complexity 
and increasing its overall performance. 

The work presented in this paper has been conducted within the framework of 
the project SIC (Systeme Interact if de Conception) [BRE 92]. The aim is to conceive 
a general platform for various kinds of finite element simulations (structural mecha­
nics, heat transfer, fluid mechanics, electromagnetism and any other kind of coupled 
problems involving concurrent simulations of different aspects of a complex phe­
nomena). This platform allows tight cooperation between different development 
teams through sharing and reusing common software modules (data manager, sol­
ver, pre- and post-processing, finite elements, etc.). 

The term "object oriented technology" has no precise definition. A simple use of 
a programming language does not make a program object-oriented. On the other 
hand, it is perfectly possible to use an object-oriented approach while programming 
in a low level language. The issue is to find the right software environment provi­
ding a framework for an object-oriented methodology as applied to the domain of 
application. Two approaches are open to the user: 

-using a "true" object-oriented language, 
-build a set of tools on top of an existing language. 

In the domain of scientific computing, software availability, compatibility with 
existing code and performance considerations inhibit the former solution. In fact, 
languages such us Eiffel [MEY 92], Java [ARN 98] do not focus on computationally 



Object-Oriented Approach 611 

intensive applications. The latter approach was used by the authors [STR 91] for the 
design of the C++ language built on top of the standard C language. The constraints 
of the project presented in the present work did not permit to directly use C++. For 
the reasons of compatibility with existing software, we chose the second solution, 
using Fortran as the base language. Our approach is based on an object-oriented data 
manager, briefly described in the first section. 

The second aspect of our work concerning the distribution of the computations 
may be achieved in one of the two following ways: 

- either by distributing the computational algorithms on a certain number of 
processing elements (usually identical) to reduce the elapsed execution time of the 
program, 

- or by performing different phases of the simulation process possibly using 
different software concurrently on different computing systems, in order to optimize 
the use of available resources. 

In the first case, a SPMD (Single Program Multiple Data) programming model is 
often used, meaning that each processor executes the same program but operates on 
different data. In the latter case, the main issue is the distribution of the database. In 
the present paper, we present a project of a simulation software, based on the finite 
element method, that implements both types of distribution previously mentioned. A 
key issue in this project is the control of remote process and the communication of 
data between heterogeneous processing elements. 

The rest of the paper is set out in the following way. In the first two sections, we 
present our object manager along with a run time system for the distribution of ob­
jects. The next two sections concern performance aspects and a distributed imple­
mentation of the finite element method using a domain decomposition strategy. 

2. Design of the Object Manager 

While designing the data base for the SIC project, we tried to find a compromise 
between the following constraints: 

-simplicity, reusability, flexibility 
- high performance - because of intensive calculations involved in the finite 

element method, the data has to be accessed in a very efficient way, ideally as fast as 
a simple memory access 

-compatibility with the extensive range of existing libraries and modules written 
mainly in Fortran 

-support for parallel processing 
-provide both compiled and interactive interface 



612 Revue europeenne des elements finis. Volume 7- n° 5/1998 

The design of GO (Gestionnaire d'Objets) [AUN 90], the data manager of the 
project SIC. GO permits us to implement a number of features commonly found in 
object-oriented languages such as data abstraction, inheritance, encapsulation. We 
have to stress that GO is not an object oriented language. Its programming interface 
is of a relatively low level as it relies on libraries rather than on syntactic constructs. 
GO may be seen as a research vehicle that permits the experimentation of object­
oriented concepts while applied to computationally intensive tasks. 

The main characteristics of GO is that it was conceived as a small set of exten­
sions to standard Fortran 77 language in order to provide high level data structures. 
In this way, existing code could be reused and the training of programmers reduced. 
The SIC project was originally conceived as an interactive environment providing 
basic building blocks for the assembly of complex simulations. All data structures, 
including internal ones manipulated by SIC are "objects". These objects can contain 
any data types, including fields of variable length as well as references to other 
objects. 

2.1. Encapsulation 

An important characteristic of GO is that it stores an explicit description of every 
object in the data base, though allowing generic service routines, like creating, 
copying, printing, working on any kind of objects 

Figure 1. "Object description" and individual objects 



Object-Oriented Approach 613 

The object's internal structure: the type and number of its components is defined 
in an external file. This file is converted into an "object description" object which 
serves as a pattern for creating actual objects of this type. The term "object" is cur­
rently used to refer to both object descriptions and to individual objects. Individual 
objects are referenced through a unique identifier that is independent from an actual 
memory location. The current memory location of objects is stored in an array, 
indexed by object identifiers. This means that referencing an object adds an ove­
rhead of one indirection. The independence between identifiers and memory loca­
tions allows transparent displacements of objects in the database, for garbage col­
lection for example. 

The second basic notion in an operator. An operator is a particular kind of object 
that references both the data in GO and the Fortran or C function which has to be 
executed with this data. The operators are accessible to an interactive user via a 
Matlab-like command-line interpreter. The important feature of the interpreter is 
that it is tightly coupled to GO in the way that all user input is converted into ope­
rator type-objects. In this way, the object manager does not differentiate between 
data and the executable code. 

Figure 2. User input converted into an operator-type object which in turn referen­
ces other objects and Fortran code 

Figure 2 presents a simple command issued by the user: C.X = A.X + B.X. This 
command is translated into an operator-type object with pointers to the concerned 
items. The role of an operator-type object is to prepare data for a function imple­
mented as a native Fortran method. More complex tasks may be accomplished by 
macro commands. In this case, a list of operators is created and some basic control 
structures permit the execution of loops, test logical conditions and redirect execu­
tions. 



614 Revue europeenne des elements finis. Volume 7 - n° 5/1998 

An object of type "object description" may be associated with a list of operators 
allowed to act on objects of a given type. This is achieved by defining links between 
an object descriptor and operators. A geometric object may for instance reference 
operators permitting it to be plotted or transformed (Figure 3). 

Figure 3. An object descriptor and its member operators 

In the SIC system, the contents of an object is not protected. There is always a 
possibility for the user to modify any variable of an object by using a generic modi­
fication function. The same remark concerns the member operators. This kind of 
behavior is due to the problem of the granularity of the operators. The opposite 
strategy would be to protect internal data of an object by creating access functions. 
In this case, one would get a high number of low level functions. In our approach, 
we prefer a small number of generic access functions and medium-sized operators 
for other operations. The information hiding is therefore achieved rather by respec­
ting the coding rules then by compiler level verification. 

2.2. lnlreritance 

Inheritance permits to reuse existing objects for constructing new ones. Subclas­
ses can add variables and methods to the ones they inherited from the superclass. 
GO provides only a simple inheritance model as opposed to c++ where multiple 
inheritance is allowed. The Figure 4 presents a simple case when an object "Point" 
serves as a base class description for an object "Circle". The object "Circle" is obtai­
ned from the object "Point" by adding the fields describing the normal to the circle 
and the radius. The original data representing the "Point" coordinates is reused and 
is interpreted as the center of the "Circle". 



Object-Oriented Approach 61 S 

Figure 4. Simple inheritance model: object "Circle" adds new fields Nx,Ny,Nz,R to 
an existing object "Point" 

The interest of an inheritance mechanism is that the derived object description 
reuses not only data of the base class object but also its operators. In our example, 
we notice that the "Move" function has the same meaning for the Point as for the 
Circle. In fact, when moving a circle, one has only to modify the coordinates of the 
center. The remaining attributes remain unchanged, so the original "Move" operator 
may be shared by both classes. Subclasses can also override inherited methods and 
provide specialized implementations for those methods. In our case, we have to 
define a new "Plot" function for a circle. 

2.3. Generic Behavior 

Programmers can implement methods that exhibit "generic" behaviors. Such 
methods exploit the object descriptors and may be implemented prior to the defini­
tion of the objects themselves. Several generic objects are predefined using GO at 
different levels ranging from container classes for storage of individual objects 
[AUN 90] through specialized programming patterns for finite element operations 
[BRE 92] and a complete framework for automatic sensitivity analysis and optimi­
zation of structures [MOR 93]. 



616 Revue europeenne des elements finis. Volume 7 - n° 511998 

3. Distributing the Data Base 

In this section, we present the run time system DDSM (Distributed Data Struc­
ture Manager) which allows an easy and efficient displacement of previously des­
cribed objects between local memories of distributed processing elements. Chaos++ 
system [SAL 95] proposes an alternative approach applied to objects of the C++ 
programming language. 

There are four major issues in the design of DDSM: remote data access, maintai­
ning pointers across the network, support of heterogeneous computing environments 
and efficiency considerations. 

3.1. Remote Data Access 

In order to reduce the number of messages exchanged, an access to a remote 
object is replaced by a local copy of the entire remote object. This principle is equi­
valent to that of "ghost objects" of the Chaos++ run time system. In our approach 
however, .the objects are accessed directly in the memory rather than through an 
access function. This compromise, due to the performance considerations, implies 
that there is no run time system to supervise the remote data access. Therefore, it is 
up to the application to validate the objects it will use. If the objects are local, the 
usual consistency validations take place. If the object exists in a remote memory, 
then the run time system gets a copy of it before resuming execution. Because a 
single object can have multiple copies, it is necessary to ensure the coherence of 
these copies. Again, as we do not use a function to access objects, we assume that 
the coherence is supervised by the application. 

3.2. Distribution of Objects Containing Pointers 

This issue concerns the distribution of objects containing pointers (in our case 
identifiers) to other objects. Supposing that an object points to another one in a local 
memory. The run time system must preserve this relation for the remote copies of 
the two objects. One solution consists in copying the two objects together and in 
recreating the relation when allocating objects in the remote memory. This is the 
solution implemented in Chaos++. However, this approach is not always acceptable 
when dealing with large graphs of objects. Our solution consists in introducing the 
notion of an "universal identifier" (which contains the local identifier of an object 
concatenated with a processor number) and in maintaining in each memory the 
correspondence between local and universal identifiers. When transferring an object 
to another memory, a generic function scans its content and replaces each local 
identifier by a universal one. The opposite operation takes place at the reception of 



Object-Oriented Approach 617 

the object, just before putting it into the local object base. If the universal identifier 
does not yet correspond to a local object, then a new local-virtual object appears. If 
later on, an object with the same universal identifier arrives, then it will take the 
local identifier of the placeholder object. Therefore, the relation between the two 
objects is restored. 

3.3. Support of Heterogeneous Computing Environments 

For basic data types, the XDR (eXternal Data Representation) library [KOP 95] 
ensures the consistency of coding between different binary representations. PVM 
[GAl 95], for example, uses XDR to support heterogeneous networks. This feature 
is not sufficient when handling complex data types like C language structures. This 
is also the case of our objects that can contain fields of different basic data types as 
well as variable length fields. Therefore, in our system, an XDR encoding takes 
place at the DDSM level rather than at the PVM level. This is done by a generic 
function and is transparent to the application. 

3.4. Efficiency 

In actual distributed hardware, the message latency is high as compared to the 
communication bandwidth. In order to limit this overhead it is necessary to reduce 
the number of messages. DDSM implements a buffering technique to transfer 
efficiently large quantities of "small" objects. Messages are sent only when the 
buffer is full or when the sender requests it. 

4. Performance Evaluation 

The aim of this section is to quantify the overhead of DDSM as compared to the 
raw performances of PVM. Performance evaluation tests have been conducted on a 
network of workstations (SGI Indigo R4000) connected by Ethernet. It can be 
noticed that all the tests have been run on a non-dedicated network. For this reason, 
we do not interpret the absolute values of our results. However, the relative values 
are significant. The following points have been analyzed: 

- transfer of a single object with DDSM as compared to the transfer of an array 
representing the same amount of raw data using PVM, for different object sizes, 

- transfer of an increasing number of objects of a given size with DDSM as 
compared to the transfer of a single object representing the same quantity of data 
also with DDSM, 

- transfer of a large and complex graph of objects with DDSM as compared to 
the transfer of the same number of disconnected objects also with DDSM, with an 
increasing number of objects. 



618 Revue europeenne des elements finis. Volume 7 - n° 511998 

4.1. Transfer of a Single Object 

The aim of these tests is to quantify the overhead of going through an additional 
software layer when transferring a single large object, made of one dynamic zone of 
increasing size. This object does not contain any pointer to other objects. Elapsed 
times are compared with a usual data transfer of an array using directly PVM. Per­
formances obtained are shown in Figure 5. 

Bandwidth in KB/s 
800.0 .-,...,TTTmr---r-onrrrrrr-r-r"ITnnr--r-rTTTTTTT-,-,-,"TTTTill 

Native PVM message 

600.0 

400.0 

200.0 

1 00000 1 000000 

Bytes transferred 

Figure 5. Transfer rate for 1 object compared to raw P VM 

One can note that for a small amount of data transferred, the latency of DDSM is 
always higher than that of PVM. The relative importance of this overhead, due to 
the additional software layer, diminishes as the message size increases. The maxi­
mum bandwidth of DDSM is about I 0% smaller what is mostly due to an additional 
copy of the data when creating a new object in the remote data base. 

4.2. Transfer of N Objects 

The aim of these tests is to quantify the additional work needed to transfer a set 
of N objects as compared to the transfer of a single object of equivalent size. An 
increasing number of objects of size of 800 bytes each is transferred. Note that this 
transfer needs only one PVM message due to the buffering technique used. The 

The maximum bandwidth is about 25% smaller when transferring N objects. 
This is due to the overhead associated with the initialization of the transfer of each 
object and to the time needed to create these objects in the remote database. perfor­
mances obtained are shown in Figure 6. 



Object-Oriented Approach 619 

Bandwidth in KB/s 
800.0 .--r-r-r-,.,.TTT.---,.--,.-,-.,.-rrnr---..---,--.-m,. 

600.0 
1 equivalent object 

400.0 
N objects 

200.0 

0. 0 --'--'--'--'--'-.J...W.'-----'---'---'---L.!...J...J....i..JL.__---'----'---'-1...1...1 ...... 
1 10 100 1000 

Number of objects 

Figure 6. Transfer rate for N small objects as compared to transfer of one big object 

4.3. Transfer of a Complex Graplt of Objects 

These tests correspond to the transfer of a large, complex graph of objects that 
corresponds to a finite element mesh (see next section). Tests are run for different 
mesh sizes, i.e., different numbers of objects. Results are compared to the transfer of 
the same number of simple objects that do not contain different fields nor pointers. 
The description of the tests is given in Table 1. Performances obtained are shown in 
Figure 7. 

Bandwidth in KB/s 
I I I II II 'I I II II I 

""~ 

600.0 

500.0 

400.0 N simple objects 
.. x······X······ ···X·.)( 

300.0 
graph of objects 

200.0 

Number of objects 

Figure 7. Transfer rate for complex graph of objects compared toN simple objects 



620 Revue europcenne des elements finis. Volume 7 - n° 5/1998 

Mesh mesh I mesh 2 mesh 3 mesh4 mesh 5 mesh 6 mesh 7 mesh 8 
Nb of objects 31 116 313 670 1235 2056 3181 4658 
Size in bytes 5*101 17* 103 46*103 96*103 174*103 288*103 443*103 645*103 

Size per object 176 146 146 143 140 140 140 139 

Table 1. Characteristics of the different graphs of objects 

These results show that the overhead necessary to handle links between objects 
is rather small. The value of the bandwidth for these tests is not very high because of 
low size of an average object (140 bytes). 

All these results show that the perfonnances of DDSM are comparable to those 
of PVM and confinn the scalability of our approach. Considering the new services 
added by DDSM, the overall perfonnance of numerical applications enabled by this 
environment compensates its overhead. However, in particular cases involving a 
high number of very small objects, the overhead of DDSM can accumulate. There­
fore, DDSM should be used with caution in applications where the communications 
are intensive. 

5. Applications 

Two classes of distributed finite element applications may be implemented using 
DDSM. The first class of applications aims to optimally use a set of computing 
resources: a network involving several processors and a 3D graphic workstation 
running the user interface. There are many different scenarios for such applications. 
One of them concerns the analysis of loosely coupled systems. In this case, two 
models of one problem are executed concurrently and an exchange of data takes 
place at fixed time intervals. The data transfer must be transparent to the user and 
very efficient. In this scenario, there is a different process and a different object base 
on each machine. Communication of objects among these bases is achieved using 
DDSM. 

The second class of applications concerns Single Program Multiple Data 
(SPMD) programming models. We apply this approach for the distribution of a 
single finite element model over a network of processing elements. In the following 
section, we describe a distributed domain decomposition method. All the data of a 
finite element problem are represented by a graph of objects (see Figure 8 for a 
simple view of this graph). 



Object-Oriented Approach 621 

Finite element problem 

Figure 8. Partial view of the data graph for a finite element problem 

The graph representing the finite element problem is partitioned into subdomains 
and distributed to different processing elements. 

5.1. Distributed Domain Decomposition Direct Method 

In this application, we aim to use a certain number of processing elements, 
usually identical, to reduce the elapsed execution time of the program. On distribu­
ted memory systems, the privileged approach for parallelizing the finite element 
method is the use of domain decomposition methods. The domain decomposition 
methods solve first the initial problem independently on each subdomain, and then 
they add constraints to fit the local solutions on the boundaries between the subdo­
mains. For example, in the Schur Complement Method, the constraint is the equality 
of forces at the interfaces between subdomains. Detailed references can be found in 
[FAH 94]. For the Schur Complement Method, the decomposition algorithm can be 
written in the case of two subdomains: 

I. Renumber equations so that the internal degrees of freedom (do f) of each sub­
domain appear first 

r
k
0
11 

[k]{u}={J} <=> 

k3l 

0 



622 Revue europeenne des elements finis. Volume 7 - n° 5/1998 

2. Eliminate all internal dof 

0 

where 

1(33 = k33 - k31 kl~ 1 
kl3 - k32 k;i k23 

]; = h -k31k1~1h -k32k;;t2 

3. Solve the interface problem 

4. Back-substitute interface solution on internal degrees of freedom 

The conditioning of structural mechanic problems implies the choice of dire<:t 
rather than iterative methods for eliminating internal dof and for solving the inter­
face problem [ESC 94]. 

Steps 2 and 3 of the algorithm are the most time consuming ones. Step 2 invol­
ves only calculations local to subdomains. Internal unknowns for each subdomain 
can be eliminated concurrently. For Step 3, the interface problem matrix is distribu­
ted over the local memories of the processing elements and it is factorized and sol­
ved in parallel. The main issue for this parallelization is the relation between the 
number of subdomains and the number of processors. The analysis of the sequential 
execution times shows that: 

- total execution time depends on the number of subdomains, 
-execution time of Step 2 is dominant for a small number of subdomains (up to 

8) and tends to decrease as the number of subdomains increases, 
-execution time of Step 3 increases with the number of subdomains, and beco­

mes dominant from about 16 to 32 subdomains. 



Object-Oriented Approach 623 

Execution time (sec.) 

:00 r-----.-----.---....,------,----, 

100 

uo 

140 

1:o Total execution time 

100 

•• 
•o 

:o Step 2 

Number of subdomains 

Figure 9. Sequential performance of a 3D test case with 6591 dof 

Typical execution times are shown in Figure 9. A straightforward choice is to 
assign one processor per subdomain. For large numbers of processors, most of the 
execution time is spent in Step 3, which requires large amount of communication 
and does not lead to high efficiency. Therefore, it could be more interesting to as­
sign several processors per subdomain. On the other hand, load balancing problems 
occur in the cases when the computing times of Step 2 for each subdomain are not 
constant. To reduce these problems, it would be necessary to have more tasks and 
consequently more subdomains than processors. This is in contradiction with the 
previous remark. In the rest of the paper, the choice of one processor per subdomain 
will be assumed. 

The implementation of the domain decomposition method on a distributed me­
mory system can be described as follows: 

- (S l) distribute the data of the finite element problem (nodes, elements, boun­
dary condition, material characteristics, etc.) of the subdomains to the processors 
usingDDSM; 

- (S2) for each subdomain concurrently, eliminate all internal dof; 
- (S3) for each processor: 

-allocate one part of the interface problem matrix, 
-send the locally condensed matrix (matrices) k33 to all other processors, 
- receive the other condensed matrices and assemble the elements which 

belong to the local part of the interface problem matrix;. 
- (S4) factorize the interface problem matrix (eventually in parallel); 
- (S5) solve the lower and upper triangular systems of the interface problem 

matrix; 



624 Revue europeenne des elements finis. Volume 7- no 5/1998 

- (S6) for each subdomain concurrently, back substitute the solution of the inter­
face problem on internal dof. 

This algorithm is currently being implemented on a Cray T3D system. Perfor­
mance analysis of the algorithm raises the following issues: there is no possible 
direct comparison with sequential execution time because the problems solved in 
parallel do not fit into the memory of a single processor. A comparison with a se­
quential machine (with a sufficient memory) having a different processor should 
take into account the relative performances of the processors that are difficult to 
evaluate (non-linear behavior). For these reasons, the performances presented con­
centrate on the elapsed (wall clock) execution time for different number of proces­
sing elements (PE). These execution times are compared to those obtained sequen­
tially on a Cray 1916. As mentioned before, the size of the problem solved depends 
on the number of PEs. 

The test problem considered is a 3D cube partitioned regularly into 4, 8, 16 and 
32 subdomains. The execution times obtained are given in Figure I 0. 

Elapsed execution time in sec. 
1COO.O 

600.0 

600.0 

400.0 

:!00.0 

I 

lPE./ 

,.l· 

__ .,{ 
..-

..-·· 

. ,/ 
/ 

.· 
..... ·•· 

)+ 
/ 

·· Cray J916 

_.+· . .-+/.· !Jk---E 32 PE 
/ . ..y:···:: .. +4 PE _.....- ---+ 

.~ .... --... _:·: .. -r-~~ 
o.o~·, I 1 1 I 

C 0 1 •)000 0 2C•C•CO.O .3~)·)00 0 400C•C.O .'Xn)•).O 

Number or do! 

Figure l 0. Elapsed execution times for different numbers of Pes 

The following remarks can be drawn from these results: 

-for small numbers of PEs ( 4 and 8), efficiency approaches I 00%, 
-for larger numbers of PEs (16 and 32), at fixed problem size the efficiency 

drops rapidly, 
-for the same numbers of PEs (16 and 32), the efficiency increases with the 

problem size. 



Object-Oriented Approach 625 

The above conclusions mean that the proposed parallel algorithm is not well 
scalable at fixed problem size, but is scalable if the problem size increases with the 
number of processors. 

6. Conclusion 

We have presented different aspects of distributed computing in the context of 
structural engineering problems. Distributed computing was applied for optimizing 
the use of heterogeneous computing resources. A runtime system for communica­
ting objects between distributed object bases has been developed. Next, we 
demonstrated the use of distributed parallel systems to reduce significantly the 
execution time of finite element simulations. A domain decomposition direct 
method was applied. The same communication system could be used for these 
different classes of applications for a wide range of computing systems: networks of 
heterogeneous workstations, vector supercomputers, massively parallel systems. 

The actual work forms a basis for future research aiming at optimization of all 
the steps of direct domain decomposition methods: communication and assembly of 
condensed matrices, factorization and resolution of the interface problem, using 
several processors per subdomain, load balancing problems. 

Acknowledgments 

The authors gratefully acknowledge the use of the Cray T3D system of the CEA 
(Commissariat a l'Energie Atomique) of Grenoble. 

7. References 

[ARN 98] K. ARNOLD, J. GOSLING, The Java™ Programming Language, second Edition, 
Addison Wesley, 1998. 

[AUN 90] S. AUNAY, Architecture de logiciels de modelisation et traitements distribues, these 
UTC, Universite de Technologie de Compiegne, 1990. 

[BRE 92] P. BREITKOPF, G. TouzoT, Architecture des logiciels et langages de modelisation, 
Revue Europeenne des Elements Finis, I (3) :333-368, 1992. 

[ESC 94) Y. ESCAIG, M. VAYSSADE, G. TOUZOT, Une methode de decomposition de 
domaines multifrontale multiniveaux, Revue Europeenne des Elements Finis, 3(3) :311-
337, 1994. 

[FAH 94] C. FAHRAT, F.X. Roux, Implicit parallel processing in structural mechanics. 
Monograph, Computational Mechanics Advances, 1994. 



626 Revue europeenne des elements finis. Volume 7- n° 511998 

[GEl 95] A. GEIST, J. DONGARRA, W. JIANG, R. MANCHEK, V. SUNDREAM, PVM: Parallel 
Virtual Machine ; A User's Guide and Tutorial for Networked Parallel Computing, MIT 
Press, 1 99 5. 

[KOP 95] C. KOPP, Introduction to NFS Performance, Part I, Open Systems Review, 
September, 1995. 

[MEY 92] BERTRAND MEYER, Eiffel: The Language, Prentice Hall, second edition, 1992. 

[MOR 93] L. MORAN<:AY, Representation parametree et modelisation de sytsemes physiques 
pour Ia conception optimale. these UTC, Universite de Technologic de Compiegne, 1993. 

[SAL 95] J. SAILTZ, R. PONNUSAMMY, S. SHARMA, B. MOON, Y-S HWANG, M. UYSAL, 
R. DAS, A manual for the CHAOS runtime library. Technical Report CS-TR-3437, Uni­
versity of Maryland, 1995. 

[STR 91] B. STRUSTROUP, The C++ Programming Language, Second Edition, Addison 
Wesley, 1991. 




