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ABSTRACT. The finite element code ZiBuLoN has been parallelized using the FEfl 
subdomain decomposition method for the use of non-linear mechanical behavior models 
which require a high number of internal variables. This paper describes the chosen 
paralle/ization technique, the polycrystalline model - a non-linear model requiring a large 
number of internal variables developed at the Centre des Materiaux de !'Ecole des Mines de 
Paris - and shows some tests which bear out the efficiency of the promoted methods for 
tlte computation of tridimensional complex structures involving a strong non-linear 
behavior. 

R£5UME. Le code de calcul par elements finis ZiBuLoN a lie parallelise a /'aide de Ia 
methode de decomposition de domaines FEfl en vue de /'utilisation de modeles de 
comportement non lineaires a grand nombre de variables internes. Cet article expose Ia 
technique de paralUlisation choisie, le modele polycristallin - un modele non lineaire a 
grand nombre de variables internes developpe au Centre des Matlriaux de l'&ole des 
Mines de Paris - el monlre quelques e.xemples de calcul qui me/lent en evidence l'efficacite 
des methodes de calcul parallele couplles a des modeles de comportement sophistiques 
pour le calcul de structures tridimensionnelles induisant des comportement fortement non 
line aires. 
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I. Introduction 

The continuous increase of the power of the computers allows the engi­
neer to enrich the geometrical description of the structures and to use more 
sophisticated behavior models, increasing the number of internal variables. 

Classic finite element codes contain two major stages: integration of the 
constitutive equations (local stage) and computation of the global tangent re­
sponse of the structure. The cost of the first stage depends on the number of 
elements and on the material behavior while the second depends on the number 
of degrees of freedom in the structure and on the topology (maximal band or 
front width). 

The parallelization of finite element codes is necessary as soon as the time 
needed for the solution of the docal problem) becomes significant. Let us note 
that parallelizing the local stage is straightforward on any type of machine, 
as long as, in the classical approach, the constitutive equations in each Gauss 
point only depend on the loading history and on some internal variables in 
the same point. Nevertheless, the global stage has to be parallelized too, as 
a sequential treatment of this problem may become predominant, after having 
distributed the local stage on a large number of processors. 

The model class aimed in this study includes all the models using state 
variables to describe the hardening of the material. In the case of macroscopic 
models, the number of variables may be typically between one and twenty. As a 
matter of fact, we focus on models (with a large number of internal variables», 
d sign d to represent the behavior of polycrystalline materials. This kind of 
model introduces 100 to 1000 grains, each of them being represented by many 
variables (for instance 24 for FCC crystals). It is then shown that, combining 
strong integration methods at the local stage and a sub-domain method for 
th global stage, realistic computations an be carried out, with more than ten 
thousand degrees of freedom, and also some thousands of internal variables for 
each integration point. 

The first part will describe the parallelization of the global stage (parallel 
linear system solving). The polycrystalline model will be showed in a second 
part. The last part will show, through simulation examples, the efficiency of the 
coupling of parallel computations and a high number internal variables models. 

2. The Sub-Domain Solving Method 

Let 0 be a finite element discretization of the structure, and Oi a partition 
inS sub-domains of 0: 

s 
0= un. 

i=l 

The parallelization of the global stage is complex because it needs a global 
stiffness matrix, which is only defined on the whole structure. 
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Let 1J; be the trace operators which give the restriction on f! of a boundary 
defined field on f!; . With such notations, the problem to be solved is the 
following: ~find the solution of the linear tangent system .{f q = F on f! knowing 
only the stiffness matrices K . on f!; ~. -

- I 

2.1. The FETI Method 

The FETI method ([3]) is a dual method, which consists in giving new un­
knowns: the forces ~i to be enforced on domain boundaries to ensure displace­
ment continuity across sub-domains (primal methods would favor displacement 
on boundaries) . These forces~; are estimated with an iterative conjugate gra­
dient method. We have indeed the following equivalence: 

{

.{f;9,; = F; +
5 
JJ!~;. local equilibrium of each sub-domain f!; 

Kq =F<=> -- - '2.: 1J ;9.; = Q, displacement continuity 
i= l 

(1) 

A specific problem is related to the method, as it produces local prob­
lems with Neumann boundary conditions {force imposed conditions). If a sub­
domain does not include any boundary wher the Dirichlet (displacement im­
posed) condition is applied, or if this condition does not lock the solid motion, 
the local problem may be ill-conditoned . In other words, because of the chosen 
splitting, it can arise that some of the following local systems are not invertible: 

K .q. = F,. + B~>.,. -,_, - _,_ {2) 

2.1.1. Local Neumann Problem Solving 

Let ~ be a non invertible matrix factorized as follows: 

A.= [AAu AA12] , with dimA11 = rank A = k 
- 21 22 

{3) 

In a new frame associated with the Gauss factorization of A, we can write: 

0] [Au 
I A21 

Such a transformation does not change the rank of A., thus, the rank of the 
right hand side matrix is equal to the rank of 4, and thenA22 - A21A!l A12 = 0. 
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This demonstrates that the columns of the following matrix N make a base 
of the kernel of _:i: -

(5) 

With these two features, the linear system 

(6) 

can be «inverted~ , using a Gauss pivoting associated with A11 as following (N a 
is a rigid body motion) : -

(7) 

That means that a solution can be obtained with the sum of a kernel element 
and the ps udo-invert: 

(8) 

In practice, the decomposition (3) is obtained with a full symmetric pivoting 
of the matrix during its factorization . The detection of null pivots allows the 
building of A11 and to compute N. 

2. 1.2. FETI Method Application 

Using the previous relations, the system (1) can be rewritten, using the 
continuity condition of q .: -· 

N N N 

"B .ICB~>. +"B. [N] .a,. =-"B .K~F . (10) 
L..J - ' - ' - ·- L..J - ' 'I- L..J -' - • - 1 
i= l i= l i= l 

The last two equations can be seen as an hybrid system on ~ and gi: 
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D = "'B .K -7-B~ dual Schur complement 

[
>.] [ ] = L,.. - ' - ' - ' ! 

N 

~ = ~ , with: ~= 1 

E g = ~ lj} i [N] i !!i jump of rigid body motions 

. (11) 

2.2. Hybrid System Solving 

This hybrid problem is solved using a projected conjugate gradient method. 
This is the same as the conjugate gradient method with the extra projection 
J!g of gradient g on the kernel oft E to force the constraint t E ~ = fl. 

- The application of this projection ensures that the sear h direction is in the 
kernel oft E, which automatically satisfies the constraint t E ~ = 4 if~ is well 
initialized.- -

When convergence is achieved, J!g = Q, th gradient g is in the image oft E, 
and a vector g_ has been found , such as g = D ~ - !< = - E g_ with the constraint 
t E ~ = fl: the ~ and g found by this method ar then t he solution of syst m 
(11). 

The only difficulty is the computation of the projection operator J!. It 
consists in finding a vector g_ such as: 

Pfl. = fl.+Eg (12) 

with 

t E J!fl. = Q, (13) 

and then 

J! = ! - E ('E/?J - 1 
tE (14) 

This computation requires a product by E and t E and the solution of the 
sparse linear system tEE a = _ t E g. Its dimension is the number of sub­
domains. The cost of thiscomputation is then insignificant . 

2.3. FETI Method and Machine Architecture 

As the FETI method involves a domain decomposition, it seems natural 
to use it on multi processor machines: all processors will process one or some 
sub-domains. Two type of machine can be addressed: 
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• shared m emory : all processors can address the whole random access 
memory and a refereeing system is used to handle RAM access conflicts. 
The processors can ~chab together through the RAM. The developer 
can, in fact, ignore the multi processor structure of the machine and can 
rely on compilers to manage the work distribution between all processors. 
But as the number of processors increases, access conflicts become more 
frequent and the memory management may be very complex, so that the 
global performances of the computer are drammatically damaged. 

• distributed memory : each processor has its own private memory and 
can communicate with the others through a high performance network. 
This last approach assumes that communication latencies are small re­
garding computation time (useful time) . This is known as «large grain 
parallelism». Memory access constraint does not exist any more, but the 
developer has to manage himself message exchange through local network 
using special libraries (for instance, PVM or MPI). A local area network 
of workstations is a good example of such a machine. 

However it remains possible to use a shared memory computer as a dis­
tribut d memory one; each processor is restricted to a given memory area. 
The programmer choice is then no longer an architecture choice, but the choice 
between two programming paradigms: vectorization against m essage passing. 
FETI method is in line with message passing programming. 

Only the computation of the jump of the approximated solution across do­
main boundaries and the computation of projection operator really needs a 
global cooperative work on the whole structure. Furthermore this two oper­
ations involve a computation cost which is negligible regarding the solving of 
local quilibrium if all sub-domain contain enough elements. 

FETI method is ther fore, a 100 % parallel method using message passing, 
which can run on all types of computer architectures. 

3. Description of the Constitutive Equations 

The constitut ive equations used in this study are based on the local state 
method. This method assumes that the local thermodynamic state in a given 
point and a given t ime is totally defined by the knowledge of the values at this 
time of specific variables - the internal variables - the values of which only 
depend on the loading history at the chosen point. According on the number 
of variables, the deformation mechanisms can be described macroscopically or 
on a microscale. 

In the following, we will be concerned with viscoplasticity in small strains, 
which require the introduction of the strain partition into an elastic and a 
viscoplastic part: 
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The mechanical state at time t can be computed knowing the value of all 
internal variables at t. State laws are written in the following general form (Y 
represents a vector holding all internal variables): 

tz = f (c:, Y) 
y = g (c:, Y) 

. (15) 

It is a differential system of first order, which can be solved using a Runge­
Kutta technique or Theta method when the number of variables is less than 
100, and by the Runge-Kutta method only for the case of a large number of 
variables (several thousand). The polycrystalline model presented in the next 
section, respects the previous formalism. 

3.1. The Polycrystalline Model 

3.1. 1. Constitutive Equations For One Grain 

It is assumed that slip is the predominant deformation mechanism, and that 
Schmid's law is valid. The resolved shear stress can then be used as a crit1 ·al 
variable to evaluate the inelastic flow. A viscoplastic framework is chosen, 
in order to avoid the problems related with the determination of the active 
slip systems in plastic models. A threshold is introduced both in positive 
and negative directions on ach slip system: twelve octahedral slip systems 
will be used for FCC materials (and not twenty four) . On the other hand, 
such a formalism leads to define two variables for each slip system, id est 
r•and x 8 for slip system s, corresponding respectively to isotropic hardening 
(expansion of the elastic domain), and kinematic hardening (translation of the 
elastic domain). A system will be active provided its resolved shear stress r• is 
greater than x• + r• or less than x• - r• and the slip rate will be known as long 
as stress and the hardening variables are known. The number of variables for 
the single crystal is then 2N (with N the number of systems in the grain). The 
state variables used to define the evolution of r•and x•arc the accumulated slip 
v' for isotropic hardening and the variable a•for kinematic hardening. 

Knowing the stress tensor applied to the grain g, a 9the resolved shear stress 
for system s can be classically written according to Eqn.l6, n.' and {8 being 
respectively, for the system s, the normal to the slip plane and the slip di­
rection in this plane. The hardening variables x• and r• can then be expressed 
as a function of a• and v' following Eqn.17, their actual values allowing then 
to compute the viscoplastic slip rate 'Y', the viscoplastic strain rate tensor £9 
{Eqn.l8), and the hardening rules (Eqn.l9) . The present formulation gives-a 
saturation of the hardening in both monotonic and cyclic loading, and takes 
into account the interactions between the slip systems, through hrs matrix, 
as in [24, 11]. Nine material dependent coefficients are involved in the model 
(K, n, c, d, Ro, Q1, b1, Q2, b2). 
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il = (Ir-S- xsl- rs)n 
K 

with (x) = Max(x,O), 

(16) 

(18) 

Such a formulation is an extension of the classical crystallographic ap­
proach for single crystal modeling in plasticity or in viscoplasticity (see for 
instance [23, 16, 1]). Due to the saturation of the hardening and the pres­
ence of kinematic hardening, it is valid for the simulation of cyclic loadings. It 
has been extensively used. for single crystal modeling, including Finite Element 
simulations, for copper [18) or nickel base super alloy [17, 21, 20J . 

9.1.£. Stress Concentration Rule 

In a polycrystalline aggregate, on grain may be characterized by its shape, 
size, crystallographic orientation, location with respect to the surface of the 
material, etc . . . In the present modeling, we just retain the crystallographic 
orientation, and put in the same crystallographic phase all the grains having 
the same orientation. The alloy is then considered as a n- phase material, each 
phase being defined by a set of Euler angles, and the model will then be used to 
describe the mean behavior of all of them. Such an approach is valid provided 
the grain size remains small with respect to the volume element considered in 
the future F.E. calculations, that is each elementary volume around a Gauss 
point must contain a sufficient number of grains. In these conditions, the con­
centration rule will define the way for computing the local stress tensor q;9, 
which will be uniform in the phase, starting from the macroscopic stress ten­
sor q;. 

The self-consistent scheme is a good solution to schematically represent the 
phase interaction. The first papers on the subject were devoted to the definition 
of the elastic accommodation [15] and the plastic accommodation [12] . A pure 
viscoplastic formulation was also used in the past (see for instance (13, 19]), 
but the elastoviscoplastic approximation is still in construction. Anyway, it can 
be observed that, for the simple case where elasticity is uniform in the phases, 
the relation (20) summarize the results given by several models, according to 
the definition of a, with a specific mention to a = 1 (15), and to a defined as 
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Variable # of reals 
Cumulated viscoplastic strain 1 

12 6 
l!g 6G 
fg 6G 
x• 12G 
r' 12G 

Total 36G+7 

Table 1. Summary of the variables of the polycrystalline model. 

a decreasing function of the macroscopic elastoplastic secant modulus, starting 
from 1 at the onset of plastic flow, as proposed in [2] . This last formulation is 
equivalent to Hill's model for radial loading. It demonstrates that the corrective 
term in the accommodation rule must be non-linear. 

( ) 

The model used in the pres nt study is an volution of a pr vious ap­
proach [4] . It is bas d on a phenomenological rul whi h r pr du s nonlinear 
accommodation by means of a new variable /JY in a h grain [22], which can be 
calibrated by means of a specifi c identification procedure to numerically check 
the self onsistent assumption . Many shapes can be chosen for purpose, the 
rule (21) has been successfully applied to FCC materials in the past. As a 
matter of fact, it superimposes a sort of non-linear kinematic hardening [7] and 
a linear kinematic hardening (provided the value of 6 is non zero) at the inter­
granular level. The D and 8 values must not b onsidered as coeffici nts. They 
are determined after the local behavior is fixed. Writing this relation imposes 
to keep in memory one tensor in each grain, and to consider also (Eqn.22) the 
mean value of all these tensors in the aggregate {3, computed using the volume 
fraction JS of each grain. -

q; + 1-' (!! -{!g) 
§.9 

- D {/!9 
- 6f9 } E9 ! 9 E. v' 

(21) 

(22) 

9.1 .9. Summary of the Model 

Table 1 summarizes all the internal variables of the model. If G is the grain 
number of each element volume, this model requires 36G + 7 real variables 
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(note that, if 8 is equal to zero, it is not necessary to keep !Eg in memory, so 
that this number is only 30G + 7) . The corresponding differential system of 
36G + 7 (or 30G + 7) variables has then to be solved for the evaluation of the 
constitutive equations. In order to have a good precision in the representation 
of the microstructure, the number of grains G has to be chosen large enough. 
A typical value in the computations is G = 40, the model requires then 1447 
(or 1207) internal variables, that is about 11 J( o memory for each Gauss point 
in a finite element computation. 

4. Implementation 

This model was implemented in ZeBuLoN, a finite element code written in 
C++ and using object oriented programming. This code was parallelized using 
the FETI method . 

The advantages of OOP were shown by [10]. We want just to emphasize 
two critical points: 

• Message passing library independence : OOP provides a total indepen­
dence of all architecture and message passing library. The same exe­
cutable is used for performing both sequential and parallel computations; 
all m ssage passing specific calls are grouped in a single class, the default 
behavior of which, is to issue an error and stop the code. In addition, 
different message passing libraries can be implemented in the same exe­
cutable. 

• Code reuse : as shown in section 2.1., FETI method uses a projected 
conjugate gradient algorithm. The computation of the projection requires 
the inv rsion of a small system the assembling of which is complex (see 
equation 14). This syst m is then solved using another conjugate gradient 
method (level 2) which uses the same code as the main conjugate gradient 
(level 1) . 

Furthermore, the improvements made on solving level 2 (for instance, 
the projection on former computed search directions) are automatically 
beneficial at level 1, and vice-versa. 

5. Validation and Examples 

Before checking the scalability of the chosen FETI method, we size up, in 
the first section, the costs of local and global stages in sequential use. 

5.1. Local Stage vs Global Stage 

In order to study the influence of the two stages on the total costs, a sim­
ple structure with an easy rule for having an increasing number of degrees of 
freedom has to be chosen. We consider for that purpose a regular cubic struc­
ture split in N = n x n x n quadratic elements with 20 nodes and 27 Gauss 
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Table 2. Solver timing for different n x n x n cube size. 

points. Boundary conditions are imposed, so that strain and stress fields are 
homogeneous. 

The computations are performed on a network of SparcUltra2 workstations 
running at 290 MHz. 

5.1.1. Sequential Case 

• Global stage: this topology leads to the following results for the number 
of degrees of freedom and for the optimal front: 

Degrees of freedom 
Front 

D = 3 ((1 + n)(2n + 1)2 + n(n + 1)2
) ~ n 3 

F = 3 ((1 + n)(2n + 1) + n(n + 1) + ... ) ~ n2 

( 3) 

The resolution time using the frontal method [14] is proportional to the 
product D x F 2 , that is, in this case: 

T9tob ~ K{l215n7 + 5670n6 + 10908n5 + 11151n4 + 
6507n3 + 2160n2 + 378n + 27} 

(24) 

fitting (see figure 1) equation 24 with the comput d values of table 2 let 
the proportionality constant be J< ~ 3.19 X l0- 8s. 

• Local stage: the cube is assumed to be made of a polycrystalline mat rial, 
described in the previous model. As the evaluation of material behavior is 
local and as the fields ~ and ~ remain homogeneous, this cost is equal to 
27c x n 3

, where cis the cost of the computation of the volume element. 
The cost of the polycrystalline model, with a Runge-Kutta integration 
method, is a linear function of the number of internal variables (36G + 7, 
G is the number of grains), see figure 2, as soon as this number is large 
enough (in fact 200 internal variables). The cost of the local stage is then: 

(25) 

a and (3 are constants, the value of which are fitted on curve 2. 

a = 4.713 X 10- 3 S 

(3 = - 1.62s 
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Figure 3 shows the contour of p = 1loc/T9tob· 

5.1 .2. Parallel Case 

Let us suppose that we have a p processor computer and an automatic 
splitting program which produces balanced sub-domains. We want to estimate 
the (User cost» of the computation, this means the computation time of the 
slower processor. With such conditions, the cost of the local stage is simply 
divided by p: 

(26) 

The cost of the global parallelized stage is not so easy to estimate: it depends 
on the mesh topology and the associated splitting. We can, nevertheless, build 
an optimistic approximation . Suppose that the cube is split into p slices of 
nfp x n x n elements (this is usually a (bad:. topological splitting). The FETI 
method requires a factorization of the stiffness matrix on each sub-domain, 
whose costs are r:,ob ~ DF2 ~ n7 fp3 ~ N 713 fp. It also requires some other 
operations, the cost of which are neglected regarding factorization cost, if all 
local problems are large enough. 

Figure 4 shows the location of the line T1~c/T~ob = 1, for a various number 
of processors, p, in a plane figuring the number of variables in each Gauss point 
and the number of degrees of freedom. 

The comparison of these two curves demonstrates the interest of paral­
lel computation to speed up the local stage, but also the need to parallelize 
the global stage using the FETI method to nsure high performances whil 
computing high structure with many degrees of freedom on massively parallel 
computers. For instance, if a model r quiring 500 internal variables per Gauss 
point is used, figure 3 shows that, for a mesh with 105 degrees of freedom, 
local stage cost is qual to global stage cost in a sequential resolution. After 
having divided the local cost by a factor p, with a parallel computation, it is 
also required to treat the global cost, otherwise the computation will remain 
jammed by the global cost. On the other hand, if both local and global stages 
are parallelized, figure 4 shows that, with p = 4 processors, the balance between 
local and global stages is reached only with a mesh with more than 106 degrees 
of freedom. 

5.2. The Triaxial Specimen 

The computations made for the purpose of validation (section 5.3.) and 
the examples (section 5.4.) were performed, using a triaxial specimen designed 
at Laboratoire de Mecaniqu.e et Technologie de l'Ecole Normale Su.perieu.re de 
Cachan (figure 5.1.1.). For symmetry reasons, only one eighth of the structure 
is meshed. This mesh has 8288 elements, 3358 nodes and 69090 Gauss points. 
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Figure 1. Solver timing for differ­
ent n x n x n cube size. 

·~·.~.--------~~~--------~~----~ 
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Figure 3. Curves 11oc/T9tob = p. 

~~------~--------~------~ ·--Figure 2. Computation time of 
the volume element using different 
number of internal variables . 
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Figure 4. Curves T1~c/T~ob = 1. 

Figure 5. Photo and mesh of the triaxial specimen. 
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Table 3. 

5.3. Scalability 

In order to check the implementation of the FETI method in ZeBuLoN, 
a set of elastic computations were carried out using an increasing number of 
sub-domains. The mesh was split into 7, 14, 16, 32 sub-domains with splitting 
program ONERA-Splitmesh. These tests ran on a Paragon at ONERA. 

The r suits in table 3 and figure 5.5. show that the FETI method in ZeBu­
LoN ensures the scalability: the speed-up grows linearly for a large number of 
processors. 

This speed-up depends on the mesh topology, on the splitting quality and on 
the fficiency of there-numb ring scheme (modified Sloan scheme in ZeBuLoN). 
It can especially be over linear, if the splitting operation produces simpler 
and simpler local systems: the efficiency of the FETI method results from a 
compromise betw en the quicker solution of the local systems (with a decreasing 
number of degrees of freedom and front size) in each sub-domains and the 
growing number of iterations to achieve convergence. 

5.4. Modelisation of Cyclic Hardening under Multi-Axial Load 

The sp cimen was designed in order to study the influence of tridimensional 
non-proportional loading paths on cyclic hardening of 316L stainless steel. The 
sp cimen is loaded on a triaxial tension-compression machine, allowing th 
application of thr e independent stresses on three orthogonal axes. 

A cycl ic load is applied to the specimen, the three axes x, y and z being 
successively stimulated in tension-compression, with a step backwards to null 
stress between each cycle. 

One can observe a significant additional hardening ((6]) which can be simu­
lated using the polycrystalline model. The aggregate is made up with 40 grains 
which involves a total of 69090 x 1447 ~ 100 millions internal variables for the 
whole mesh. 

As some symmetries are present in the mesh, a natural decomposition can 
be found using seven sub-domains, as reported in table 5.4. (this is also a 
geometrically balanced decomposition). 

Using such a decomposition, the local front widths are small (regarding 
global mesh front), and the parallel solution of the global problem takes ten 
times less time than the same computation using the sequential code. Fig­
ure 5.5. shows the seven sub-domains. Sub-domain number 1 is the one at the 
center of the mesh. 

Thanks to the global parallelism (linear system solving), and due to the 
heavy computations needed for the integration of the polycrystalline model , 
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Whole mesh 1 2 3 4 5 6 7 
# of nodes 3358 271 603 625 603 625 603 625 

# of elements 8288 245 1326 1355 1326 1355 1326 1355 
front 1104 132 177 189 177 183 177 183 

Table 4. Number of elements, nodes and maximal front width for each sub­
domain. 

99 % of CPU time is used to perform the local integration . It could be 100% 
parallel if the load was balanced. 

The computation were performed at Ecole des Mines de Paris on a SP2 
using seven 39H-66 MHz processors. It lasted about ten CPU days for three 
cycles. 

5.5. Result Analysis 

One can find in [9] a detailed analysis of the results. The interest of such 
computations (which combines a fine geometrical description and a refin · 
behavior Jaw) is to give an access to microstructural information in each Gauss 
point of the mesh, in addition to classical results (isovalues of q, f figur 9, 
Mises). For instance, histogram 8 shows the evolution of active slip systems in 
the center of the specimen. 

6. Conclusion 

Some simple structure computations, using polycrystalline model, were pr -
viously tested ([5]). They remain limited, as the classical machine architecture 
is not powerful enough in terms of available memory and spe d. 

Using parallel computers in non-linear structural computations gives an 
access to realistic simulations. It is now possible to associate a fine descrip­
tion of geometry ( id est a fine F.E. discretization) and sophisticated non-linear 
behavior models, allowing a fine modeling of the deformation process. A par­
ticular model is presented in this paper, but the propose technique for parallel 
computation is model-independent . 

There are still some problems left . The most important is the load balance: 
as the evaluation of the constitutive equations depends on the local viscoplastic 
state, the time needed for each group of element will change according to the 
loading history. In the present implementation, a group of element is statically 
attached to a processor, so that all the processors have to wait for the slower 
one, leading to load imbalance when viscoplastic redistributions are present . 
Dynamic load balancing is needed to solve this problem. A simple way to do 
this is to move internal variables before (data migration) and after (back to 
owner) behavior evaluation at the local stage. Since these variables are stored 
in a separated, well defined, class, this is quite easy. 



70 Revue europeenne des elements fini s. Volume 7 - no 1-2-3/1998 

I· 

·.~~--~~~~~--~~~-=~ ·-
Figure 6. Speed-up vs number of Figure 7. 7 sub-domains decom-
processors position. 

11 r I. l,.,r ol' ,.., .... .. U .l U l -•• of active slip systems 

Figure 8. Number of active slip 
systems, at third cycle, maximum of 
branch x. -20 -14 -7 -1 5 II 18 24 31 37 44 47 

(x I.OEI) 

Figure 9. Isovalues of stress 0"33, 

at third cycle, maximum of branch 
x. 



Application of parallel computation to material models 71 

On the other hand , different assumptions can be used for describing the local 
microstructure. The present model was fitted for polycrystalline materials, 
that is for random micro-structure. Fully ordered micro-structures (composite 
materia ls} can also be investigated. In this case, a new mesh is introduced 
in each Gauss point, to describe t he microstructure, using the so-called F E 2 

method (two scales FE method) will respect both the loca l behavior of each 
phase and the local load balance, allowing the use to apply delamination and 
damage processes (8] . 
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