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ABSTRACT
Manyaquatic organismsexhibit remarkable abilities todetect and
track chemical signals when foraging, mating and escaping. For
example, themale copepod T. longicornis identifies the female in
the open ocean by following its chemically flavoured trail. Here,
we develop a mathematical framework in which a local sensory
system is able to detect the local concentration field and adjust
its orientation accordingly. We show that this system is able to
detect and track chemical trails without knowledge of the trail’s
global or relative position. These findings could have implications
on deciphering how organisms decode sensory information and
on the development and deployment of bio-inspired sensory
systems.
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1. Introduction

The response to olfactory signals and pheromones plays an important role in
a variety of biological behaviours (Dusenbery, 1992; Vickers, 2000; Zimmer &
Butman, 2000) such as homing by the Pacific salmon (Hasler&Scholz, 2012), for-
aging by seabirds (Nevitt, 2000), lobsters (Basil & Atema, 1994; Devine &Atema,
1982) and blue crabs (Weissburg & Zimmer-Faust, 1994), and mate-seeking
and foraging by zooplanktons and insects (Cardé (1996); Cardé & Mafra-Neto,
1997). These dissimilar organisms and behaviours share similar mechanisms
of sensing and responding to chemical signals (Vickers, 2000). The underlying
mechanisms could be applied or adapted to design artificial devices for source
detection and tracking of chemicals in various environments, see examples in
Grasso (2001), Pyk (2006), Nakatsuka, Kagawa, Ishida, and Toyama (2006),
Dhariwal, Sukhatme, and Requicha (2004).

Evidence suggests that many organisms respond to concentration differ-
ence (= signal strength) and orient themselves to the desired direction, either
moving towards or escaping from a source (Buck, 2000; Vickers, 2000; Johnson,
Muhammad, Thompson, Choi, & Li, 2012). Copepods, a type of zooplankton
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about 0.1 cm in length, exhibit similar abilities in responding to biological and
physical gradients; see, e.g. Woodson, Webster, Weissburg, and Yen (2005)
and references within. For example, copepods are known to aggregate at the
boundaries of different water bodies in the ocean (Holliday, Pieper, Greenlaw,
& Dawson, 1998). This aggregation is thought to be a result of the response
to oceanic structures involving spatial gradients of flow velocities and densities
(Woodson et al., 2005). Copepods adjust their swimming speed or turning fre-
quencies with respect to these physical gradients in the water environment. Also,
copepods sense biological gradients in mate-seeking (Doall, Colin, Strickler, &
Yen, 1998). In careful laboratory experiments by Jeannette Yen that focus on
the mating behaviour of the copepod Temora longicornis, a chemically scented
trail that mimics the pheromone-laden trail of the female is introduced into a
quiescent water tank. Male copepods are able to detect and successfully track the
trail mimic to its source as shown in Figure 1.

In this work, we are loosely inspired by the copepod tracking ability of the
female chemical trail. We develop an idealised, simple model where a moving
chemical source generates a trail in an infinite two-dimensional space and a
tracker is able to locally sense the chemical field and adjust its orientation
accordingly to locate and track the trail. The organisation of this work is as
follows. We first illustrate the chemical trail in Section 2 by reformulating the
problem in the moving frame attached to the source. In Section 3, we study
the conditions for successful tracking using a gradient-based tracking scheme.
In the situation where the tracker is far away from the chemical trail such that
the gradient information is not reliable, a random-walk phase is introduced to
first detect the chemical signal before switching to the gradient-trackingmethod.
The detection algorithm and results are described in Section 4. We conclude
by summarising our findings and discussing their potential implications to
understanding the behaviour of copepods in Section 5.

2. Problem description

Consider a chemical source moving at a constant velocity U from right to left in
a fixed frame (X,Y), shown in Figure 2(a). The concentration field is governed
by the diffusion equation

∂C
∂t

= K
∂2C
∂Y2 + Qδ(X + Ut)δ(Y), (1)

whereQ is the rate of generation of the chemicals, K is the mass diffusivity of the
chemicals and δ is the Dirac-delta function. In (1), we neglected diffusion in the
X-direction. This assumption can be readily justified by calculating the Péclet
number Pe, defined as the ratio of advective to diffusive transport rate. Large Pe
(Pe� 1) implies that advection is dominantwhile for small Pe (Pe� 1) diffusion
is dominant. In the X-direction, Péclet number is given by Pe = LU/K where L
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and U are the characteristic length and speed, which for a swimming copepod
take the values L = 0.1 cm and U = 1cm/s (Woodson, Webster, Weissburg,
& Yen, 2007). The diffusivity coefficient involved in small biological organisms
is of the order K = 10−5cm2/s (Lombard, Koski, & Kiørboe, 2013). Thus, Pe
∼ 104 and diffusion is negligible in the X-direction.

It is convenient to rewrite Equation (1) in a reference frame (x, y) moving
with the chemical source at a speed U , shown in Fure 2(b). The moving frame
(x, y) is related to the fixed inertial frame (X ,Y) via the transformation

x = X + Ut, y = Y . (2)

Therefore,
∂C
∂t

= ∂C
∂t

+U
∂C
∂x

and Equation (1) becomes an advection–diffusion
equation as

∂C
∂t

+ U
∂C
∂x

= K
∂2C
∂y2

+ Qδ(x)δ(y). (3)

The steady-state solution of (3) is given by

C = Q/U√
4π(K/U)x

exp
(

− y2

4(K/U)x

)
. (4)

A colour map of this concentration is shown in Figure 2 with pink indicating
higher concentration values.

Next we study the tracking behaviour of a sensory system, or a chemical
tracker, in response to these chemical signals. One natural example of chemical
tracking is in the mating behaviour of copepods, where the female swims at a
roughly constant speed along a straight path, while the male swims at faster
speeds along a sinuous route until it detects the chemical trail left by the female
and follows it Woodson et al. (2007). The female copepod has body length
L = 0.1cm and speed around U = 1cm/s, leaving a trail of chemicals where
Q/U = 0.253µg/cm3, or equivalently, the source rate isQ = 0.253µg/(cm2 · s).
We inherit these parameter values for our current study. In our simulation, we
choose mass scalem∗ = 0.1µg , velocity scaleU∗ = U = 1cm/s and length scale
L∗ = 10L = 1cm to non-dimensionalise the problem. This choice of length scale
makes it more feasible to treat the tracker as a point particle.

3. Tracking of chemical trails

Consider a sensory system moving at a swimming speed V and let
(
b1, b2

)
be

an orthonormal frame attached to the sensory system such that b1 is aligned
along the swimming direction; see Figure 2. Let θ denote the orientation of the
b1-axis measured from the e1 direction. The sensory system is able to sense the
directional concentration gradients s1 = ∇C · b1 and s2 = ∇C · b2 and adjust its
orientation, but not speed, based on the gradients it senses. In the moving frame
(x, y), we have
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Figure 3. Successful and unsuccessful tracking for parameter values (a) ω = 2π , V = 2 and
(b) ω = π , V = 2. Other parameters are set as Q = 0.1, K = 10−5, and γ = 0.01. The initial
location of the sensory system is x(0) = 6, y(0) = −3 and its initial orientation is θ(0) = π/3.
Colours represent the steady-state spatial distribution of the chemicals.

ẋ = U + V cos θ , ẏ = V sin θ , θ̇ = F(s1, s2). (5)

Here, we postulate a simple form of the function F(s1, s2), namely,

F(s1, s2) = ω sgn(s2)H(γ − s1) (6)

where ω is a constant rotation rate, sgn( · ) is the sign function and H( · ) is the
heaviside function. According to (6), if the concentration gradient s1 = ∇C · b1
in the b1-direction is larger than a threshold value γ , then θ̇ = 0 and the sensor
continues tomove in the samedirection. If s1 is less than γ , one hasH(γ −s1) = 1
and θ̇ = ω sgn(s2). In this case, the sensor turns with angular velocity ω into
the direction of increasing concentration, indicated by the sign of s2 = ∇C · b2.
Note that the tracking scheme depends on the sign of the signals instead of their
exact values. Therefore, the results are not sensitive to the distance between the
tracker and the chemical source, especially in the x-direction.

We simulate the trajectory of our sensory systemby integratingEquation (5) in
time using the adapted-time-step function ‘ode45’ inMATLAB. Basic parameter
values are chosen as follows: source rate Q = 0.1, diffusivity K = 10−5 and
threshold γ = 0.1. The initial location of the sensory system is x(0) = 6, y(0) =
−3. Figure 3 shows the trajectories for the same initial orientation θ(0) = π/3
and swimming speed V = 2 but two sets of control parameters: (a) ω = 2π
and (b) ω = π . In (a), the tracker successfully follows the chemical trail while
in (b) the tracker encounters the trail but fails to track it. This is because its
angular velocity ω = π is not large enough for the sensory system to make a
quick turn into the chemical trail. It is worth noting that the oscillatory trajectory
in successful tracking is also found in the copepod experiments (Woodson et al.,
2007).

We now examine the tracking behaviour of the sensory system with respect
to the two control parameters: angular velocity ω and swimming speedV . Other
parameter values and initial conditions remain the same as those in Figure 3.
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Figure 4. Tracking behaviour in the parameter space of swimming speed V and angular velocity
ω. Other parameter values and initial conditions are the same as in Figure 3. (a) Parameter space
(V ,ω) of successful vs. unsuccessful tracking. (b) Successful backward tracking with swimming
speed V = 0.8 less than the source speed U = 1. (c) Successful forward tracking with V = 1.2 >
U.

Wemap the unsuccessful and successful tracking on the two-dimensional space
(V ,ω) in Figure 4(a). It shows that as the tracker swims faster, the required
angular velocity ω for successful tracking also increases. The transition from
unsuccessful to successful tracking displays a linear relationship between the
angular velocity ω and the swimming speed V . Note that the chemical source
has a speed U = 1. When the tracker’s speed V < U , the tracking is in the
opposite direction of the source location, which we denote as backward tracking.
See the example in Figure 4(b) for V = 0.8 and ω = π . Backward tracking of
a chemical trail has already been observed in copepod experiments (Doall et al.,
1998). When the tracker’s speed is larger than that of the source,V > U , it tracks
the chemical trail in the direction towards the location of the source, termed as
forward tracking, shown in Figure 4(c) for V = 1.2 and ω = π . The boundary
separating these two types of successful tracking is illustrated as a dashed line at
V = U . This boundary can be easily inferred from Equation (5) by setting θ = π

where the tracker is heading into the direction of the source. To achieve forward
tracking, the horizontal velocity ẋ must be in the negative x-direction; namely
ẋ = U − V < 0. Both backward and forward tracking are successful in tracking
the chemical trail but differ in their ability to locate the source.

The parameter space displayed in Figure 4(a) is specified for one initial
orientation θ(0) = π/3. We now explore the two-dimensional space
(V ,ω) in Figure 5(a)–(f) with respect to six different initial orientations:
θ(0) = 0, π/3, π/2, 2π/3, 5π/6 and π . When θ(0) = 0 or π , the tracker
moves in the positive or negative x-direction parallel to the chemical trail without
ever turning or intercepting the trail. The sensory system fails to approach the
chemical trail and therefore the tracking is unsuccessful irrespective of the values
of V and ω. For initial conditions that intercept the trail, both unsuccessful and
successful tracking can be achieved, as shown in Figure 5(b)–(e). Note that plot
(b) is the same as the one in Figure 4. The boundary marking the transition from
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unsuccessful to successful tracking is givenby a linear relationship betweenV and
ω. The slope of the linear boundary gets steeper as θ(0) increases. In other words,
as the angle between the tracker θ(0) and the trail becomes more obtuse, the
tracker requires faster rotational motion for successful tracking. As θ(0) → π ,
the slope of the transition between unsuccessful and successful tracking tends to
infinity. In Figure 5(b)–(e), the transition from backward to forward tracking is
independent of θ(0) and bifurcates at V = U .

4. Detection of chemical trails

The gradient-basedmodel for trail tracking is not feasible for the initial detection
of the trail because at distances far away from the trail the gradient is too shallow
to be accurately sensed. However, the local concentration itself can be sensed (Li,
Farrell, Pang, & Arrieta, 2006). Therefore, we introduce a detection step to first
find the strong chemical trail by comparing the local chemical concentration to a
threshold value Co. If the former is larger, then the chemical trail is detected and
the tracker enters the tracking step using gradient information in (6). During the
detection, the tracker executes a randomwalk that resembles the run-and-tumble
behaviour of bacteria (Adler, 1966; Berg & Brown, 1972). That is to say, the
tracker runs in the same orientation if the detected concentration is increasing
otherwise it tumbles by randomly choosing a direction. An illustration of the
detection algorithm is shown in Figure 6.

According to Figure 6, a tracker initially at (xm, ym) detects the local concen-
tration as Cm = C(xm, ym) and picks a random direction θm to start moving.
After a given time tm = tm−1 + 	t, where �t is the time step andm is a positive
integer, the tracker’s position is given by xm = xm−1 + (U + V cos (θm−1))�t
and ym = ym−1 + V sin (θm−1)�t. It senses a new concentration Cm at the new
location (xm, ym). If Cm > Co, then the chemical trail is detected. Otherwise,
the tracker executes the run-and-tumble behaviour by comparing the current
concentration Cm to the previous one Cm−1. If Cm > Cm−1, the tracker runs
without changing its orientation θm = θm−1. If Cm < Cm−1, then the tracker
picks a random direction θm and follows that direction for N time steps. That
is, 1/(N�t) can be interpreted as the ‘frequency’ of random walk. At the time
when the local concentration Cm achieves the threshold value Co, the detection
step ends and transitions to the gradient-tracking step. The total detection time
is calculated as td = m	t. Yet, if during a simulation, the time countm is greater
than a givenmaximumvaluemmax, then the detection is considered unsuccessful
within the given amount of time tmax = mmax	t.Note that if time is long enough,
the tracker is guaranteed to detect the chemical trail in a two-dimensional plane
(Borwein, Bailey, & Bailey, 2004; Spitzer, 2013).

The detection step is governed by four control parameters: the concentration
threshold Co, time step 	t, frequency N , and maximum detection time tmax.
Here, we choose Co = 10−5, 	t = 0.01, N = 100 and tmax = 20 and study the
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effect of swimming speed V on the detection time td . In Figure 7, we show two
sample trajectories starting at the same initial position x(0) = 6, y(0) = −3 and
random initial orientation θ(0) = π/3 for the same parameter values ω = 2π
and V = 2. The two trajectories are distinct owing to the random nature of the
searchmotion such that backward tracking occurs in (a) and forward tracking in
(b). The detection time td , which we define as the total time it takes the sensory
system to first detect the trail, is also not the same in the two simulations: td =
3.89 in (a) and td = 4.81 in (b). Note that the detection time td is independent
of the angular velocity ω, which only participates in the tracking behaviour, but
depends on the swimming speed V . In the copepod experiments (Doall et al.,
1998), the dimensional detection time is up to 10 s.

Figure 8 depicts the histogram or distribution of detection time td of suc-
cessful detections obtained from 1000 distinct simulations for the same initial
locations shown in Figure 7 and three parameter values of V = 1, 2, 3. We fit the
probability distributions to smooth exponential functions P(t) = λe−λt , shown
as red curves, such that the average detection time is 〈td〉 = 1/λ. Note that
the exponential fit is not perfect, but it is a closer analytical fit to the resulting
distribution compared to a Poisson and normal distribution. The discrepancy
between the analytical fit and the numerical data hasminimal implications on the
following results. As velocity increases, the decrease of the probability density
function is steeper (larger λ) and the averaged detection time 〈td〉 decreases
from 9.83 to 6.39 and 4.39. Therefore, larger swimming speed results in faster
detection. In addition, out of the 1000 simulations we run, we keep track of the
number of simulations which resulted in unsuccessful detection in tmax = 20.
We find that the ratio of unsuccessful detection to total number of simulations is
0.57, 0.3 and 0.26 forV = 1, 2 and 3, respectively. That is to say, faster swimming
is also beneficial to more successful detections in a given amount of time.

We finally evaluate the average detection time 〈td〉 as a function of the tracker’s
initial location x(0), y(0). The region of interest is chosen to be [0.1, 10] ×
[−5,−1] as shown in Figure 9. The colours indicate the values of the detection
time at the corresponding initial locations, with red specifying longer detection
time. We can see that 〈td〉 varies little in the x-direction especially in the range
of x(0) > 2 meanwhile the average detection time decreases significantly when
the horizontal distance between the tracker and the source is small x(0) < 1. The
average detection time grows with increasing distances in the y-direction. These
findings are consistent with the intuition that closer distance between the tracker
and the source results in faster detection.

5. Conclusions

Odour tracking plays an important role in the behaviour of organisms at different
scales and in different environments and could have significant implications on
engineering and robotic applications. Inspired by the odour-tracking abilities
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Figure 9. The averaged detection time 〈td〉 as a function of the tracker’s initial location x(0), y(0)
in the region of [0.1, 10] × [−5,−1]. Red colours represent longer detection time.

of male copepods in their mating behaviour, we simulated a sensory system
that tracks and detects a two-dimensional chemical trail generated by a moving
chemical source. The tracker can sense the local chemical gradients in its own
body-fixed frame. The sensed gradients are used to control the orientation of
the tracker such that it turns into the direction of increasing concentration. We
identify the tracking behaviour as successful if the trajectory of the tracker ends
up oscillating around or directly moving inside the chemical trail. Otherwise,
the tracking is unsuccessful. Successful tracking consists of either backward or
forward tracking. If the sensory system successfully tracks the trail but moves
away from the source, then it is backward tracking. Backward tracking occurs
when the speed of the tracker is less than that of the chemical source.

We then mapped the tracking behaviour onto the parameter space consisting
of the speedV of the tracker normalised by the speed of the chemical source and
the angular velocity ω of the tracker. The results show that higher V requires
larger ω for successful tracking. The boundary marking the transition from
unsuccessful to successful tracking follows a linear growth of ω as a function
of increasing V . The parameter space (V ,ω) changes with respect to the initial
orientation θ(0) such that when the angle between the tracker and the trail
becomes more obtuse (i.e. the angle between the velocity of the tracker and the
velocity of the source is more shallow) the tracker requires both larger speed and
angular velocity to succeed in tracking. That is to say, the tracker should speed
up to successfully track the trail when the orientation of its velocity is close to
that of the source.

A detection step is introduced when the chemical gradient is too weak to be
accurately sensed by the tracker such as when the tracker is located far from the
chemical trail. In this situation, the sensory system detects the chemical concen-
tration first until the sensed local concentration is larger than a threshold value.
The detection step is adapted from the run-and-tumble behaviour of bacteria
such as E. coli, which runs when sensing a chemical signal or tumbles otherwise.
In our implementation, the tracker continues in the same orientation if it senses
an increasing concentration in that direction. If not, the tracker randomly picks
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an orientation θ from 0 to 2π . If the detection takes longer than a given amount
of time (the total simulation point), then the detection is unsuccessful. We
illustrated the distribution of the detection time td obtained from 1000 distinct
simulations and calculated the average detection time of successful ones. We
found that the average detection time decreases with increasing speed V and the
ratio of successful detection is higher when V is larger. Therefore, for a more
successful detection, a fast speedV is preferred.We also showed that closer initial
location to the source results in smaller detection time.

The two main results obtained from this study – the fact that both successful
detection and successful forward tracking require the tracker to have larger
swimming speed than the source and that the tracker’s speed should be even
larger when it swims nearly parallel to the source – are consistent with experi-
mental observation of the copepod mating behaviour (Doall et al., 1998). Male
copepods are known to swim faster than female copepods. While the reasons
may be biological, this difference in speed between the male and female seems to
have significant implications on successful detection and tracking of the female.
Further, the detection time scale obtained here is consistent with experimental
measurements of copepods (Doall et al., 1998). Male copepods are reported to
detect the chemical trail in time intervals up to 10 s, which is similar to the
average detection time reported in this study. Note that here one-dimensionless
unit time scales to 1s.

A few remarks on the limitations of the model and future directions are in
order. We considered a simple gradient-tracking model where the speed of the
tracker and its turning rate are not affected by the intensity of the chemical signal.
While this model was able to track the chemical trail, it would be interesting in
future studies to compare this model to more complex models where the speed
and turning rate change with the chemical signal. This study was restricted to
two-dimensional tracking and detection but in many aquatic organisms, this
behaviour is inherently three-dimensional. Also, we considered the chemical
signal to diffuse in a quiescent environment. In many real-world applications,
the environment is often characterised by unsteady and at time turbulent flows.
Future work will extend the framework presented here to account for three-
dimensional effects and the effect of flows and patchiness in the chemical signal
(Weissburg & Zimmer-Faust, 1994; Kennedy & Marsh, 1974; Ishida et al., 1996;
Kanzaki, 1996; Belanger&Willis, 1998). It is also interesting to couple the sensory
and control framework presented here tomore accuratemodels of the swimming
mechanics; see Alben, Spears, Garth, Murphy, and Yen (2010) for an analysis of
the details of such drag-based swimming and Catton, Webster, Brown, and Yen
(2007) for an experimental study of the flow field generated by the swimming
motion.
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