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ABSTRACT. Perturbation techniques have been successfully developed to solve problems in
non-linear structural mechanics. Based on asymptotic expansions, these techniques lead
to analytic representation of the solution branches. In elasticity, when solving contact
problems, two non-linearities can occur due to contact constraints and to geometry, The
aim of this paper is to propose an asymptotic numerical method for frictionless contact
problems. Three examples of 2-D contact problems will be studied to establish the
efficiency of our algorithm.

RESUME. Des techniques de perturbations ont été développées pour le calcul non linéaire
des structures élastiques. Ces techniques basées sur des développements asymptotiques
permettent d'obtenir une représentation analytique des branches de solutions et un gain de
temps de calcul important. Dans les problémes d'élasticité avec des conditions de contact,
il y a deux non-linéarités, la non-linéarité due au contact et la non-linéarité géométrique.
L'objectif de ce papier est de présenter une Méthode Asymptotique Numérique pour les
problémes de contact sans frottement. Trois exemples 2D sont étudiés pour montrer
lefficacité de notre algorithme.
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1. Introduction

Elastic problems with contact conditions have been widely treated by classic
numerical methods coupled with the penalty method or the Lagrange multiplier
one. In the first case, the unilateral conditions are not imposed, but replaced by
a large stiffness term, in the second case, one introduces a Lagrange multiplier
which is a supplementary variable of the problem [KIK 88][FEN 91][KAL 93].
Our aim is to present an Asymptotic Numerical Method (ANM) to solve the
contact problems without friction. The principle of this perturbation method
is to associate the asymptotic expansions with the finite element method as
presented in [COC 94-1]. Indeed, the unknowns of the non-linear problem are
expanded into series expansions with respect to a control parameter. By sub-
stituting these asymptotic expansions into the non-linear equations, we obtain
a recursive sequence of linear problems which allow ones to calculate the terms
of the series. These linear problems admit the same stiffness matrix, so we can
compute a large number of terms with a low computational cost. Consequently,
we obtain an analytic representation of a part of a solution branch with only
one matrix decomposition. The ANM is well adapted to problems with qua-
dratic non-linearity, where the asymptotic expansions are very simple to be
set. Compared with the classical iterative methods, the ANM is faster, more
reliable and easier to be used.

In the contact problems, the unilateral conditions are not analytic and this
property is necessary to apply an asymptotic procedure. To solve this diffi-
culty, we have regularized the contact law and have replaced it by a hyperbolic
relation. To establish the efficiency of this technique, some examples will be
presented.

2. Contact Problems Without Friction
2.1. Contact Conditions

In this study, we consider a contact problem, with possible large deforma-
tions between an elastic body and a 2-D rigid surface. At each contact point,
we associate a scalar variable h which represents its distance toward the rigid
surface. Generally, the contact force R is a function of k, and in the case of
frictionless contact it is parallel to the normal n on the rigid surface at the
contact point.

The unilateral conditions are expressed by:
(Rn)h=0, Rn>0, h>0 (1]

The contact law [1] is not analytic, so we propose to regularize it by the
hyperbolic relation:
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Rh =n(d — h)n (2]

where 77 is a positive and sufficiently small parameter and § is the initial clea-
rance. For small values of 1, the regularized force [2] tends to [1] (Figure 1).
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2.2. Mized Variational Formulation
We start with the mixed Hellinger-Reissner formulation to which we add
the contact energy. The governing equations are obtained by the stationary

condition and can be written by introducing the mixed variable U = (u, S)
[COC 94-1], as follows:

L(U) + Q(U,U) = AF + R" 3]

where u and S represent respectively the displacement vector and the Piola-
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Kirchhoff stress tensor of the second kind, L is a linear operator, @) a symmetric
bilinear operator, F is the external force (see [COC 94-1] for their expressions)
and R" is the contact force vector at the contact points. In this study, we shall
consider the contact with a plane, a circular and an arbitrary rigid surface. The
vector R must be defined in terms of displacements. In this respect, we substi-
tute the clearance h and the normal n in equation [2] by their expressions in
terms of displacements. For example, in the case of a plane rigid surface (Figure
2), the normal is constant and given and the clearance is given by h = § + u.n.
So, the regularized expression [2] becomes:

R(6 + u.n) = —p(u.n)n

In the case of a circular rigid surface (Figure 3), h and n are defined by the
quadratic equations:

(h+7r)?=(X+u-C).(X+u-C)
(h+rm=(X+u-C)

For an arbitrary surface, we propose to smooth it by a Bézier polynomial
[FAR 90]. We have limited ourselves to a six-degree polynomial (Figure 4). In
this case, we introduce some new variables in order to keep a quadratic frame-
work and to define the clearance and the normal, the details beeing presented
in [ELH 98).

3. An Asymptotic Numerical Method
3.1. Perturbation Technique

We denote by €2 = (h,n,...) the global variable containing supplementary
unknowns due to contact. We start from a given solution (Ug, Ro, Ao, 20), and
we suppose that the solution branch of [2][3] is analytic in its neighborhood.

We seek the solution (U, R, A) by expanding the unknowns with respect to a
parameter ‘a’:

- 4 5 4 y 4 L
Ul éjo Uial, R(6) = & Ria', Ae) = - M, 0(a) = - Quat 4]

The parameter ‘a’ is a supplementary unknown of the problem. We can de-
fine it by the projection of the vector (u — ug, A — Ag) on the tangent (uy, A;):

a= (u — up, lll) -+ (A - /\0)/\1
By substituting the series [4] into equations [2], [3] and into the definition

of ‘a’ and by identifying like powers of ‘a’, we obtain the following sequence of
the linear problems:
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order 1
L,(U;1) = \\F + R
(ul,ul) + /\1A1 =

R.1 = Lcul

order p 1
L(Up) = MF + RY — Y oo Q(U,, Upy) [5.1]
(up,u1) + A A =0 [5.2]
Ry = Lou, + £1e [5.3]

where L. is a linear symmetric operator which represents the contact stiffness,
and f,?'“ is a vector which depends non-linearly on terms at previous orders. L,
is the tangent operator defined by L¢(.) = L(.) + 2Q(Uy, .), and it is the same
as in the case without contact.

In the case of a plane rigid surface, the expansion terms of the contact force
at each contact point are given by:

— —<up,n>. +Ro
R = =gl gl

p=1
R, -, N>
R, = —<upn>(n+Re) rz=:| Sg-hi [6 2]
P = (0+<ug,n>) (6+<uo,n>) .

For the other types of rigid surfaces, we can apply the same strategy to
calculate the terms Ry and R, which keep the same form as in [5.3] and are
defined by formulas similar as in [6].

3.2. Finite Element Discretization

In order to apply a classical finite element method, we eliminate the stress
term S, by substituting the constitutive law in the equilibrium equation [5.1]
at order p [COC 94-1]. Denoting by [v] the nodal displacements, the problem
at order p can be written as:

(K7nig][vp] = Ap[F] + [F;‘g] +[Ry)

where [K7nig] is the contactless tangent stiffness matrix and [Fp'] is a vec-
tor which depends non-linearly on terms at previous orders [COC 94-1]. These
quantities depend only on the geometrical non-linearity. The vector [v,] can be
decomposed into two components [vp] = [v§, vi]T, where [v€] is the displace-
ment of the contact nodes and [v™¢] the displacement of the other nodes. We
suppose that the contact forces are concentrated at the contact nodes. In this

case, the vector [R;] can be written via [5.3] as: [R}] = [Rg, 0], with
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[R5) = [rcivg] + [F3)
where [Kr.] is the symmetric contact stiffness matrix and the vector [F;"C] de-

pends on terms at previous orders. Finally, the displacement problem at order
p becomes: find [vp] and A, solution of

(K7][vp] = A [F] + [F;;”] (vpl [va] + ApAr = 0.
The algorithm to compute a solution branch can be described as follows:

Solution at order 1:

@ Solve

(V] = [Kr]~'[F]

@deduce unknowns at order 1

e 1

A= V)
[vi] = M [V]
[Rf] = [Krc][v§]

Solution at order p:

@(Jalculatc

[i;'\;:lc AL [F;IC,O]T

@deducc unknowns at order p

BN T ST
[F3) = [F] + [y

@Solve

[vp'] = [Kr] "' [F}]

[vp] = 32[va] + [v}]

[R7] = [Kre][vy] + [Fp']

This algorithm needs only one matrix decomposition to compute a large
part of the contact solution. However, the computation of the terms of the
series becomes expensive if we exceed the order p = 20. But in the cases with
many degrees of freedom, the series computation requires a rather small CPU
time when compared to a matrix decomposition.
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3.3. A Continuation Algorithm

The domain of validity of the solution branch is limited by the convergence
radius of the series. A continuation procedure has been proposed in [COC 94-1],
it consists on re-applying the previous algorithm step by step to obtain the en-
tire branch of the solution. We define an end-step criterion which corresponds

. val\ (331)
to a maximum value a,, = CH
P

is an accuracy parameter and p is the order of truncature. Generally, we take

€=10"% and p = 20.

of the control parameter ‘a’, where ¢

3.4. Improvement of the Series by Padé Approzimants

In order to improve the series representation of the solution previously des-
cribed, we can use the Padé approximants [BAK 96][COC 94-2]. A technique is
fully discussed in [NAJ 98], that transforms the power series in a sum of Padé
approximants admitting all the same denominator. So we consider the series,
truncated at an order (n 4 1), of the discretized displacements and the loading
parameter:

n+1 ) n+1l .
v(a) = i;) via' Ala) = ;} Aid (7]

From the vectors v;, we construct an orthogonal basis by the classical Gram-
Schmidt procedure. In this new basis, the expansions [7] can be replaced by:

n

Py(v(a)) = ilzovi D,;:iai Pu(Ma)) = Z Ai D];:' a’ [8]

i=0

where D, is a polynomial of degree n.

The range of validity of the representation [8] can be restricted by the pre-
sence of real roots of the denominator D, . Thus, we have used a classical
algorithm of Bairstow to compute the roots of a polynomial.

3.5. A Continuation Algorithm Using the Padé Approzimants

In order to have an efficient algorithm, we have to determine automatically
the value a,,p of the control parameter over which the Padé solution is not
acceptable. A very simple way to achieve this, is to define a criterion which
requires that the relative difference between two consecutive order solutions
remains small. This can be expressed by:

P, =Py
L el =~ ¢ [9)

where ¢ is an accuracy parameter. However, the Padé approximants of a power
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series may have a cluster of poles in 3, but the first real pole is generally greater
than the radius of convergence of the approximated series. Consequently, the
end of the step amp is the first value of ‘a’ which satisfies the criterion [9] in the
interval [ap, first pole]. It has been defined by some dichotomous iterations,
that represents a supplementary but negligeable computing time as compared
to that of the series [7].

Sometimes, but rarely, the a,,, found is smaller than the estimated radius
of convergence a,, of the series. In this case, we leave the Padé approximation
and we keep the series solution.

4. Examples and Discussion

We consider an elastic beam subjected to a an external loading AF and
undergoing contact with a rigid surface. The body is discretized in 4 nodes
quadrilateral elements. The results of the ANM will be compared with the
solution given by ABAQUS which uses a Newton method coupled with the
Lagrange multipliers method [ABA 94].

Ezample 1
In this example, we consider the contact between an elastic beam and a

plane rigid surface. The contact nodes have the same initial clearance § = 2mm
(Figure 5).

E =20000Mpa v=03 L=200mm e=8mm F=200N
Yy rigid surface .
; e n LRt [ S | 2 e | s fis i< f
B
A -

Figure 5. Contact between an elastic beam and a plane rigid surface

We denote by AB the contact line containing the nodes which are likely to
undergo contact with the rigid surface. The contact starts firstly at the node
B and the contact zone moves to attain the node A.

A regularization with high values of ) may lead to a bad estimation of the
displacements and the force contact forces, but the results are acceptable for
the small values. For example, in neighborhood of the unsticking area, where
the contact forces are reduced to zero we have an overestimation of the clea-
rance h (Figure 7), but the curves are better for the contacting zone (Figure 6).
Concerning the contact forces, the total contact force on the line AB is correct
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even with high values of 1. With a small , we have also a good distribution of
the contact force at the zone where it is large (Figure 8).

However, when 7 is small the non-linearity becomes very strong and the
convergence radius of the asymptotic expansions decreases. Table (1) shows
that the number of steps passes from 90 with a small 7 to 42 with a higher one.

A mesh refinement at the contact surface is necessary to avoid gross inter-
penetrations. The convergence of the iterative method becomes more difficult
when the number of contact nodes increases (Table 1). With the ANM, the
mesh refinement permits to decrease the number of steps. Thus, with 658 de-
grees of freedom and 100 contact nodes, we obtain a good estimation of the
solution with 85 matrix decompositions while ABAQUS needs 227 one.

0.006 014
0.005 0.12
0.004 01 £t
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0 — 002 f ABAQUS
ABAQUS — st R eiiiitriiiniiied Bl
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1 2 3 4 s 6 7 10 13 16 19 2 25
A Contact nodes Contact nodes B
Figure 6. h, contacting zone Figure 7. h, unsticking zone
100 1
80 08
i
o o H
g 60 E 0.6
f o« g
38
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A Contact nodes
Figure 8. R, contacting zone Figure 9. R, unsticking zone

ANM (p=20) [ Padé (p=20) ABAQUS
high 5 | small 5 || high n | small 5 n=0
42 90 31 51 128

Table 1. Comparison between Abaqus, ANM and Padé algorithm - 510 d.o.f
and 26 contact nodes
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The Padé technique has permitted to extend the domain of validity of the
series with good end-step residuals. Consequently, with the continuation algo-
rithm the number of matrix decompositions is divided by two (Table 1) with
respect to the classical ANM formula [7].

Ezample 2

In this case, the contact line AB interacts with a circular rigid surface
involving large displacements(Figure 10). The contact occurs firstly at node
A and the contact region moves towards the node B. ABAQUS uses a finite
sliding formulation to solve this problem.

E=20000. MPa
v=0.3

F=800.N

r=50. mm

e=10. mm
L=200. mm

! Fi

Figure 10. Contact between an elastic beam and a circular rigid surface
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Figure 11. Contour of h, A =1 Figure 12. Contour of R, A =1

ANM (p=20) Padé (p=20) [ ABAQUS |
high | small 5 || high n | small 7 n=>0
25 56 18 37 96

Table 2: Comparison between Abaqus, ANM and Padé algorithm - 1240 d.o.f
and 100 contact nodes
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We have obtained a good estimation of the solution (Figure 11) and (Figure
12) with less computing time than the Lagrange multiplier method (Table 2).
The Padé approximants have also permitted to reduce the number of matrix
decompositions with respect to the technique by series.

Ezample 3
In this example, we consider an arbitrary rigid surface composed of a set of

six rigid segments. We approximate it by a six-degree Bézier polynomial. The
elastic beam is subjected to a distributed loading (Figure 13).

E=20000.MPa v=03 F=79.N
L =200. mm e=4.mm b

! .
Bezier curve

25 — 16
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15
P
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3 i - small eta
C o3 high eta g 6 ABAQUS
| . ,
0 2
45 ABAQUS/ S small eta o y, ~
T0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
contact nodes contact nodes
Figure 14. Contour of h, A =1 Figure 15. Contour of R, A =1

We have obtained a good accuracy of the solution (Figure 14) and (Figure
15) with only 62 matrix decompositions in this case where there are approxi-
mately 160 contacting nodes at the end of the loading.

Indeed, the results are similar to those obtained with ABAQUS by repre-
senting the rigid surface by a broken line. The computation time with this
Lagrange multiplier algorithm was large. One can also remark that the polyno-
mial approximation technique does not require a large computational time as
compared to the case of a plane rigid surface (90 matrix decompositions and
26 contacting nodes).
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4

5. Conclusion

In this paper, we have presented an ANM algorithm for contact problems
between a 2-D rigid surface and a deformable body undergoing large dis-
placements. Due to the strong non-linear contact law, a regularized force-
displacement relationship has been proposed. Then a perturbation technique
has been applied to solve the contact problem. This technique based on asymp-
totic expansions transforms the non-linear problem into a sequence of linear
problems admitting the same stiffness matrix. Therefore, a large number of
terms can be calculated with small computing time. The tests have established
that, despite of the very strong non-linearity, the ANM strategy is efficient.
With an appropriate choice of the regularization parameter we can obtain an
important gain in computational time, and satisfy the contact conditions. The
use of the Padé approximants has allowed the efficiency of the algorithm to be
improved.
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