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ABSTRACT. Perturbation techniques have been successfully developed to solve problems in 
non-linear structural mechanics. Based on asymptotic expansions, these techniques lead 
to analytic representation of the solution branches. In elasticity, when solving contact 
problems, two non-linearities can occur due to contact constraints and to geometry. The 
aim of this paper is to propose an asymptotic numerical method for frictionless contact 
problems. Three examples of 2-D contact problems will be studied to establish the 
efficiency of our algorithm. 

RtsUME. Des techniques de perturbations ont lte developpees pour le calcul non lineaire 
des structures elastiques. Ces techniques basees sur des developpements asymptotiques 
permettent d'obtenir une representation analytique des branches de solutions et un gain de 
temps de calcul important. Dans les problemes d'elasticite avec des conditions de contact, 
il y a deux non-linearites, Ia non-linearite due au contact et Ia non-linearite giomitrique. 
L'objectif de ce papier est de presenter une Methode Asymptotique Numerique pour les 
problemes de contact sans frottement. Trois exemples 2D sont etudies pour montrer 
l'efficacite de notre algorithme. 

KEY WORDS: asymptotic numerical method, contact, elastic structures, perturbation 
technique, Pade approximants. 
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1. Introduction 

Elastic problems with contact conditions have been widely treated by classic 
numerical methods coupled with the penalty method or the Lagrange multiplier 
one. In the first case, the unilateral conditions are not imposed, but replaced by 
a large stiffness term, in the second case, one introduces a Lagrange multiplier 

· which is a supplementary variable of the problem (KIK 88)[FEN 91)[KAL 93). 
Our aim is to present an Asymptotic Numerical Method (ANM) to solve the 
contact problems without friction. The principle of this perturbation method 
is to associate the asymptotic expansions with the finite element method as 
presented in (COC 94-1) . Indeed , the unknowns of the non-linear problem are 
expanded into series expansions with respect to a control parameter. By sub
stituting these asymptotic expansions into the non-linear equations, we obtain 
a recursive sequence of linear problems which allow ones to calcula te the te rms 
of the seri es. These linear problems admit the same stiffness matrix, so we can 
compute a la rge number of terms with a low computational cost. Consequently, 
we obtain an analytic representation of a part of a solution branch with only 
one m atrix decomposition. The ANM is well adapted to problems with qua
dra tic non-li nearity, where the asymptot ic expansions are very simple to be 
set . om par d with the cl assical iterative methods, the ANM is faster , more 
reli able and easier to be used. 

In the contact problems, the unila teral conditions a re not analytic and this 
property is necessary to apply an asymptotic procedure. To solve this diffi
uliy, w have regul a rized the contact law and have replaced it by a hyperbolic 

rela tion. To establish the effi ciency of this technique, some examples will be 
presented . 

2. Contact Proble m s Without Friction 

2.1. Contact Conditions 

In this study, we consider a contact problem , with possible large deform a
tions between an elastic body and a 2-D rigid surface. At each contact point , 
we associate a scalar variable h which represents its distance toward the rigid 
surface. Generally, the contact force R is a function of h, and in the case of 
friction less contact it is parallel to the normaln on the rigid surface a t the 
contact point. 

The unilateral conditions are expressed by: 

(R.n)h = 0, R.n 2: 0, h 2: 0 (1) 

The contact law (1) is not analytic, so we propose to regularize it by the 
hyperbolic relation : 
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Rh = TJ(o - h)n [2) 

where T) is a positive and sufficiently small parameter and o is the initia l clea
rance. For small values ofT) , the regularized force (2) tends to (1] (Figure 1) . 
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2.2. Mixed Variational Fo1·mulation 

We start with the mixed Hellinger-Reissner formul ation to which we add 
the contact energy. The governing equations are obtained by the stationary 
condition and can be written by introducing the mixed variable U = (u, S) 
[COC 94- 1), as follows: 

L(U) + Q(U, U) = ..\F + R r (3) 

where u and S represent respectively the displacement vector and the Piola-
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I<irchhofT stress tensor of t he second kind , Lis a linear operator, Q a symmetric 
bilinear opera to r, F is the externa l force (see [COC 94-1] for t heir expressions) 
and Rr is the contact force vector at the contact points. In this study, we shall 
consider the contact with a pl ane, a circul ar and an arbitrary rigid surface. The 
vector R must be defin ed in terms of displacements. In this respect , we substi
tute the clearance h and the normal n in equation [2} by their expressions in 
terms of displ acements. For example, in the case of a plane rigid surface (Figure 
2) , the normal is constant and given and the clearance is given by h = 6 + u .n . 
So , the regularized expression [2] becomes: 

R(6 + u .n) = - ?J(u .n)n 

In the case of a circula r rigid surface (Figure 3) , h and n a re defined by the · 
quad ra tic equations: 

(h + 1·)2 = (X + u - C) .(X + u - C) 
(h + 1·)n = (X + u - C) 

For an a rbi t rary surface, we propose to smooth it by a Bezier polynomia l 
[FAR 90] . We have limi ted ourselves to a s ix-degr e polynom ial (Figure 4). In 
t his case, we in trod uce some new va riables in order to keep a qu ad rat ic frame
work and to define the clearance and the normal, t he details beeing presented 
in [ELH 98]. 

3. An Asymptoti c Num ri cal M thod 

3.1. P 1' tu1·bation T chnique 

We denote by n = (h , n , .. . ) t he global variable onta ining supplementary 
unknowns due to contact . W sta rt from a given solution (Uo , Ro, Ao, f2o) , and 
we suppose th at t he solution branch of [2][3] is analytic in its neighborhood . 
We s ek the solution (U , R, A) by expanding the unknowns with respect to a 
pa rameter 'a1

: 

p p . p . p . 
U(a) = L: U;ai , Rr(a) = L: Ria., A(a) = E A;a' , n(a) = E n ;a' [4] 

i: O i=O i:O i: O 

The para meter 1a 1 is a supplementa ry unknown of the problem. We can de
fine it by the projection of the vector (u - uo , A- Ao) on the tangent (u1 , At) : 

By substituting the series [4} into quations [2], [3} and into the definition 
of' a' and by identifying like powers of' a', we obta in the following sequence of 
the linear problems: 
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order 1 
Lt(V t) = )qF + R'j 
(ut, Ut) + ..\1..\1 = 1 
Rt = LcUt 

order p 
Lt(Ur) = >-rF + R; - '2:~: ~ Q(Ur, Up- r) 
(up, Ut) + >-r>-t = 0 
Rp = Lc U p + r;lc 

[5.1] 
[5 .2) 
[5 .3) 

wh ere Lc is a linear symmetric operator which represents th ontact tiffn s, 
and r; 1c is a vector which depends non-linearl y on terms at previous ord rs. Lt 
is the tangent operator defined by Lt( .) = L( .) + 2Q(Uo , .) , and it is th same 
as in the case without contact . 

In the case of a plane rigid surface, the expansion terms of the contact force 
at each contact point are given by : 

[6 . 1) 

p - 1 

E R, < up - .,n > 
r - 1 [6.2) 

For til e other types of rigid surfaces, we an apply Lh ame strategy to 
a lculate the t rms R 1 and Rp which keep th e same form as in [5 .3) and a rc 

defin ed by formulas similar as in [6). 

3 .2. Finite Element D iscretization 

In order to apply a classical finite elem nt method , we eli minate the stress 
term Sp by substituting the constitutive law in the equilibrium equation [5.1) 
at order p [COC 94-1) . Denoting by [v] the nodal displacements, the problem 
at order p can be wr itten as: 

where [KTn lg] is the contactless tangent stiffness matrix and [F~ 1 U) is a vec
tor which depends non-linearly on terms at previous orders [COC 94-1) . These 
quantities depend only on the geometrical non-linearity. The vector [vp] can be 
decomposed into two components [vp] = [v~, v; cy, where [vc] is the displace
ment of the contact nodes and [vnc) the displacement of the other nodes. We 
suppose that the contact forces are concentrated at the contact nodes. In this 
case, the vector [Rp] can be written via [5 .3) as: [R;J = [R~ , 0] , with 
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where (Krc] is the symmetric contact stiffness matrix and the vector (F;1c) de
pends on terms at previous orders . Finally, the displacement problem at order 
p becomes: find (vrJ and >.p solution of 

The a lgorithm to compute a solution branch can be described as follows: 

Solution at order· 1: 

Solut io11 at or'Cl r p: 

(I) alcu lat 

G) solve 

(DSolve 

[v] = (Kr] - 1(F] 

@dedu e unknowns at order 1 

).. - l 1 
- yf(l+[v)'[v)) 

(vd = >..t[v] 

(Rl] = (Krc](vrJ 

(Ddeduce unknowns at order p 

)..P = - >..t[v~ 1 ](v t] 

(vp) = ~[v1] + [v;1J 

(v;IJ = (Kr) - l[F;IJ 

This algorithm needs only one matrix decomposition to compute a large 
part of the contact solution. However, the computation of the terms of the 
series becomes expensive if we exceed the order p = 20 . But in the cases with 
m any degrees of freedom, the series computation requires a rather small CPU 
time when compared to a matrix decomposition . 
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3.3. A Continuation Algo1·ithm 

The dom ain of va lidity of the solution branch is limi ted by the convergenc 
radius of the series. A continu ation procedur has been proposed in [ 0 94-1), 
it consists on re-applying the previous algorithm st p by step to obta in the n
tirc branch of the solution. We defin e an end-s tep criterion which corr sponds 

• ( lli'!ll_) ( ;;-!-r ) I I to a max11num valu e am = flfV!TI of the cont rol parameter a , where c 
is an accuracy parameter and p is the order of truncatur enerally, we tak 
c = 10- 5 and p = 20 . 

3.4 . Improvement of the S e1•ies by Pade Appro:cimants 

In order to improve the series representation of th so lu tion pr viou ly d -
cribed, we can u. e the Padc approximants [BAK 96][ '0 94-2] . At chniqu e is 
fully discussed in [NAJ 98], th at transforms t h power s ri s in a sum of Pad; 
approxim a nts admilling a ll the same denomin a tor. So w onsider th • s ri s, 
truncated a t an order (n + 1). of the discrctiz d eli plac m nts and th load ing 
parameter: 

n+ l 
v (a) = L v; ai 

i=O 

n+l 
A(a) = L A;ai 

i=O 
[7] 

From the vectors v; , we construct an orthogo nal bas is by t he cl· sica! ram
Schmidt procedure. [n this new bas is, the expansions [7] an be repla d by : 

[8] 

wh re D,. is a polynomial of degr e n . 

T he range of validity of the representation [ J can be r stricLed by the pre
sence of real roo ts of the denom in ator Dn. Thus, w hav u ed a lassical 
algor ithm of Bairstow to compute the roots of a polynomial. 

3.5. A Continuation Algorithm Using the Pade Appm:cimants 

ln order to have an efficient a lgorithm , we have to determine automatically 
the value amp of the control pa rameter over which the Pade solu tion is not 
acceptable. A very simple way to achieve this, is to defin e a criterion which 
requires th at the relative difference between two consecutive order solutions 
remains small. This can be expressed by : 

[9) 

where f is an accuracy parameter. However, the Pade approx.imants of a power 
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s ries may have a cluster of poles in !R, but the first real pole is generally greater 
than the rad ius of convergenc of the approximated series. onsequently, the 
end of the step amp is the first value of' a' which satisfi es the criterion [9) in the 
interval [am, Ji1·st pole]. It has been defined by some dichotomous iterations, 
th at represents a supplementary but negligeable computing time as compared 
to that of the series [7) . 

Sometimes, but rarely, the amp found is smaller than the estimated radius 
of convergence am of the series. In this case, we leave the Pade approximation 
and we keep the series solution . 

4. Examples and Discussion 

We consider an elastic beam subjected to a an extern al loading .\F and 
undergoing contact with a rigid surface. The body is discretized in 4 nodes 
quad ril ateral elements. The results of the ANM will be compared with the 
solution given by ABAQUS which uses a Newton method coupled with th e 
Lagrange multipliers method [ABA 94]. 

Example 1 

[n this exampl , we consider the contact between an last ic beam and a 
plane rigid surface. he contact nodes have the sam initial clearance o = 2mm 
(Figure 5). 

E = 20000 Mpn v = 0.3 L = 200 mm e = 8 mm F = 200 N 

Y t rigid surface . 
: e >I I I I I I I I I 

~ 1111111111111111111111111111111111111111111111111 [ ·-· 
.., ........ •... ...... 1..12 .............. ~t F x 

Figure 5. Contact between an elastic beam and a plane rigid surface 

We denote by AB the contact line containing the nodes which are likely to 
undergo contact with the rigid surface. The contact starts firstly at the node 
B and the contact zone moves to attain the node A. 

A regularization with high values of '7 may lead to a bad estimation of the 
displacements and the force contact forces, but the results are acceptable for 
the small values. For example, in neighborhood of the unsticking area, where 
the contact forces are reduced to zero we have an overestimation of the clea
rance h (Figure 7), but the curves are better for the contacting zone (Figure 6) . 

oncerning the contact forces , the total contact force on the line AB is correct 
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even with high values of TJ . With a small rJ, we have a lso a good distril ution of 
the contact force a t the zone where it is large (Figure 8). 

However, when TJ is small the non-linearity becomes very strong and the 
convergence radius of the asymptotic expansions decreases. Table (1) shows 
that the number of steps passes from 90 with a smallTJ to 42 with a higher one. 

A mesh refinement at the contact surface is nee ssary to avoid gross inter
penetrations. The convergence of the iterative method becomes more difficult 
when the number of contact nodes increases (Table 1) . Wi t h the ANM , the 
mesh refin ement permits to decrease the number of steps. Thus, with 658 de
grees of freedom and 100 contact nodes, we obtai n a good estim ation of th 
solution with 85 m atrix decompositions while ABAQUS needs 227 on . 
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Table 1. Comparison between Abaqus, ANM and Pade algorithm- 510 d.o.J 
and 26 contact nodes 
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The Pade technique has permitted to ex tend the domain of validity of Lhe 
series with good end-step residua ls . Consequently, with the continuation a lgo
rithm the number of matrix decompositions is divided by two (Table 1) with 
respect to the classical ANM formula (7] . 

Ezample 2 

In this case, the contact line AB interacts with a circu lar rigid surface 
involving large displacements(Figure 10). The contact occurs firstly a t node 
A and th e contact region moves towards the node B . ABAQUS uses a finite 
sliding formulation to solve this problem. 

E=20000. MPa 
v::0.3 

F= SOO. N 

- 50. mm 

e=IO. mm 
L=200. mm 

c • 
.. ·· 

r ./ .·· 
............. 

Figure 10. ontact between an elastic beam and a circular rigid surface 
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Figure 11. Contour of h, .,\ = 1 
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Figure 12. Contour of R, .,\ = 1 

Table 2: Comparison between Abaqus, ANM and Pade algorithm - 1240 d.o.f 
and 100 contact nodes 
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We have obta ined a good estim ation of the solution (Figure 11) and (Figure 
12) with less computing time th an the Lagrange multiplier method (Table 2) . 
The Padc approxim ants have also permitted to reduce the number of matrix 
decompositions with respect to the technique by se ri s. 

Example 3 

In this example, we consider an arbitrary rigid surface omposed of a set of 
six rigid segments. We approximate it by a six-degree B 'zi r polynomial. Th 
elastic beam is subjected to a distributed loading (Figure 13). 
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Figur 13. Contact between an elastic beam and an arbitrary 1·igid surfac 
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Figure 15. Contour of R, A = 1 

We have obtained a good accuracy of the solution (Figure 14) and (Figure 
15) with only 62 matrix decompositions in this case where there are approxi
mately 160 contacting nodes at the end of the loading. 

Indeed, the resu lts are similar to those obtained with ABAQUS by repre
senting the rigid surface by a broken line. The computation time with this 
Lagrange multiplier algorithm was large. One can also remark that the polyno
mial approximation technique does not require a large computational time as 
compared to the case of a plane rigid surface (90 matrix decompositions and 
26 contacting nodes) . 
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5. Conclusion 

In this paper, we have presented an ANM algorithm for contact problems 
between a 2-D rigid surface and a deformable body undergoing large dis
placements . Due to the strong non-linear contact law, a regularized force
displacement relationship has been proposed. Then a perturbation technique 
has been applied to solve the contact problem. This technique based on asymp
totic expansions transforms the non-linear problem into a sequence of linear 
problems admitting the same stiffness matrix . Therefore, a large number of 
t erms can be calculated with small computing time. The tests have est ablished 
that, despite of the very strong non-linearity, the ANM strategy is ffi cient . 
With an appropriate choice of the regularization parameter we can obtain an 
important gain in computational time, and satisfy the contact conditions. The 
use of the Pade approximants has allowed the efficiency of the algorithm to be 
improved . 
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