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ABSTRACT. The dynamical problem of a viscoelastic body in volving unilateral contact and 
Coulomb friction is set so as to take into account accurately eventual discontinuities of 
the relative velocities when impacts occur. Several first order implicit numerical schemes 
for the time discretized equations of the problem are proposed. The results are compared to 
those of a higher order standard numerical scheme. The dicrete problem, with the velocity 
as unknown, set in terms of a complementarity problem which is solved by Lemke's 
mathematical programming method. 

REsUME. Le probleme dynamique de contact unilateral avec frouement de Coulomb en 
viscoe/asticite lineaire est formule de maniere a prendre en compte avec precision les 
iventuelles discontinuites des vitesses relatives tors d'un impact. Plusieurs schemas 
numeriques implicites du premier ordre sont proposes pour /'approximation en temps et 
its sont compares a un schema standard d'ordre plus eleve. Le probleme disc ret, formule en 
vitesse, est icrit en termes de complimentarite et resolu par Ia methode de programmation 
mathimatique de Lemke. 
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1. Introduction 

Dynamical problems involving frictional contact are not regular because rel­
ative velocities are liable to become discontinuous when impulses are exerted 
between contacting bodies during impact. In this paper, only finite dimen­
sional systems are considered. A finite element method, for instance, can be 
used to obtain a finite dimensional model of the continous dynamical prob­
lem, however, such a discretization is not within the scope of this paper. The 
discrete model consists of a second-order differential equation with respect to 
time governing the displacement of the mesh nodes and of the frictional contact 
relations. Since impacts are expected, such a differential equation should be 
understood in the sense of distributions or of measure differential equations. 
Any velocity v is chosen as a function with bounded variation, v - is the left 
limit representing the velocity before some possible impact time t whereas v+ 
is the right limit representing the velocity after the impact time. This implies 
that the acceleration is a differential measure. The reaction is represented by 
some positive measure involving, for instance, the Dirac measure at impact 
time. Several numerical schemes for the time discretization of this measure 
differential equation may be adopted, each one depending on different choices 
for the approximation of the displacement and of the terms representating in­
ternal and external forces. To the dynamical equation are added the frictional 
contact relations involving impulses and the relative velocities at the impact 
time. The unilateral condition appears as a complementarity condition, involv­
ing the gap and the reaction force, referred to as the Signorini condition. The 
Coulomb friction law is written using the right sliding velocity and the density 
of impulse. The use of the right sliding velocity, is motivated by numerical 
experiments on simple examples. 

Most authors apply standard schemes, for instance, Newmark's scheme, 
to integrate the dynamical equation, as if relative velocities were sufficiently 
regular. Hughes et al. have proposed to correct the solution obtained with 
Newmark's scheme when an impact (or a release) occurs using a wave propa­
gation analysis [HUG 76). More recently, Taylor and Papadopoulos have pre­
ferred to add a rate and a second rate form of the displacement impenetrability 
condition [TAY 91) and add two Lagrange multipliers to enforce these new con­
ditions (augmented lagrangien formulation). 

As the time discretized problem for each time iteration is very similar to a 
stationary frictional contact problem, except that the primary unknown here is 
the velocity, the Lemke's mathematical programming method is used to solve 
at each time step the complete set of equations, the approximated dynami­
cal equation, together with the complementarity frictional contact equations, 
(CHA 95). 

Though the ideas developed in this paper may be applied straightforwardly 
to general large deformation dynamical problems with frictional contact (see 
section 6), for simplicity's sake, the case of linear viscoelasticity under small 
perturbations is developed. The simple example of the impact of two bars is 
presented [CAR 91], and used as a benchmark: the results obtained by the 
different numerical schemes proposed by the authors to solve the dynamical 
equation are compared to those obtained by using Newmark's method and with 
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the exact solution. The results suggest that the proposed numerical schemes 
are quite effective in coping with the discontinuities of the velocity. Other less 
academic examples are also presented showing the feasability of this approach 
on large deformation problems. · 

2. Space Discretization 

The configuration of a continuous medium is represented by a n dimen­
sional vector q(t) whose components are the co-ordinates of the mesh nodes 
obtained by a finite element discretization (P1 in our case). The local gap 
g(t), the relative velocity V(t) and the local impulse reaction R(t) exerted at 
some point candidate for contact, for instance a mesh node, are components 
of some 2nc or 3nc dimensional vectors where nc is the number of candidates. 
Contact and friction conditions are expressed through relations between g(t), 
V(t) and R(t). Normal (respectively tangential) components are noted with a 
subscript N (respectively T). The discrete problem to be solved is the followi g: 

Problem Pn : Find q such that Vt E [0, T], q(O) = qo, q(O) = Vo and: 

Mdq + Kqdt + Cqdt = Fdt + rdv, 

and for the contact nodes: 

g(t) ~ 0, RN(t) ~ 0 and g(t) RN(t) = 0, 

IIRr(t)ll ~ jjiRN(t)i, 

if Vj(t) =/= 0 then IIRr(t)i = - jjiRN(t)i Vj(t) / IIV/(t)ll, 

[1] 

[2) 

where dt is the Lebesgue measure, dq is a differential measure representing the 
discretized acceleration, dv is a non-negative real measure relative to which dq 
happens to possess a density function, and r is a representative of the local 
density of impulses exerted where contact occurs. 

3. Time Discretization of the Measure Differential System 

It may be useful here to remind the reader that a differential measure 
dv can be associated to any function v with bounded variation, and that 
Jr,.,b] dv = v+(b) - v - (a) and ~a.,b] dv = v+(b) - v+(a) where v+ and v- re­
fer respectively to the right-limit and left-limit of v. For more details on the 
subject see J.J. Moreau (MOR 88]. We shall consider that the velocity is a 
right continuous function of time, so that v = v+. A study of such measure 
differential sytems as (1] can be found in (PAN 82). The authors show that [1) 
may be written in the following equivalent form: for all tin ]0, T) 

M(q(t) - q(O)) = t (F - Kq - Cq)ds + ( rdv, 
lo J )o,t) 

(3) 

where ds represents the Lebesgue measure, and also: for all r in ]0, t[ 
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r ~~~ 
{ 

M(q(t) - q(r)) = 1t (F - Kq - Cq)ds + { rdv, 

q(t) = q(r) + [t 4ds. 
[4] 

In order to obtain a numerical approximation of the solution of (3), the 
time interval [0, T] is divided into sub-intervals. Considering some sub-interval 
]t;, t;+l] of length h, [4] yields the following relations: 

{ 

f''+1 r 
M(4(ti+I) - q(t;)) = jt (F - Kq - C4)ds + },, rdv, 

t; ]t;,t;+ t] 

1
t i+1 

q(ti+I) = q(t;) + 4ds. 
t; 

[5] 

The next step consists in choosing a numerical scheme to approximate the 
two integrals J/:+1 qds and J/:+1 (F - Kq - Cq)ds. A different numerical method 
is obtained for each different choice of an integral approximation scheme. How­
ever, bearing in mind the fact that the velocity may be discontinuous, the use 
of high-order approximations should be avoided since they are accurate only 
for the integration of sufficiently regular functions . Therefore, the classical 0-
method is proposed in this paper (i.e., J,'/+ 1 

fds ~ h(Of(t;+t ) + (l - O)f(t;)), 
0= 1 yields the implicit Euler method) . This method is unconditionally stable 
for 0 ;::: ~ · The mean value impulse r i+ 1 = k ~t; , t ;+ t] rdv appears as a primary 
variable. Setting 4', qi, 4'+1, q1+1 , as approximations of respectively q(ti), 
q(t;), q{ti+ I), q(~;t l), the following three methods to compute the unknowns 
4•+ , q•+1 and r•+ at each time step may be obtained from expression (5]. 

0-Method: both integrals are approximated by the 0-method, so that one has : 

{ 

M(qi+ 1 - ti') = h[O(F'+l - Kq'+l - Ccji+1
) + (1 - O)(F' - Kq' - C.4'1J 

+hr'+ , 

qi+l = q' + h[04'+1 + {1 - O)q'], 

or 

M = M +hOC + h202 K, [6] 

ji+t = [M - h{l - O)C - h20(1 - O)K]q' - hKq' + h[O F'-: 1 

+ {1 - O)F']. 

0-Euler-Method: the first integral is approximated by the 0-method and the 
other by the implicit Euler method, so that one has: 



Dynamical frictional problem 153 

{ 

M(q'+ 1
- ti') = h[8(F1+1 - Kqi+ 1 - Cq1+1) + (1 - 8)(F1 - Kq1

- C.ci' lJ 
+hr'+ , 

qi+l = q' + hcji+l I 

or 

! 
M q'+' ~ F•+> + hr'", q'+' ~ •' + hq'+', [TJ 

M = M + h8C + hl8K, 

F'+l = [M - h(1 - 8)C]cj' - hKq1 + h[8 F'+l + (1 - 8)F1
]. 

modified 8-Method: both integrals are approximated by the O~metho~, but 
in the contact relations, the displacement q'+l is replaced by q'+1 = q•+l + 
h(1 - O)cj1+1. So that this method shall only differ from the 8-method when 
the contact relations are added. 

In section 6.1, these three methods have been compared to the exact solution 
of a simple test example and to the results obtained by Newmark's method for 
which similar relations to [6] and (7] are obtained. 

4. Discretization of the Frictional Contact Conditions 

The relative velocities V{t) are related to cj(t) by kinematic relations, 

V(t) = H•(q(t)) q(t). 

T he densities of impulse r(t) and R(t) satisfy, 

r{t) = H(q(t)) R(t), 

where n•(q(t)) is the transpose of the linear mapping H(q(t)). 
The following approximations may be adopted, 

yi+l = n• (q') ci'+l , 

ri+l = H(q') R'+l, 

where yi+l shall represent an approximation of V(t;+l)· The approximation 
of the gap is crucial for the behaviour of the algorithm. It is based on the 
following property: the time derivative of the gap function t H g(t) i11 the 
normal component of the relative velocity VN(t), 

Using the above property and the different expressions obtained in Section 
3 according. to the discretization method adopted, the gap at t;+l is approxi­
mated by g'+1 and given by the following expressions: 
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for the 8-method: 

u'+~ = u' + Mv~+t + h(1 - O)V~, 

. 2.. g'+l = yi+l - (;i 
h(} N I 

- . 1 . 1 . 
a· = (1 - 0)v;, - h()u', 

for the 0-Euler-method: 

u'+l = u' + hv~+l' 

..!. u'+~ = v~+~ - a' ' 
h 

- . 1 i 
G' = - h g I 

[8] 

[9] 

and for t~e mo~ified 6-meth'!d (as the displacement is _estimat_ed fro~ the 
relation <f+l = q•+l + h(1 - O)q'+l whereas we still have q•+l = q' + h0q'+1 + 
h(1 - O)q') : 

§'+1 = 9' + hv~+ t, 

..!_ _g•+t = v~+~ _ a' , 
h 

[10] 

In the modifie d 8-method, the estimated gap is not the gap at the end of the 
time step but at some near future time ti+l +h(1 - 0). For the first two methods, 
the unknowns involved in the discretized Signorini condition are g1+1 , R~1 , 
whereas, for the modified 0-method the unknowns are y'+1, R~1 . In all 
three cases, the discretized Signorini condition is written as: 

v~+l - (;i ~ 0, R~1 ~ 0 and (v~+ l - G1
) R~1 = 0. [11] 

The advantage of the 0-Euler-method and of the modified 0-method 
over the 0-method, is the compatibility between gap and velocity approxima­
tions. It can easily be observed from the above relations that if some contact 
occurs at t,, i.e., if 9• = o (or 9' = o), then a• = o so that if 9>+1 = o (or 
g'+1 = 0) then V~+t = 0 also. This is not the case for the 6-method where, if 
g' = 0, G' is different from zero so that if the approximated gap at ti+1 is equal 
tO zero, i.e. gi+l = 0, One has v~+l = (1 - ! ) v_k - to gi 1 Which is different 
from zero and this introduces some sort of restitution energy. 

Finally, the discretized Coulomb's law involves the unknowns v;+1
, R'+t, 

and is written as: 

11~+1 11 ~ ~~R~ 1 1, 
if v;+~ # o then ~+1 = -~IR~1 1 v;+t I nv;+~ll· 

[12] 

The advantage of expressing the contact conditions in this manner is that in 
both conditions [11] and [12] the velocity appears as a primary unknown. 
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5. Complementarity Formulation and Resolution 

5.1. The Complementarity Formulation 

The unilateral Signorini condition appears naturally as a complementarity 
relation. Klarbring has shown that the Coulomb friction conditions can also 
be expressed in these terms (see [KLA 86]). In the two-dimensional case, it is 
natural to introduce four new variables, >.1 and >.2 (respectively the positive 
and negative parts of the tangential velocity for the contact nodes) and, ~1 and 
~2 with ~1 = - RT + p.RN and ~2 = RT + p.RN (the three inequations ~1 ~ O, 
~2 ~ 0 and - RN ~ 0 define the Coulomb cone). For each node in contact, 
the friction conditions [2] are then equivalent to [14]. When three-dimensional 
cases are considered the Coulomb cone has to be approximated by a polygonal 
cone and the number of new variables introduced depends on the number of 
facets of the polygon. The two complementarity conditions [14] are replaced 
by a number of similar conditions involving all the new variables introduced. 

After having adopted one of the three integration methods of Section 3 
and their corresponding approximations of the contact conditions introduced 
in Section 4, we obtain: 

Problem Pd : Find qi+ 1 and ri+l such as: 

Mqi+l = fri +1 + hri+1
1 (13] 

and for the contact nodes: 

(14] 

The matrix M and the vectors fri+l and (;i depend on the integration method 
one has adopted and have been defined in the preceeding sections. The 9-
method corresponds to [6] and [8], the 9-Euler-method to (7] and [9] and 
the modified 9-method corresponds to [6] and [10]. 

Finally, in order to formulate the problem in terms of complementarity, 
the linear system [13] is condensed on all the degrees of freedom of the contact 
nodes (see [RAO 88]). The linear complementarity problem is solved using the 
pivoting method of Lemke (see (CHA 95]). The dimension n of this problem 
is equal to 3ne in the two-dimensional case. The solution of the linear comple­
mentarity problem is then introduced into the linear system [13], thus reducing 
the dimension of the system to the total number of degrees of freedom minus 
n. The resulting system is solved by a standard method for linear systems. 
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5.2. Mathematical Programming Solver 

After condensation, problem Pd is written as a linear complementarity prob­
lem of the following general form: 

Problem Pc: Let f be a given vector E IR.1\ find w and z E IR.11 such that: 

{ 
w - Az = f 
w, ~ 0, z, ~ 0, w,z, = 0 Vi= l, .. ,n. 

There are several methods to solve this sort of problem. All are based on 
the following remark: if fi ~ O, 'v'i= l, .. ,n, then the solution is w1 = fi and 
z; = 0 Vi= l, .. ,n. We have chosen the method introduced by Lemke (see 
(COT 92]) . A pivoting algorithm is used to construct, by linear combinations, 
a sequence of non-negative vectors z. Details of this algorithm can be found 
in (BAZ 93] and (COT 92] . Due to the change of variables (introduction of the 
new variables At. >.2, <I>1 and <!>2), the matrix A is non-symmetrical and depends 
on the friction coefficient. From a mathematical point of view, the copositivity 
of the matrix A ensures the convergence of the pivoting algorithm. In practice, 
no convergence problems have been observed. Chabrand et al. (see [CHA 95]) 
have shown the efficiency of the Lemke algorithm in the quasistatic case and 
compared it to the augmented lagrangien method and the Gauss-Seidel method 
accelerated by the Aitken procedure. 

6. Numerical Examples 

6.1. Impact of Elastic Bars 

6.1.1. One Dimensional Test 

This is a simple test example (CAR 91] modeling the impact of two identical 
elastic bars (see Figure 1). The material properties are given in Table 1. 

__ Vo_ _Vo __ 

L L 

Figure 1. Impact of two bar1 

Figure 2 represents the evolution of the contact velocity for each of the four 
methods together with the exact solution which is known in this very simple 
case. The Newmark method with "Y = 0.5 and /3 = 0.25 generates undesir­
able oscillations of the contact velocity during the contact phase. The same 
oscillations would have appeared if we had used the 9-method with 9 = 0.5. 
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Young's modulus 0.20684.10 12 Pa initial velocity 5.13588m/s 

density 0. 78957.104K g /m3 evolution time 0.2.10 - 3s 

length L 0.254m time step 0. 2226.10 :... 58 

Table 1. Data for the impact of two bar! 

These oscillations are damped out by using coefficients that introduce dissipa­
tion (see the results obtained here by the 0-Method with 0 = 0.55) . For the 
0-Euler-method, the transition from the zero velocity of the contact phase to 
the negative velocity is much too slow. The modified 0-method seems to be the 
most efficient in this simple case but this shall not be so in the two-dimensional 
case. 

" :> 

10 

·l 

·10 

- 6-method 
···· ··· exact solution 

0.0 0 00004 O.llOOOI 0.00012 000016 0.0001 

10 

·10 

0.0 0.0000! 

l (s) 

- modified 6-method 
······· e~ac t solution 

0.0001 
t(s) 

0.0001! 0.0000 

10 0-Euler-method 
······· exact solution 

~:-~ 
" :> 

·l 

·10 

0.0 000004 0.00001 0.00011 0.00016 0.0002 

· 10 

0.0 O.OCXXI5 

t (s) 

0.0001 
t(l) 

0.0001! 0.0001 

Figure 2. Contact velocity 
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6.1.2. Two-Dimensional Test 

The data for this example is the same as for the previous one, except for 
the Poisson coefficient which was then equal to zero and which is now equal 
to 0.45. No exact solution is avalaible, in this case, to compare the numerical 
results to. Figure 3 represents the normal velocity, computed by the three 
methods of Section 3, at the centre of the contact zone of both bars, the dotted 
line representing the velocity of the impacting bar. In this case, the 0-Euler­
method seems a good compromise between the 0-method, where the velocity is 
too smooth and does not reach the value minus one, and the modified 0-method 
which generates improbable oscillations. 

10 

:~ I - 0-method I 
11 
I 0 ................................................. .. 
Ill 
0 .6 :!·; ............ . 

Z uo ......... : 
>oll2 

oll4 

~;: .······ ....... .. 
· Ill 
· I 2 
· 1,4 
· 16 
· II ·111 ,___...__...__..._ _ _._ _ _. 

UO OCXO» OOO•MI U.-.1011 UIUHI\ CHnJl 

1 (s) 

2.11 

1.11 

:·! -- 0-culer-method 
1.4 
11 
1.0 .................................................. . 
Ol 
116 

~~.~ ..... 3·-0--.. 
.. .. 
:i ~ .............................. :·: ... ... :· .. :·:: ... : ... . 
· 1.2 
· I< 
· 16 ... ·111 L,__..__..._ _ _._ _ _._ _ _. 

OU UCWR» UMIJOI OJIOIIIl UUfiUI6 UUUUl 

t (s) 

: ~ - modi lied O-mc1hod .. 
1.1 
I U .................................................. . 
01 
06 
0.4 z 01 

>~-~ .., . 
.0.6 
.0.1 
· 1.0 
· 1.2 
· 1.4 
· I 6 
-1.1 

· l.OO'-.O-O~.OOOI~M-:-I>.!:-:")(Q:':'JI:""':'O':"OOI~ll":'1"':0"':.000~16~00002 
t (s) 

Figure 3. Normal velocity at the centre of the contact zone for both bar1 

6.2. Impact of a Cylinder 

This is a two-dimensional frictionless impact test proposed by Taylor and 
Papadopoulos (TAY 91]. The plain strain hypothesis is adopted and the gravity 
effects are neglected. The geometrical and material properties are given on 
Figure 4. The mesh has 613 nodes (576 four-node finite elements). The results 
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Young's modulus 5.101 

Poisson's ratio 0.3 

density 1 

total evolution time 6 

Figure 4. Geometry of the cylinder and data 

for this example were computed with the 8-Euler-Method. Figure 5 depicts 
the evolution of the deformed shapes until the release. The total contact force 
is plotted on Figure 6 for two time-steps (6t = 0.02 and 6t = 0.15) . For 
the smaller time-step, the results are similar to those obtained by Taylor and 
Papadopoulos. Moreover, when a larger time-step is used, the 8-Euler-Method 
produces a smoother solution than theirs. The computation lasted about 1400s 
on an IBM RS/6000 590 system. 

Figure 5. Deformed 1hape1 at t= O, t=2.1, t=3.3 and t=-4.3 

6.3. Frictional Oblique Impact 

This is a two-dimensional example proposed by Kim and K wak [KIM 96) 
dealing with the oblique impact of a plate with a round side against a rigid 
surface. The initial horizontal and vertical velocities are Vh = 3m/ s and 
vtl = - 5m/ s, the material properties and the geometric data are given in 
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.., 160 
e 
.£ 
-1 20 s 
c 

8 80 
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~ 

40 

2 3 4 
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- 6 t • 0.02 
. . . .dt • 0.15 

5 6 

Figure 6. Evolution of the total contact force 

the following table. The mesh (see Figure 7) is composed of 99 nodes (80 four­
node finite elements). The plane stress hypothesis is adopted. Figures 8 and 9 

Young's modulus 101Pa 

Poisson's ratio 0.25 

density 103 Kgjm3 

friction coeffi cient 0.1 

lenght 0.08m 

width 0.04m 

depth O.Olm 

radius of the round side O.lOlm 

time step 10- 5 s 

.!_ ~ 3 4 'i 16 2 !L. 9 total evolution time 3.1o- 3s 

Figure 7. Geometry of the plate and data 

present the nodal normal reactions and the evolution of the deformed shapes 
obtained with the modified 0-Method with() = 0.55. Kim and Kwak have used 
the Newmark method associated to a correction procedure when impact occurs. 
The curves of Figure 8 have the advantage of not presenting the oscillations 
obtained by Kim and Kwak (p.4621 of (KIM 96]) during the contact time. In­
deed, these oscillations cannot be explained by the propagation of an acoustic 
wave in the plate. For this test, the computing time on an IBM RS/6000 590 
system was of about 300s. 
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Figure 8. Evolution of the nodal normal contact force6 
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6.4. Impact of an Elastoplastic Cylinder 

In order to show the feasability of our approach in the context of large de­
formation problems, we present in Figure 10 the final shape obtained after the 
impact of an elastoplastic cylinder against a rigid surface. This is a classical 
benchmark (LAU 93] which is often treated by replacing the contact conditions 
by bilateral ones. A forthcoming article by Dubois et al. shall present the 
generalization of our approach to large deformation dynamical problems. 

1-f- i - 1-

~ 
"t: - ... - j :l r 1-f- -I- ::!-

- , .1--L-

-

Figure 10. Initial me1h and final deformed 1hape of the ela6topla6tic cylinder 
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