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ABSTRACT
Mucociliary clearance is the primary defense mechanism that
protects the airways from inhaled toxicants and infectious agents.
The fluid medium is spatially non-homogenous, consisting of
a viscoelastic mucus layer on top of a nearly-viscous periciliary
layer surrounding the motile cilia. In healthy environments,
the thickness of the periciliary layer is comparable to the
cilia length. Perturbations to this system are directly linked to
infection and disease. Clinical evidence links the periciliary layer
depletion to reduced rates of mucus clearance. Here, we develop
a computational model to systematically study the effects of
the viscoelastic properties and thickness of the mucus layer
on the system’s performance. We find that, compared to a
control case with no mucus, a healthy mucus layer enhances
the cilia performance: it improves flow transport at an energetic
advantage to the cilia. In contrast, when the periciliary layer is
depleted, mucus hinders transport and stiffer mucus leads to
a substantial decrease in transport efficiency. This decrease in
transport is accompanied by an increase in the cilia internal
forces and power needed to complete the cilia beating cycle.
We conclude by commenting on the relevance of these findings
to understanding mucociliary transport in healthy and diseased
environments.
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1. Introduction

Fluid transport in confined microenvironments is an essential process in many
biological and engineered systems (Brennen & Winet, 1977; Zhao, Moore, &
Beebe, 2001; Simonnet & Groisman, 2005; Fauci & Dillon, 2006). In the mam-
malian body for example, particle- and cell-laden fluid is transported by motile
cilia – active slender filaments – found on the epithelial cells of the upper
airways (Fulford & Blake, 1986; O’Callaghan, Sikand, & Rutman, 1999; Randell
& Boucher, 2006), ependymal cells in the brain (Del Bigio, 1995; Mirzadeh,
Han, Soriano-Navarro, García-Verdugo, &Alvarez-Buylla, 2010) and cells lining
the oviduct and epididymis of the reproductive tracts (Lyons, Saridogan, &
Djahanbakhch, 2006). In engineered microfluidic devices, several techniques
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have been devised for fluid and particle transport and manipulation (Stone,
Stroock, & Ajdari, 2004), including micron-scale magnetically actuated tails
(Dreyfus et al., 2005; Tierno, Golestanian, Pagonabarraga, & Sagués, 2008) and
synthetic molecular rotors (Van Delden et al., 2005; Eelkema et al., 2006).
This technologies are enabling the fabrication of arrays of active filaments that
beat synchronously and transport fluids in microfluidic channels (Kirby, 2010;
Mark, Haeberle, Roth, von Stetten, & Zengerle, 2010; Khaderi et al., 2011).
Simulations of synthetic cilia are also carried out for motion regulations of
microparticles (Masoud & Alexeev, 2011). In many of these biological and
technological applications, the fluid that needs to be transported exhibit spatially-
inhomogeneous viscoelastic properties (Lauga, 2007; Smith, Gaffney, & Blake,
2008). This work is particularly concerned with mucociliary clearance in the
lung.

The mucociliary clearance system consists of two components: a viscoelastic
mucus layer that traps inhaled particles and gets transported out of the lung
by cilia-generated forces, and a low-viscosity periciliary layer that facilitates
the beating of cilia; see Figure 1(a). Mucus clearance is the primary defense
mechanism that protects the airways from inhaled toxicants and infectious
agents (Cone, 2009; Boucher, 2007). Failure of mucus clearance is linked to
human lung diseases such as chronic obstructive pulmonary disease (COPD)
(Del Donno, Bittesnich, Chetta, Olivieri, & Lopez-Vidriero, 2000; Rogers, 2004;
Rogers, 2005; Hogg, 2004; Comer et al., 2012; Seys et al., 2015) and cystic fibrosis
(CF) (Boucher, 2007; Livraghi & Randell, 2007; Wielpütz et al., 2013). Great
advances have been made in understanding the mechanics of ciliary transport
and cilia-generated flows; see, for example, Chopra, Taplin, Simmons, and Elam
(1977), Smith et al. (2008), Smith, Gaffney, and Blake (2009), Li et al. (2012) and
Ding, Nawroth, McFall-Ngai, and Kanso (2014). However, there is a shortage
of quantitative models that predict the degree of failure in mucus transport
under perturbed and diseased conditions (Davenport & Yoder, 2005; Brooks
& Wallingford, 2014; Figure 1(b). Predictive airway clearance models would
improve the understanding of cilia-related lung diseases and the development of
treatment therapies (Boucher, 2004;Wanner, Salathé, &O’Riordan, 1996; Button
et al., 2012).

Early mathematical models of mucociliary transport date back to the work of
Barton & Raynor (1967). The authors considered the cilium to be a rigid rod
that is shorter during the recovery stroke than during the effective stroke, and
approximated its effect on the surrounding fluid using ‘resistance’ coefficients
that allowed them to obtain somewhat realistic flow rates (Barton & Raynor,
1967). Numerous studies were conducted thereafter, shedding more light on the
mechanics of mucociliary transport; see, for example, Fulford & Blake (1986),
Smith et al. (2008), Lee et al. (2011), Jayathilake, Tan, Le, Lee, and Khoo (2012),
Montenegro-Johnson, Smith, and Loghin (2013), Jayathilake, Le, Tan, Lee, and
Khoo (2015), Li, Favier, D’Ortona, and Poncet (2016) and Chatelin & Poncet
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(2016) and references therein. Most of these works consider single or two-layer
Newtonian fluids, focusing on the effects of difference in viscosity between the
two layers on fluid transport. Viscoelastic properties of the mucus were first
taken into account by Ross (1971). Ross considered aMaxwell fluid propelled by
a continuous ‘wavywall’ and analytically solved for the fluid transport rates (Ross,
1971). More recently, Smith, Gaffney, and Blake (2007) proposed a traction layer
model consisting of three layers: a periciliary layer of Newtonian fluid, a mucus
layer ofMaxwell fluid, and a thin traction layer between the periciliary andmucus
layers accounting for the interaction between the cilia and the mucus. The effect
of cilia beating is modeled as a time-dependent force acting on the traction layer
(Smith et al., 2007). The traction-layermodel predicts physiologically-reasonable
values of mucus transport and provides great insight into the temporal and
spatial details of mucociliary flows. However, it is limited in that it cannot take
into account the details of specific cilia beating patterns. It is also limited by
the Maxwell fluid assumption, which is a linear model of viscoelasticity. In the
same year, Mitran (2007) developed a discrete computational framework for
mucociliary transport that considers a two-layer fluid: a viscoelastic mucus layer
on top of a Newtonian periciliary layer, and prescribed the internal forces along
the cilia (Mitran, 2007). He showed the emergence of metachronal waves due
to hydrodynamic coupling and noted that the metachronal beating of cilia is
energetically beneficial. Note that in all these works, the periciliary fluid layer
was considered Newtonian but recent investigations suggest that this view may
be too simplistic and that the periciliary layer possesses viscoelastic properties
(Tarran et al., 2001; Button et al., 2012).

In this paper, we present a mucociliary transport model consisting of two
fluid layers: a mucus layer of highly viscoelastic fluid on top of a periciliary
layer of nearly viscous fluid, as in the case of biological ciliary systems Boucher
(2004). We account for the viscoelastic effects using the Oldroyd-B fluid model
Larson (1999). The Oldroyd-B model, despite its simplicity, captures the main
mechanical features of viscoelastic fluids under shear conditions, that is to say,
under conditions that are reminiscent to the shearing motions produced by
beating cilia. We formulate a system of equations governing fluid-cilia inter-
actions and solve it numerically using the immersed boundary method (IBM)
first proposed by Peskin (1972) to study flow around heart valves (Peskin, 1972;
Peskin, 2002) and later developed and applied successfully to various fluid–
structure interaction problems including problems involving non-Newtonian
fluids (Dillon, Fauci, Omoto, & Yang, 2007; Teran, Fauci, & Shelley, 2010;
Chrispell, Cortez, Khismatullin, & Fauci, 2011; Thomases & Guy, 2014).

Wemake several simplifications for the sake of developing a tractable compu-
tational model that allows us to systematically probe the effects of the periciliary
layer thickness and mucus properties on the transport performance:
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Figure 1.Healthy and diseased ciliary systems. In a healthy state, cilia liemostly in a nearly-viscous
periciliary layer, with only the tips penetrating into the viscoelastic mucus layer. In a diseased
state, the mucus is denser and thicker, submerging the cilia in a mostly viscoelastic environment.

(i) The beating pattern of the filament is constructed from the rabbit tracheal
cilia (Fulford & Blake, 1986). We assume that the beating kinematics is
not affected by the thickness of the mucus layer or its elastic properties.
This assumption is useful to compare the performance – internal forces,
power and efficiency – of the unchanged cilia kinematics under various
mucus conditions, but it does not allow the beat kinematics to change
dynamically in response to changes in the fluid environment.

(ii) Viscoelastic effects are modeled using the Oldroyd-B fluid model (Larson,
1999). The Oldroyd-B model captures the main mechanical features of
viscoelastic fluids under shear conditions, that is to say, under conditions
that are reminiscent to the shearing motions produced by beating cilia,
but it does not include shear thinning effects.

(iii) Previous experimental and numerical works have shown that the interface
between the mucus and periciliary layers exhibits no significant deforma-
tions under the effect of cilia beating (Sanderson & Sleigh, 1981; Smith
et al., 2008; Dillon et al., 2007). We therefore assume no deformation at
the interface and match the elastic component of the shear stress at the
interface between the periciliary and mucus layers.

(iv) In mucociliary transport, the periciliary and mucus layers have distinct
viscosities, with typical values of the orderμ = 10−3Pa·s for the periciliary
layer andμ = 10−1Pa · s for the mucus layer. Several studies have focused
on the effect of this difference in viscosity on fluid transport (Fulford &
Blake, 1986; Lee et al., 2011). Our goal here is to isolate and examine the
viscoelastic effects on fluid transport, thus we set both viscosities to be the
same.

(v) We formulate the equations of motion governing the fluid-filament in-
teractions using the Navier–Stokes equations and solve them numerically
using the IBM pioneered by Peskin (1972), Peskin (1972) and Peskin
(2002) and later extended to non-Newtonian fluids (Dillon et al., 2007;
Teran et al., 2010; Chrispell et al., 2011; Thomases & Guy, 2014). The
Reynolds number based on the length of the filament and its beating
frequency is defined as Re = ρl2/µT , where ρ and μ are fluid density
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Figure 2.Model schematics. (a) an infinite array ofmotile cilia beating synchronously in a channel.
The channel is filledwith a viscoelastic fluid of thickness Lm atop a nearly viscous fluid of thickness
Lp. (b) Kinematics of rabbit tracheal cilia, based on Fulford & Blake (1986) and scaled to preserve
the length of the cilium. The effective stroke is shown in dark grey and the recovery stroke in light
grey.

and viscosity and l and T are the cilium length and beating frequency,
with typical values l = 10µm, T = 0.1s, ρ = 103 kg · m−3, μ =
10−3Pa · s. For these parameter value, one gets Re = 10−3, hence inertia
is negligible and one could use the Stokes equations to model the system.
The IBM approach for one-way coupled systems in Stokes flow tends
to be numerically stiff (Teran & Peskin, 2009). Therefore, we use the
one-way coupled IBM for Navier–Stokes equations proposed in Taira &
Colonius (2007) and embed a viscoelastic solver for the Oldroyd-B model
with a finite but small Reynolds number Re = 0.1, which we view as a
numerical ‘regularization’ parameter to reduce the computational cost.
Smaller Reynolds numbers lead to results that are qualitatively similar
but at a much higher computational cost. To quantify the difference
introduced by the finite Reynolds number, one can use the analytical
solution toTaylor’s swimming sheet (Taylor, 1951) as aproxy and compare
it with the computational solution with finite Reynolds number. Here
we refer to Chrispell et al. (2013) where they showed the difference in
swimming velocity between the numerical simulations for Re = 0.1 and
the analytical solution for Re = 0 is minimal for Newtonian fluid. For
viscoelastic fluid, the numerical results for Re = 0.1, De = 1 agrees
well with Lauga’s asympotics (Lauga, 2007) at small amplitudes for Re =
0, De = 1. For larger amplitudes, the numerical results for finite Reynolds
number are about 30% lower than those of the asymptotics.

We use this computational framework to conduct a systematic study of the
effects of the parameters of the mucus layer on mucociliary transport. In partic-
ular, we vary the mucus properties and thickness to emulate a range of healthy
and diseased conditions. Our findings suggest that the mucus parameters greatly
affect mucociliary transport. We conclude by discussing the significance of these
results in relation to mucociliary transport in healthy and diseased conditions,
as well as the design of microfluidic transport mechanisms for biological and
artificial cilia.
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2. Model andmethod

2.1. Problem formulation

Consider an infinite array of cilia beating in synchrony in a narrow channel of
width L. The cilia have length l and are uniformly distributed on one side of
the channel at a separation distance D as shown in Figure 2(a). The channel is
filled with two fluid layers: a viscoelastic mucus layer of thickness Lm on top of a
nearly-viscous periciliary layer of thickness Lp, with Lp + Lm = L.

The cilia beating kinematics are based on experimental data of the rabbit
tracheal cilia Fulford&Blake (1986) and depicted in Figure 2(b).Mathematically,
the beating kinematics can be described in aCartesian frame (x, y) attached at the
base of the cilium using the vector representation ξ c(s, t), where s is the arclength
along the cilium’s centreline from its base (0 < s < l) and t is time (0 < t < T).
The (xc , yc) components of ξ c(s, t) are given by a Fourier series expansion in t
and Taylor series in s with coefficients chosen to match the experimental data.
It should be noted that the cilium length is not conserved by the coefficients
reported in Fulford & Blake (1986). Here, we rescaled the coefficient to ensure
the total length of the cilium is constant at all time.

Themucus and periciliary layers are described using the Oldroyd-Bmodel for
polymeric fluids, that is to say, for fluids consisting of a viscous fluid solvent and a
polymeric elastic solute (Larson, 1999). The total deviatoric stress σ = σ f +σ e of
the Oldroyd-B fluid consists of contributions from the Newtonian fluid solvent
σ f and the polymeric elastic solute σ e. The constitutive stress–strain relations
are given by

σ f = 2μf D(u), σ e + rσ�
e − 2μe D(u)−ε∇2σ e = 0, (1)

where D(u) = 1
2 [∇u + (∇u)T ] is the strain rate tensor, r is the relaxation time

of the viscoelastic fluid, ( · )� ≡ ∂
∂t ( · ) + u·∇( · ) − [∇u( · ) + ( · )(∇u)T ]

denotes the upper convected derivative, μf and μe are the viscosities of the fluid
solvent and elastic solute respectively. The relaxation time of the viscoelastic
material describes the time required for the elastic polymers in the fluid to return
to equilibrium after the stress is released (Larson, 1999). Informally, it could
also be understood as ‘the duration for which the material remembers the effect
of an applied force’. Larger r means that applied forces will remain effective
for a longer time after unloading. It should be noted that the diffusion term
ε∇2σ e is not inherent to the constitutive relation of the Oldroyd-B model. It
has been added as a regularization term with ε � 1 because, in its absence,
the stress tensors of the Oldroyd-B model have the potential to lose smoothness
in the long-time limit (Thomases, 2011; Thomases & Guy, 2014). We validate
our choice of ε by systematically decreasing ε and making sure the results are
consistent, as discussed in Section 2.2.
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Table 1. Dimensional and dimensionless fluid parameters. Dimensionless parameters are scaled
by the cilia length l, the period of the beating cycle T , and the total viscosityμ = μe + μf . In this
study, we vary the shaded parameters while keeping all other parameters fixed.

Periciliary layer Mucus layer

Dimensional Dimensionless Dimensional Dimensionless

Layer thickness Lp Lp Lm = L − Lp Lm = L − Lp
Relaxation time rp Dep = 0.05 rm Dem
Viscosity of elastic solute μe α = 0.5 μe α = 0.5
Viscosity of fluid solvent μf 1 − α = 0.5 μf 1 − α = 0.5
Total viscosity μ = μe + μf 1 μ = μe + μf 1

The equations of motion of the Oldroyd-B fluid are obtained by substituting
the regularized constitutive relations into the balance of linear momentum. To
this end, one gets the modified Navier–Stokes equation:

ρ(
∂u
∂t

+ u·∇u) + ∇p − μf ∇2u − ∇ ·σe − f = 0. (2)

Here, ρ is the fluid density, p is the pressure field and f is the body force density
acting on the fluid. Equation (2) is to be solved in the fluid channel in conjunction
with the incompressibility equation ∇ · u = 0 and the constitutive equation for
σ e from (1). The solution to this coupled system of equations should satisfy the
no-slip boundary conditions at the channel walls and along the individual cilia

u =
⎧⎨
⎩

∂ξ c
∂t

at the cilia,

0 on the channel walls: y = 0 and y = L.
(3)

To emulate the effect of the mucus layer on top of the periciliary layer, we
consider two viscoelastic fluids of different material properties. The mucus layer
consists of a viscoelastic fluid of thickness Lm and longer relaxation time rm.
The mucus layer lies on top of a nearly-viscous periciliary fluid of thickness Lp
and shorter relaxation time rp. Previous experimental and numerical works have
shown that the interface between the mucus and periciliary layers exhibits no
significant deformations under the effect of cilia beating (Sanderson & Sleigh,
1981; Smith et al., 2008; Dillon et al., 2007).We therefore assume no deformation
at the interface. This assumptionmeans that only the solvent could be exchanged
between the periciliary and mucus layers but not the polymer molecules which
dictate the relaxation time of the viscoelastic fluids (Randell & Boucher, 2006;
Button et al., 2012). Mathematically, the fluid velocities are continuous at the
interface and the extra shear stress σ e is zero, σ e|y=Lp = 0. This is based on the
fact that the periciliary layer has small elastic component (rp/rm � 1), thus the
elastic stress at the interface is close to zero.

We use the cilium length l to scale length, the beating cycle T to scale time,
the total viscosity μ = μf + μe to scale viscosity, and the ratio between the
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total viscosity of the fluid to the beating cycle μ/T to scale pressure. A summary
of the dimensional and dimensionless parameters can be found in Table 1. The
non-dimensional thickness of the fluid layers in the channel are Lp ≡ Lp/l and
Lm ≡ Lm/l. The fluid is characterized by three non-dimensional parameters:
(i) the Reynolds number Re = ρl2/μT measures the ratio of inertial to viscous
effects and, therefore, is negligible in drag-dominant flows –here, we set Re = 0.1
for numerical reasons as mentioned earlier; (ii) the Deborah number De = r/T
measures the elastic properties of the viscoelastic fluid and takes two distinct
values: Dem in the mucus layer and Dep in the periciliary layer – here, we fix Dep
and vary Dem; and (iii) the ratio of elastic to total viscosity α = μe/μ, which
we take to be the same in the mucus and periciliary layers. In non-dimensional
form, Equation (2) and the incompressibility condition are written as

Re(
∂u
∂t

+ u·∇u) + ∇p − (1 − α)∇2u − ∇ ·σe − f = 0,

∇·u = 0.
(4)

These equations are coupled to the constitutive relations for σ e from Equation
(1), which in non-dimensional form are given by

Dep σ�
e + σ e − 2α D(u) − ε∇2σ e = 0, for 0 ≤ y < Lp,

Demσ�
e + σ e − 2α D(u) − ε∇2σ e = 0, for Lp ≤ y < L.

(5)

The set of Equations (4) and (5) reduce to the typical incompressible Navier–
Stokes equations when Dep = Dem = 0, α = 0, and ε = 0.

2.2. Numerical method

For viscous fluids (σ e ≡ 0) and fixed boundaries, the incompressible Navier–
Stokes Equation (4) can be discretized using a standard fluid solver, such as
the classical fractional step method where pressure p is treated as a Lagrange
multiplier to ensure the fluid velocities satisfy the incompressibility condition
(Chorin, 1968; Chang, Giraldo, & Perot, 2002; Fletcher, 2012). In the case of
moving boundaries, a standard numerical method for solving Equation (4) is the
IBM Peskin (1972, 2002). IBM uses a standard Eulerian (fixed) mesh to solve
for the fluid velocity field and a Lagrangian (moving) mesh to account for the
moving boundary, here, the cilium. To communicate between these twomeshes,
a regularizedDirac delta function δ is used to project the boundary forces F onto
the fluid domain,

f (x, t) =
∫

C
F(ξ , t)δ(x − ξ(s, t))ds, (6)

and to project the fluid velocities u onto the moving boundary,

∂ξ(s, t)
∂t

=
∫

F
u(x, t)δ(x − ξ(s, t))dx. (7)
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Figure 3. Numerical Methods. (a) Staggered Eulerian mesh: the horizontal and vertical arrows
(→,↑) represent the discrete velocities in x , y directions respectively. The pressure p and the
normal stresses σ 11, σ 22 are located at the cell centers (×). The shear stress σ 12 are located at the
cell corners (◦). The Lagrangian boundary points are represented by filled circles (•). The discrete
forces along the boundary are represented by thick arrows (⇒,⇑). (b) The regularized Dirac delta
function δ(x(x , y) − ξ(ξ , η)) = φ(x − ξ)φ(y − η) evaluated at the Eulerian mesh, where φ is
a one-dimensional regularized Dirac delta function. (c) Here, we use the function φ employed by
Roma et al. (1999).

Here, C denotes the Lagrangian cilia boundary andF the Eulerian fluid domain.
It should be emphasized that ξ and F are the Lagrangianmeshmarkers and force
density along C. When the motion of the boundary is unconstrained, ξ and F
are typically related via an elastic energy function E such that F(ξ , t) = ∂E/∂ξ .
In this work, the cilium C is constrained to follow prescribed beating kinematics
ξ c(t). A typical technique to link ξ(t) to ξ c(t) is to impose F(ξ , t) = K[ξ c(t) −
ξ(t)] and use large values of the stiffness parameter K to guarantee that the
motion of the boundary ξ is close to the prescribed motion ξ c . However, this
technique renders the equations of motion stiff and therefore prohibits the use
of large time steps. Similar difficulties are encountered in the one-way coupled
IBM for Stokes flow (Teran & Peskin, 2009).

To circumvent these difficulties, we use the one-way coupled IBM proposed
in Taira & Colonius (2007), where the boundary forces F are treated as a
Lagrange multiplier to ensure that the no-slip conditions ξ = ξ c at the cilia
are satisfied. This method solves for the boundary forces F implicitly with no
need for additional constitutive relationship between ξ and F. The one-way
coupled IBM is comparable in temporal stability to the classical fractional step
method, thus enabling simulations with larger time steps (Taira & Colonius,
2007).

We embed a viscoelastic solver for the Oldroyd-B fluid Equations (4), (5)
in the one-way coupled IBM. To this end, we discretize the doubly-periodic
fluid domain F = [0,D] × [0, L] using a uniform, finite-volume, staggered
Eulerian mesh, of mesh size h. Details of the staggered mesh are shown in Figure
3(a). At each time step, we explicitly update the elastic stress tensors σ e in (5)
using a standard second-order Runge–Kutta scheme. Then, we substitute the
updated stress tensors in the momentum Equation (4) to update the flow field
u, subject to the incompressibility condition ∇ · u = 0 and no-slip boundary
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(a) (b)

Figure 4. Numerical Convergence. (a) The flow rate within the 20th cycle. (b) The mean flow rate
as a function of cycles. The Deborah number of the mucus layer is Dem = 5, the periciliary layer
thickness is Lp = 0.8. ‘−’: h = 0.0156, 
t = 2 × 10−5; ‘×’: h = 0.0312, 
t = 2 × 10−5; ‘◦’:
h = 0.0156,
t = 4 × 10−5.

conditions (3) using a fractional stepmethod. In (4), we discretize the convective
term u · ∇u using the explicit second-order Adams–Bashforth scheme and the
diffusion term ∇2u using the implicit Crank–Nicolson scheme. The temporal
and spatial discretization of Equations (3) and (4) yields an algebraic system of
equations for the fluid velocity u.

The cilium base point is located at (x, y) = (D/2, 0) and the effective stroke is
pointing in the positive x-direction as shown in Figure 2(b).We use themesh size
d = h to discretize the cilium, as recommended by Taira & Colonius (2007) to
ensure no penetration of streamlines. To communicate between the fluid domain
and themoving cilia boundary, i.e. between the Eulerian and Lagrangianmeshes,
we discretize the Dirac delta function in (6) and (7) using the discrete Dirac delta
function developed by Roma, Peskin, and Berger (1999) and illustrated in Figure
3(b) and (c). The forces F and fluid velocity u are updated simultaneously at
each time step.

We let the fluid domainF be of sizeD×L = [0, 2]×[0, 2], and we set the total
integration time to be 20 cilia-beating cycles. The numerical values of the mesh
sizes h = d = 0.0156 and the timestep 
t = 2 × 10−5 are chosen so that the
solution changes little under further spatial and temporal mesh refinement. In
particular, a decrease in the spatial and temporal mesh size by a factor of 2 yields
changes in the terminal cilia-driven flow rate of about 5% (under spatial mesh
refinement) and 1% (under temporal mesh refinement), see Figure 4. We choose
the regularization parameter ε in (5) to be 0.05. A smaller value of ε = 0.02
yields change in the terminal cilia-driven flow rate of about 4%. Therefore, we
consider the discretization scheme to have numerically converged. Note that the
size of the computational box and thus the distance between neighboring cilia is
relatively large, meaning the interactions between different cilia are neglected. In
fact, doubling the computational box in the x-direction yields a change of flow
rate of about 2%.
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(a) (b)

Figure 5. Elastic stress energy. Contour plots of the stress energy tr(σ e) in (a) generic (Lp = 0.8)
and (b) depleted (Lp = 0.4) states, shown at t = 0.2T during the effective stroke and t = 0.7T
during the recovery stroke. Here, Dem = 5 and Dep = 0.05. Insets in (a) show the elastic stress
energy with a small color scaling.

We consider a small Deborah number Dep = 0.05 of the periciliary layer
(nearly Newtonian) and we vary the elastic properties Dem of the mucus layer
and its thickness Lm, which implies a change in the thickness of the periciliary
layer Lp. The elastic viscosity fractions for periciliary layer and mucus layer are
both α = 0.5.

3. Results

We consider two states of periciliary layer thickness: Lp = 0.8, which we label
as ‘generic’ because it is comparable to the average length of the cilium over its
beating cycle as observed experimentally in healthy ciliary systems, and Lp = 0.4,
which we label as depleted. In the generic state, the cilium tip penetrates into the
mucus layer during the effective stroke as it pushes the mucus forward while the
whole cilium moves in the periciliary layer during the recovery stroke. In the
depleted state, the mucus layer covers part of the cilium at all times, even during
the recovery stroke.

Figure 5 shows the contour plots of the elastic stress energy in these two
states for mucus Deborah number Dem = 5. The elastic stress energy is equal
to the trace of the extra stress tensor tr(σ e). Because the mucus layer has a
longer relaxation time than the periciliary layer, the cilium in the depleted state
generates higher fluid stresses (about 10 times) compared to the cilium in the
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generic state. The spatial distribution of the elastic stress energy is also different
in the two states. During the effective stroke, the stress is distributed along the
cilium in the generic state (highlighted in the insets), while in the depleted state
it is concentrated close to the cilium tip. During the recovery stroke, we observe
larger regions of high stress with slower decay rate in the depleted state compared
to the generic state. We next examine the effects of the elastic stress in the mucus
on the fluid velocity field in both the generic and depleted environments.

3.1. Cilia-driven fluid velocity

Figure 6(a) and (b) depict the flow fields of the cilium in the generic and depleted
states respectively. The fluid velocities close to the cilium are dictated by the
cilium motion because of the no-slip boundary conditions. However, the decay
of the flow velocities over space is affected by the elastic stress distribution.
Compared to the generic state, the velocities decay slower in the depleted state
because of the high level of stress energy,whichmeanshigh elastic stress enhances
the instantaneous flow. The velocity differences between the two states 
u =
udepleted − ugeneric are shown in Figure 6(c). It shows an increase in positive flow
during the effective stroke and an increase in negative flow during the recovery
stroke, with the maximum difference in velocity appearing above the tip of the
cilium. This instantaneous picture is not sufficient to assess the overall velocity
difference between the generic and depleted states. For that, we evaluate the time
averaged flow fields over one beating cycle, as discussed next.

Figure 7(a) shows the time averaged flow fields 〈u〉 = 1
T

∫ T
0 udt. In the

generic state, the velocity field averaged over one cycle shows a single vortex-
like structure below the cilium tip. On the other hand, 〈u〉 in the depleted
state shows two counter-rotating vortex-like structures. Particularly, the vortex
structure at the front end (left) of the ciliumrotates counter-clockwise, generating
a back flow above the cilium tip in this location. That is, the generic state
favors an asymmetric flow structure while the depleted state is characterized
by a symmetric flow. Symmetry here is detrimental to net flow and transport in
the direction of the effective stroke.

We further average the velocity field in the x-direction, namely, we compute
〈ux〉 = 1

D
∫ D
0 〈u〉 · exdx, with ex being the unit vector pointing to the x-direction.

The average velocity profiles are depicted in Figure 7(b) and correspond to
nonlinear shear profiles. The results of a benchmark computation in which the
periciliary layer takes up the entire channel (nomucus) are shown indashed lines.
We will refer to this benchmark computation as the control case. In the generic
state, the velocity 〈ux〉 is almost identical to that of the control case for y < 0.8
(periciliary layer) and faster than that of the control state for y > 0.8 (mucus
layer), withmax (〈ux〉)generic = 0.22. This is because the flow during the effective
stroke in the generic state is enhanced by the elastic stress due to the presence
of the mucus layer, while the flow during the recovery stroke remains almost the
same as the control case since the cilia motion is always in the periciliary layer
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Figure 8. Internal cilia torques. Internal torques in (a) generic (Lp = 0.8) and (b) depleted (Lp =
0.4) states as functions of the arclength along the cilium for Deborah numbers Dem = 1, 2, 5, 10.
Snapshots during the effective (t = 0.2) and recovery (t = 0.7) strokes. The dashed curves
represent the results of the control case with no mucus (Lp = 2.0).

during recovery stroke. In other words, the presence of mucus layer enhances
the flow in the effective stroke, but not the flow in the recovery stroke. In the
depleted state, the flow velocity lags behind the control case for all y and, unlike
the generic and control states, the flow is negative in the periciliary layer. The
highest mean velocity in the depleted state is max (〈ux〉)depleted = 0.10, that is,
max (〈ux〉) drops by over 50% from the generic. This drop in fluid transport
can be attributed to the higher stress energy in the depleted state, which makes
the mucus layer “stiffer” and solid like, thus hindering fluid velocity and flow
transport.

3.2. Cilia internal moments and power requirements

We now evaluate the internal moments required in order for the cilia to perform
the prescribed beating kinematics in both the generic and depleted conditions.
As mentioned in the introduction, we assume that the beating kinematics is not
affected by the thickness of the mucus layer or its elastic properties. The internal
bending moments q generated by each cilium are obtained using the Kirchhoff
model for an elastic filament as done in Eloy & Lauga (2012) and Guo, Nawroth,
Ding, and Kanso (2014), which yields q = Bt ′′ × t + t × ∫ l

s F(s̃, t)ds̃. Here, B is
the dimensionless bending rigidity of the cilium, whichwe set toB = 6.54×10−4

as done in Eloy & Lauga (2012) and Guo et al. (2014), t is the unit tangent to
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the cilium and the prime superscript ( · )′ represents derivative with respect to
arclength s (t ′′ = ∂2 t/∂s2).

Figure 8 depicts the magnitude of the internal bending moments ‖q‖ as a
function of the arclength s at two snapshots corresponding to t = 0.2T during
the effective stroke and t = 0.7T during the recovery stroke. Figure 8(a) shows
the values of ‖q‖ in the generic state (Lp = 0.8) for four different values of
Dem = 1, 2, 5, 10 compared to the control case (no mucus, dashed line) and
Figure 8(b) compares the depleted state (Lp = 0.4, Dem = 1, 2, 5, 10) to the
control case. Interestingly, in the generic state, the magnitude ‖q‖ of the internal
moments is independent of Dem and it takes smaller values than those in the
absence of mucus (dashed line). That is to say, in the generic state and within
the considered range of Deborah numbers, the internal moments required to
perform the cilia beating kinematics are independent of the elastic properties
of the mucus; and the same cilia beating kinematics require weaker internal
moments in the presence ofmucus than in its absence. The latter can be explained
as a result of the interplay between the elastic properties of the fluid and the
oscillatorymotion of the cilia. Elasticity causes the fluid to “react” in the opposite
direction once the applied forces are released. Therefore, at each reversal in the
ciliummotion fromeffective to recovery stroke and vice versa, the elastic reaction
of the fluid tends to reinforce the reversal in the cilium motion, thus requiring
the cilium to exert smaller forces on the fluid and resulting in smaller internal
moments along the cilium. In the healthy state, the cilium tip penetrates the
mucus layer only during part of the effective stroke (roughly 20% of the beating
period), giving the elastic energy in the mucus enough time to relax and diffuse.
Higher Dem does not seem to affect the stored elastic energy. On the other hand,
in the depleted state, the required internal moments increase as a function of
the mucus Deborah number and exceed the internal moments of the control
case at Dem = 5 and 10. In the depleted state, the cilium is partially covered
by the mucus at all times and the elastic stress has no time to relax and diffuse.
As the Deborah number increases, the mucus becomes more stiff with little
difference in the elastic energy between the effective and recovery strokes (Figure
5). This causes the system to loose the favorable interplay observed in the generic
state between fluid elasticity and oscillatory cilia kinematics and requires higher
internal moments for the cilium to complete its beating cycle.

The average power 〈P〉 expended internally by the cilium is equal to the power
consumed by the internal moments q. Namely, one has

〈P〉 = 〈
∫ L

0
max (0, q · �)ds〉, (8)

where � = (‖ ṫ‖/‖t × ṫ‖) t × ṫ is the angular velocity vector and the dot
represents derivative with respect to time ( ṫ = ∂ t/∂t). Negative work is not
taken into account because the cilium does not harvest energy from the ambient
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flow (Eloy & Lauga, 2012). Since the internal moment required in the generic
state is lower than that in the control case (no mucus), the resulting power
is lower as well (〈P〉 = 72.5 in the generic state vs. 81 in the control case).
This reduction in power requirement is consistent with the analysis of Lauga
Lauga (2007), where he examined analytically the swimming motion of a small
amplitude waving sheet in weakly-viscoelastic fluids. Lauga showed that it is
energetically beneficial to swim in a fluid that has some elasticity, compared to a
Newtonian fluid with the same viscosity. The power requirement in the depleted
state with Dem > 8 is higher than that of the control case (〈P〉 > 81). In this case,
Lauga’s assumption of weak viscoelasticity is no longer valid.

3.3. Effects ofmucus layer on flow transport, power and efficiency

We study the effects of the Deborah number Dem and thickness Lm of the mucus
layer on themean flow transport 〈Q〉, mean power expenditure 〈P〉 and efficiency
η of the cilia. The total flow transported by the cilia in the channel is equal to the
flow across any plane at constant x (a direct result of flow incompressibility). That
is to say, the flow rate at any given time is given by Q(t) = ∫ L

0 u(0, y, t) · exdy.
Averaging over one cycle, we get the mean flow rate

〈Q〉 = 1
T

∫ T

0

∫ L

0
u(0, y, t) · exdydt. (9)

Given 〈Q〉 and 〈P〉, we define the cilia transport efficiency as

η = μl−3〈Q〉2/〈P〉. (10)

This definition of efficiency is consistent with that employed in Eloy & Lauga
(2012) and Osterman & Vilfan (2011).

We vary the Deborah number of the mucus layer Dem from 1 to 10. Figure
9(a) shows the rate of flow transport as a function of the Dem for four distinct
values of the periciliary layer thickness: Lp = 0.4, 0.6, 0.8, and 1. The values
of Lp = 0.4 and 0.6 correspond to depleted conditions where the mucus layer
penetrates into the periciliary space. Evidently, the effects of the mucus elasticity
depends highly on the thickness of the mucus layer. Higher elasticity increases
the flow rate in the generic states while decreases the flow rate in the depleted
states. The flow rates of the generic states are higher than the control case (no
mucus, dashed line) while those of the depleted states are lower. In fact, the flow
rate of the depleted state Lp = 0.4 is only 20% of the generic flow rates (Lp = 0.8)
at Dem = 10. These findings are consistent with the results of Teran et al. Teran
et al. (2010), where they showed that compared to the viscous case, elasticity can
be beneficial to the swimming of a sperm cell for a range of Deborah number
and detrimental to the swimming motion if the Deborah number is too high.
Further, Figure 9(a) also shows that for a given thickness of the periciliary layer,
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the flow rates plateau for Dem ≈ 10, suggesting that the transport performance
is robust to further changes in viscoelastic properties of the mucus layer.

The mean power 〈P〉 expended by the cilium in one cycle is depicted in Figure
9(b). Clearly, for Lp ≥ 0.8 the power expenditure is almost independent of the
mucus Deborah number. The power expenditure increases slowly with Dem for
Lp = 0.6 and dramatically for Lp = 0.4. That is to say, the depleted states
are characterized not only by lower flow rates 〈Q〉 but also by higher power
requirements. Therefore, when limited by the energy budget 〈P〉cr of the cilium
in biological or engineered systems, the cilium may not be able to complete the
beating cycle once the required power exceeds that budget.

Without access to the energy budget of biological cilia, we assume that the cilia
have enough power to complete the prescribed beating cycle and compute the
transport efficiencies (see Figure 9(c)). The curves exhibit similar trends as the
flow rates 〈Q〉. In the generic states, higher efficiencies are observed for higher
Deborah numbers. In the depleted states, the efficiencies decreasewith increasing
Deborah numbers. In particular, at Dem = 10, the efficiency of Lp = 0.4 is only
5% of the efficiency of Lp = 0.8. We further plot the values of Lp that maximize
〈Q〉 andη vs. themucusDeborahnumberDem in Figure 9(d).Clearly, the optimal
Lp increases from 0.6 to 0.9 as Dem increases from 1 to 10 but at a decreasing rate
of change for larger Dem. That is to say, for larger Dem, the optimal periciliary
layer thickness seems to level off and is not very sensitive to the further changes
in Dem.

Finally,wehighlight the dependence of the performancemetrics 〈Q〉, 〈P〉 andη

on the thickness Lp of the periciliary layer for a fixed value of Dem = 10. The flow
rate 〈Q〉 is not amonotonic function ofLp (Figure 9(e)). It is largest forLp = 0.87,
for which the efficiency η is also largest (Figure 9(h)). That is, Lp = 0.87 is the
optimal value of the periciliary layer thickness. This value is close to the value
Lp = 0.8, which we labeled as generic state, where the thickness of the periciliary
layer is comparable to the average cilia length. On the other hand, the required
power reduces gradually when Lp decreases from 1 to 0.6, but increases sharply
when Lp < 0.6 (see Figure 9(f)). An increase in themucus layer Lm and a decrease
in the periciliary thickness Lp may require higher powers than those affordable
by the cilium 〈P〉cr, thus preventing it from completing its beating cycle, which
may lead to decreased transport performance and even complete failure in their
transport function.

4. Discussion

Mucociliary clearance in the lung serves to effectively transport inhaled toxic
molecules and undesirable particles away from the tissue surfaces, thus shielding
the airways from potentially infectious agents. Disruptions in the ciliary appa-
ratus, whether due to a genetic disorder or acquired causes, are directly linked
to infection and disease such as CF and COPD. In these diseased conditions,
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the mucociliary system is characterized by a depletion of the watery periciliary
layer underlying the mucus layer. Clinical evidence connects the periciliary layer
depletion to reduced rates of mucus clearance (Fahy & Dickey, 2010; Boucher,
2007). In fact, in vivo analyses of wild-type (healthy) and CFmurine nasal airway
surface liquid thickness show that CF decreases the airway surface liquid height
from 7µm to 4µm, with periciliary layer thickness decreased almost by half
from 4µm to 2.5µm (Tarran et al., 2001).

In this work, we developed a novel computational model to studymucociliary
transport in a microfluidic channel consisting of a mucus layer (viscoelastic
fluid) atop a periciliary layer (nearly-viscous fluid). We systematically varied
the viscoelastic properties and thickness of the mucus layer to emulate healthy
and diseased conditions. The representative diseased state has a periciliary layer
thickness half of the representative healthy state, which is consistent with ex-
perimental observations (Tarran et al., 2001). We assessed cilia performance in
terms of three metrics: flow transport, internal power expended by the cilia, and
transport efficiency. We found that, compared to a control case with no mucus,
a healthy mucus layer enhances cilia performance in all three metrics. That is
to say, a layer of mucus atop a healthy periciliary layer not only improves flow
transport but it does so at an energetic advantage for the cilia. Further, in healthy
environments, increasing the Deborah number of the mucus layer enhances
transport efficiency. In contrast, in diseased environments where the periciliary
layer is depleted, mucus hinders transport and larger Deborah numbers reduce
transport efficiency further. This decrease in efficiency is accompanied by an
increase in the internal torques and power needed to complete the cilia beating
cycle. Cilia therefore may not be able to beat at all if the required power is
higher than the power afforded by the cilia internal machinery - this is consistent
with clinical observations that link thin periciliary layers to cilia failure and
dysfunction (Fahy & Dickey, 2010). It is worth noting here that the transport
efficiencywe obtained in the diseased state of a depleted periciliary layer Lp = 0.4
is only 5% of the value of the transport efficiency obtained in the healthy state
of a periciliary layer thickness Lp = 0.8. This decrease in performance in the
diseased state is accompanied by larger elastic stresses at the cilia tips and by
two counter-rotating vortex-like structures below the cilia tips. The symmetry of
these dipolar vortex structures is detrimental to net transport.

Our modeling framework systematically couples mucociliary transport to the
parameters of the mucus layer. It establishes variations in the flow transport in
response to perturbations in the mucus and periciliary layers, regardless of the
physiological mechanisms that bring this about. Here, a few comments on the
model advantages and limitations are in order:

(i) Our underlying assumption throughout this work was that the beating
kinematics is not affected by the thickness of the mucus layer or its elastic
properties. This framework is useful to compare the performance of the
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unchanged cilia kinematics under various mucus conditions. We found
that cilia performance is enhanced in the presence of a healthy mucus
layer than in the control case of no mucus, and diminished in diseased
environments when the periciliary layer is depleted. A future extension of
the present study would be to allow the cilia beat kinematics to change
dynamically in response to changes in the mucus environment. Such
complementary approach would provide valuable insights into the effects
of diseased environments on changes in the cilia beating patterns.

(ii) All cilia in this study are beating in synchrony, as ensured by the periodic
boundary conditions in the x-direction. In reality, cilia beat in an or-
chestrated metachronal wave. In a previous work that does not explicitly
account for the mucus layer, we showed that compared to beating in
synchrony, ametachronal beat can result in asmuch as 6 times higher flow
velocity for this particular cilia beating pattern (Guo et al., 2014). Taking
this as a guideline, we scale the dimensionless average flow rate in the
healthy condition 〈Q〉/Ly = 0.09 by the characteristic length lc = 6×10−6

m and time tc = 1/15 s reported in Fulford & Blake (1986) for the cilia
beating pattern we considered in this study. The resulting estimate of the
flow rate under healthy conditions is about 48.6µm/s. Our estimate is
congruent with the estimate obtained in Smith et al. (2007) and shows
good agreement to various experimental measurements. In particular,
experimental flow rates in the range 70–92µm/s were reported in ICRP
& I. C. on Radiological Protection (1994) for tracheal transport of healthy
subjects and in the range 67–333µm/s in Salathe, O’Riordan, andWanner
(1997) using less invasive measurement technique which yield lower flow
rates. More recently, a flow rate of 39.2µm/s was reported in Matsui,
Randell, Peretti, Davis, and Boucher (1998).

(iii) Mucus layers are characterized by large Deborah numbers, of order 10 −
100 in healthy environments and even larger in diseased states (Lauga,
2007; Gilboa & Silberberg, 1976). Here, we varied the Deborah number
Dem from 1 to 10 to establish a trend of how performance depends on
Dem. We found that, in healthy environments, the transport rates increase
with increasing Dem and reach a plateau as Dem approaches 10, whereas
under diseased conditions, the transport rates decrease with increased
Dem before reaching their plateau value (Figure 9). We also found that
the internal moments along the cilia are not very sensitive to Dem under
healthy conditions, but sharply increase with Dem when the periciliary
layer is depleted. These findings justify the choice of the range of Dem
considered in this study. In the future, larger Dem will be considered,
which will render the system of equations ‘stiff’ and more challenging to
solve computationally, requiring the use of a fully implicit fluid solver.

(iv) Our results are based on two-dimensional (2D) computations and 2D cilia
beating kinematics. We used this 2D set-up to better illustrate the main
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ideas and for easier visualization of the resulting flows. In this set-up, a
cilium should be thought of as a ‘wall’ of synchronously beating cilia in
the third z-direction (perpendicular to the (x, y)-plane). Compared to full
3D simulations, this set-up tends to overestimate the flow rate generated
by cilia beatings, as well as the elastic energy stored in the fluid. It is worth
noting that the computational framework we used is general and can be
easily extended to include 3D cilia beating patterns, albeit at an increased
computational cost.

(v) For simplicity, our model uses no-slip boundary conditions for the lower
and upper boundary of the channel. Future work will consider more
biologically relevant scenarios of amucus layer with free surface condition
or with cilia on both walls to emulate the cross-section of narrow tubes.

The two main results obtained from this study – the fact that a healthy mucus
layer enhances the performance of mucociliary systems and that a depleted peri-
ciliary layer can be directly linked to diminished transport and cilia dysfunction
through excessive demands on cilia internal moments – serve to complement
ongoing research on understanding cilia-related diseases and to direct future
studies. In conjunction with its role in understanding cilia-related diseases,
the quantitative model we presented in this work could play important roles
in the design and use of microfluidic devices in health-related cilia research.
Indeed, a novel and exciting research direction in in vitro cell cultures lies in
the development of engineered ciliated tissues in microfluidic chips, so called
‘organs-on-chips’, as the next-generation platforms for basic research, drug
development, and diagnostics (Benam et al., 2015). Traditionally, the clinical
use of in vitro cell cultures in health-related research on respiratory tissues and
mucociliary transport (Seybold et al., 1990; Wanner et al., 1996) has been mostly
qualitative and lacking a direct translation to clinical readouts. Organs-on-chips
aim toprovide clinically relevantmetrics of ciliated tissue health by recapitulating
and quantifying essential structure–function relationships (Nawroth & Parker,
2013), thereby achieving better predictions of diseasemechanisms and treatment
options in humans compared to traditional cell culture and animal models (Huh
et al. 2010; Bhatia & Ingber, 2014). Our three quantitative measures of cilia
transport performance can be applied to experimental data obtained from cilia-
on-chip systems, thus opening the door to direct quantitative comparisons of
in vitro healthy and diseased cilia conditions. Quantitative models such as the
one presented here will be important tools for understanding the link between
tissue-engineered ciliated organs and functional outcomes.

Another future direction of this work that is directly relevant to infectious dis-
ease of the airways is to determine what is required by a beneficial or pathogenic
bacterial cell that colonizes the airway surfaces to resist or to work within
the healthy environment of mucociliary clearance. Clearly to successfully col-
onize the ciliated surface, such cells must have developed mechanisms to avoid
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mucociliary clearance. Most research has focused on the chemical properties
of the bacteria-tissue interactions, see, e.g. McFall-Ngai (2014) and references
therein, whereas several recent studies in biofluid mechanics have considered
bacterial motility in otherwise still viscoelastic environments (Thomases & Guy
(2014); Teran et al., 2010; Lauga, 2007; Qin, Gopinath, Yang, Gollub, & Arratia,
2015; Patteson, Gopinath, Goulian, & Arratia, 2015). However, the mechanical
strategies employed by motile bacterial cells in complex environments such as in
healthy and diseased mucociliary clearance remain an open research problem.

Finally, we note that in addition to their importance in clinical applications,
the efficiency of biological cilia in pumping andmixing fluids at very small scales
provided an attractive paradigm for fluid manipulation by artificial cilia at the
micron scale (Evans et al., 2007; Khatavkar, Anderson, den Toonder, & Meijer,
2007; den Toonder et al., 2008; Vilfan et al., 2010).

Also, self-propelled microrobots by flagellar or ciliary activities are being
proposed as revolutionary devices in the field of minimally invasive medicines
(Nelson,Kaliakatsos,&Abbott, 2010; Peyer, Zhang,&Nelson, 2013). The quanti-
tativemodelwepresented in this study for assessing cilia performance in complex
environments could serve as an important design tool in such microfluidic
applications.
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