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ABSTRAcr. We consider the numerical solution on unstructured dynamic meshes of the averaged 
Navier-Stockes equations equipped with the k-e turbulence model and a wall function. We 
discuss discretization issues pertaining to moving grids and numerical dissipation, and present 
a robust spring analogy method for constructing dynamic meshes. We validate our 
implementation of this two-equation turbulence model and justify its usage for a class of 
vortex shedding problems by correlating our computational results with experimental data 
obtained for a flow past a square cylinder. We also apply our solution methodology to the two­
dimensional aerodynamic stability analysis of the Tacoma Narrows Bridge, and report 
nwnerical results that are in good agreemellt with observed data. 

RESUME. On considere La resolution numerique sur maillages mobiles non structures des 
equations de Navier-Stockes moyennees equipees d'un modele de turbulence k-e avec loi de 
paroi. Les problemes de discrerisation associes aux maillages mobiles et a La dissipation 
nun1erique sont examines, et on presente une methode de mouvement de maillages robuste 
fondee sur une analogie avec des ressorts. On valide notre implementation de ce modele de 
turbulence a deux equations et justifie son utilisation pour La simulation d'ecoulements avec 
developpemellt de tourbillons en corretant nos resultats numeriques avec des donnees 
experimelltales pour un ecoulement autour d'un cylindre de section carree. On applique 
egalement notre methodologie a l'analyse bi-dimensionnelle de La stabilite aerodynamique du 
pont de Tacoma Narrows ; de bonnes comparaisons entre les resultats nwneriques et les 
donnees observees sont obtenues. 

MOTS-CLES : methode elements finis/volumes finis, maillages dynamiques, modele de 
turbulence k-e, ecoulemellts avec tourbillons. 
KEY WORDS : finite element/finite volume method, dynamix meshes, k-e turbulence model, 
vortex shedding flows. 
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1. Introduction 

The numerical simulation of vortex shedding flows past oscillating obstacles 
is important for many engineering applications, including the buffeting analy­
sis of aircraft [1], and the aerodynamic stability analysis of suspension bridges 
[2, 3). It requires the solution of the Navier-Stokes equations on moving and 
possibly deforming grids. Direct numerical simulations (DNS) have made si­
gnificant progress in recent years, as three-dimensional vortex shedding com­
putations. with Reynolds numbers as large as Re = 5000 are now possible on 
large-scale massively parallel processors [4). However, even though they are 
not perfect, turbulence models are still widely used for the simulation of vis­
cous flow problems at higher Reynolds numbers, or when the computational 
resources required by DNS methods are not available. 

Whether DNS or large eddy simulations (LES) are preferred, or only a tur­
bulence model can be afforded, the solution of the governing Navier-Stokes 
equations on unstructured moving and deforming grids calls for careful spatial 
and temporal discretization methods, and a robust strategy for constructing 
dynamic meshes. Here, our main objectives are (a) to present a solution me­
thodology for the simulation of vortex dominated flow problems past moving 
bodies, and (b) to illustrate this methodology with the aeroelastic stability 
analysis of a suspension bridge. For practical purposes, we consider the k-c 
turbulence model, but many of the algorithmic issues we discuss in this paper 
equally apply to other turbulence models, as well as to DNS and LES methods. 
The remainder of this paper is organized as follows. 

In Section 2 we formulate the averaged compressible Navier-Stokes equa­
tions augmented with the k-c turbulence model [5) in arbitrary Lagrangian 
Eulerian (ALE) form [6). In Section 3, we overview the second-order semidis­
cretization of these equations by a combination of unstructured finite volumes 
and finite elements. In Section 4, we discuss the time-integration of the resul­
ting semidiscrete convective and diffusive fluxes on unstructured moving grids, 
and emphasize conservation and accuracy issues. In Section 5, we overview the 
solution of the resulting system of nonlinear equations. In Section 6, we des­
cribe a robust spring analogy method for constructing dynamic viscous fluid 
meshes that deform to follow the computational domain geometries. In Section 
7, we consider a flow past a square cylinder. We validate our implementation 
and justify the suitability of the k-c turbulence model with a wall function for 
vortex shedding problems by correlating our computational results with the 
available experimental data. In particular, we revisit the conclusions formula­
ted in [7], and show that for the square cylinder problem, the k-c turbulence 
model is capable of reproducing the correct Strouhal number as well as the 
correct time-averaged drag coefficient, when the numerical dissipation induced 
by upwinding is properly controlled. In Section 8 we apply our computatio­
nal methodology to the two-dimensional aerodynamic stability analysis of the 
Tacoma Narrows Bridge, and predict a critical wind speed that is within 23% 
of the estimated real value. Finally, in Section 9 we conclude this paper and 
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comment on the performance of the k-c turbulence model as employed and 
discretized in this paper. 

2. Governing equations 

In the simulation of flow problems with moving boundaries, a body-conforming 
mesh has to be regenerated at each time-step, or the existing grid has to be 
allowed to deform to follow the computational domain geometries. The for­
mer option is rather cumbersome and computationally expensive, especially 
for three-dimensional problems. The latter option introduces the concept of a 
moving and deforming unstructured grid that is usually referred to as a "dy­
namic mesh". 

Several approaches exist for solving flow problems on dynamic meshes, 
among which we note ALE methods [6, 8] and space-time formulations [9, 10]. 
In this paper, we adopt the ALE approach because of its immense popularity 
for the solution of fluid/structure interaction problems, especially in the aero-. 
nautics community. 

2.1. ALE form of the averaged Navier-Stokes equations 

Let V(t) be the flow domain of interest, and f(t) be its moving and/or de­
forming boundary. We introduce a mapping function between V(t) where time 
is denoted by t and a grid point's coordinates by x, and a reference configura­
tion V(O) where time is denoted bye and a grid point's coordinates by~' as 
follows 

x=x(~,e); t=e (1) 

The ALE nondimensional conservative form of the averaged Navier-Stokes 
equations describing viscous flows on dynamic meshes can be written as [8] 

0~71e + J'Vx . .rc(W,x) = J'Vx.'R(W) (2) 

.rc(w, x) = .r(W)- xW 

where a dot superscript designates a time derivative, J = det(dxfd~), x = :~ le, 
W is the fluid state vector, _rc denotes the ALE convective fluxes, and 'R the 
diffusive fluxes. 

For two-dimensional flows, W, .rand 'Rare given by 

W= 



614 Revue europeenne des elements finis. Volume 6- no 5-611997 

where 

n1(W) = 

n2(W) = 

.:F(W) _ ( Ft(W) ) 
- F2(W) 

R(W)- ( 'llt(W) ) 
- 1l2(W) 

F,(W) ~ ( 

PVI 

) F,(W) ~ ( 
pvf +P 
PVtV2 

(E+p)vt 

E = pe + ~pllvll 2 + pk 
v = (v1, v2)T 
p = (J- l)pe 

2 
U = \7 V + 'VT V - 3\7. vJ d 

c 
'Y = ...E. 

Cv 

PV2 
PVtV2 
pv~ +P 

(E+ p) V2 
) 

and p is the fluid density, p its pressure, e its specific internal energy, v its 
velocity vector, J.l its molecular viscosity, 'Y its specific heat ratio, Re and Ret 
are the laminar and turbulent Reynolds numbers, respectively, Pr and Prt are 
the laminar and turbulent Prandtl numbers, u the stress tensor, k the kinetic 
energy of turbulence, Id the identity matrix, and a T superscript designates 
the transpose of a vector. 

The extension of the expressions of W, :F and R to three-dimensional flows 
is straightforward. 

2.2. Two-equation k - e turbulence model 

The closure of system (2) is performed here by a two-equation high Reynolds 
k - e model. Using the subscript t for designating a turbulent variable, the 
equations governing this turbulence model can be written in ALE form as 
follows 
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0~7t i~ + J\7 x-Ft(Wt, x) = J\7 x·'Rt(Wt) + Jn(Wt) (3) 

Ft(Wt, x) = Ft(Wt)- xWt 

Wt=(~!) 
For two-dimensional flows, Ft(Wt) and 'R.t(Wt) can be expressed as 

,.,.. (W.) _ ( Ft~(Wt) ) 
.rt t - Ft2(Wt) 

-n (w.) _ ( ntl(Wt) ) 
'~t t - 'Rt2(Wt) 

where 

( 
-pe+P ) 

n(Wt) = pe2 e 
-Ce 2 k + Ce 1 kp 

e is the turbulence dissipation rate, and P is the turbulent energy production 
term given by 

[ [( ) 2 l] 2 1 2 2 8v; 8v; OVj 
P = --pk\i'.v +- --(\i'.v) + L - + --

3 Rt 3 . . 2 OXj OXj OX; 
S 1J=l, 

The turbulent Reynolds number Rt is obtained from the eddy viscosity l't 

1 pk2 

Rt = l't =ell£ 

and the closure coefficients (Tk, (Te, Cet, Ce2, and cfl are set to 
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2.3. Wall law 

Throughout this paper, the flow domain is extended only up to a wall boun­
dary located at a distance o from the surface of the obstacle. A point on this 
wall boundary can fall within the viscous, buffer, or turbulent sublayer. The 
nonlinear Reichardt wall law is employed with the generalized boundary condi­
tion for the k and c variables proposed by Jaeger and Dhatt [11] to determine 
the flow and turbulence unknowns on the wall boundary, which allows posi­
tioning the wall boundary closer to the obstacle. More specifically, the wall 
boundary conditions are set as follows 

- a slip condition is imposed on the flow velocity field 

v.n = x.n 

Here, n denotes the normal to the wall at a given point and x denotes 
the fluid mesh velocity vector. 

- in the evaluation of the viscous flux, the wall shear stress is computed as 

Tw = pu~ 

and the friction velocity UJ is determined from the ALE form of Rei­
chardt's law 

(v.nl. - X.nl. )j 6 = Uj [ 2.5log{1 + 11:0+) + 7.8 ( 1- e- ~; - ~: e- 0
·
330+)] ; 

II:= 0.41 
where nl. denotes the tangent to the wall boundary at a given point, and 

o+ = RepOUJ the nondimensional wall distance. 
J.L 

- after the above nonlinear equation is solved for u 1, the turbulence va­
riables k and c are determined as follows 

ifO+ > 10 

ifO+ < 10 

where v = ; is the kinematic viscosity. 
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3. Semidiscretization 

Next, we specify the semidiscretization of the averaged Navier-Stokes and 
turbulence equations on an instantaneous mesh configuration. 

3.1. Spatial discretization of the averaged Navier-Stokes equations 

The spatial discretization of the averaged Navier-Stokes equations is carried 
out here on a triangulation ofV(t) (or a tetrahedral mesh for three-dimensional 
problems) from which a dual mesh defined by control volumes or cells C;(t) is 
derived (Fig. 1). For each reference cell C;(O) attached to vertex i and defined 
in the e space, we introduce the characteristic function 

.p,(z) = { : 
otherwise 

Let X; denote a generic test function associated with vertex i, and cp; a 
generic finite element shape function associated with vertex i; cp; is nonzero on 
all the triangles T(O) attached to vertex i. Eq. (2) can be transformed into 

{ oJ
0

WieX;dDe+ { \7., . .1-""c(W,x)X;JdDe= { 'V.,.n(W)X;JdDe 
lv(o) t lv(o) lv(o) 

(4) 
Setting X; = t/J; in the left hand side and X; = cp; in the right hand side 

of Eq. (4) leads to a mass-lumped variational form [12] of Eq. (2) that can be 
written as 

(5) 
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FIG. 1 - Control volume in two dimensions 

The partial time derivative being evaluated at a constant ~, it can be moved 
outside the integral sign to obtain 

: r WJdDe + r 'V.,.Fc(W,x)JdDe = L r 'V.,.R(W)cp;JdDe 
t Jc,(O) lc,(o) T(O),iET(O) jT(O) 

(6) 
Switching from the ~ reference space to the x space at timet transforms Eq. 
(6) into 

: r w dD., + r \7"' .Fc(w, X )dD., = L r \7"' .n(W)cp;dD., 
t lc,(t) jc.(t) T(t), iET(t) }T(t) 

(7) 
Finally, integrating by parts the convective and diffusive fluxes leads to 

: r WdD., + 1 Fc(w, .i:).ndO" = - L r R(W).'Vcp;dD.,+ 
t lc,(t) &C;(t) T(t),iET(t) }T(t) 

{ R(W) .ncp;dO' 
lr(t) 

(8) 
where n denotes now the normal to the cell boundary oC;(t). 

3.1.1. Approximation of the ALE convective fluxes 

Let V ( i), r 00 , and W 00 denote the set of vertices connected to vertex i, the 
far-field boundary, and the value of the fluid state vector at that boundary, 
respectively. We approximate the ALE convective fluxes by an unstructured 
finite volume method as follows 
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{ Fc(W,x).ndo-= L ~Roe(W;,Wj,nij,O"ij)+~¥!!'(W;,Woo,nioo,O"ioo) 
lac,(t) jEV(i) 

(9) 
where ~Roe and ~sw denote the numerical fluxes of Roe [13] and Steger­
Warming [14], respectively, and n;j, n;00 , O"ij, and o-;00 are given by 

n;j = f ndo-, 
lac,(t)nCj(t) 

n;00 = { ndo-, 
Jac;(t)nr""' 

. 1 1 O"jj = -- x.ndo-
lln;jll ac,(t)nCi(t) 

1 1 . d <Tioo = -- x.n <T 
lln;ooll 8C;(t)nrao 

Roe's numerical flux is only first-order space accurate and can be written as 

~Roe(U, V, v, o-) = ~ [F(U).v- o-llviiU + F(V).v- o-llviiV] 

-IAw(W, v)- o-llvllldl (V; U) (10) 

where W is some mean value of U and V, Aw = %~, Aw =A~+ Aj,V, and 

IAwl =A~ -Aj,V. 

To achieve second-order accuracy, we employ a piecewise linear interpolation 
method that follows the principle of the MUSCL (Monotonic Upwind Scheme 
for Conservative Laws) procedure [15, 16]. More specifically, at the interface 
between two control volumes C;(t) and Cj(t), we construct two intermediate 
fluid state vectors 

(11) 

and evaluate Roe's numerical flux at these two interpolated values of W 

~Roe(W;j, Wj;, n;j, O"ij) 

In order to reduce numerical dissipation, we compute the nodal gradients 
(\7W); and (\7W)j using the following ,8-scheme [12] 

(\7W)f = (1 - ,B)(\7W)fent + ,B(\7W)fpw 

where (\7W)fent is the centered gradient defined by 

(\7W)fent.(xj- x;) = Wj- W; 

(\7W)fpw is the upwind gradient given by 

(\7W)fpw = 2(\7W)~=! - (\7W)fent 

(12) 
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and (V'W):= ~ is the nodal gradient approximated by a Galer kin method with 
Pt shape functions 'Pk defined at each vertex k of a triangle T 

(V'W):=t = fc;(t) V'WI7dDx = 1 L Area(T) t Wk V''Pk17 
fc;(t) dDx Area( C; (t)) 7, iE7 3 k=l, kE7 

(13) 
Finally, in order to damp or eliminate the spurious oscillations that may 

occur in the vicinity of discontinuities, we employ a slope limitation algorithm 
that can be summarized as follows. At each interface between two control vo­
lumes, two fictitious state vectors are computed using the following interpola­
tion scheme 

Wti = W;- 2(V'W);.(xj- x;) + (Wj- W;) 

Wj; = Wi - 2(V'W}j.(xj - x;) - (Wi - W;) 

and two corresponding slopes are computed using the van Albada averaging 
procedure [17] 

dW··- Ave(W·- W· W·- W!.) IJ- J ll I IJ 

dWj; = Ave(W;- Wj, Wj- Wj;) 

where 

{ 

a(b2 + e2
) + b(a2 + e2

) 

Ave( a, b)= a2 + b2 + c2 

0 

if a.b > 0 

otherwise 

Then, the flux function ~Roe (W;j, Wj;, n;j, U;j) is evaluated at 

1 
W;i = W; + 7.dW;i 

1 
Wj; = Wi + 2dWi; 

It is well-known that upwind approximations of compressible flows suffer 
from accuracy problems in the low-Mach number limit. However, it is also 
known that preconditioning is a successful strategy for overcoming the numeri­
cal difficulties encountered by compressible flow solvers in the low-speed limit 
[18]. Hence, for low-Mach flow problems, we replace the ALE version of Roe's 
flux by the following ALE version of the Roe-Turkel flux 

~Roe-Turkel(U, V, 11, u) = ~ [.1"(U).11- ullviiU + .1"(V).v- ullviiVJ 

-P- 1 1P(Aw(W, v)- ullvllld)l (V; U) (14) 
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where P is the preconditioner proposed by Turkel [18]. 

3.1.2. Approximation of the diffusive fluxes 

We approximate the diffusive fluxes by a Galerkin method using P1 shape 
functions <p;. We neglect the effect of these diffusive fluxes on the far-field, and 
evaluate the right hand side of Eq. (8) as follows 

L 1 R(W).\i'<p;dDx = L Area(T)R(/).V'<p;17 (15) 
7(t), iEI(t) 7(t) 7(t), iE7(t) 

where R(T) denotes the constant value of R on T 

3.1.3. Governing semidiscrete Navier-Stokes equations 

In summary, after the convective fluxes are discretized by the second-order 
finite volume method described in Section 3.1.1., and the diffusive fluxes by P1 
finite elements, the governing semidiscrete Navier-Stokes equations become 

! (A;W;) + F;(W,x,x) = R;(W,x) (16) 

where A;= 1 dDx, W; denotes the average value of the fluid state vec-
C;(t) 

tor over the cell C;(t), x is the vector of time-dependent grid point positions, 
F; and R; denote respectively the semidiscrete ALE convective and diffusive 
fluxes, and W denotes now the vector formed by the collection of the W;s. 

3.2. Spatial discretization of the turbulence equations 

Except for the presence of the term JO(Wt), Eq. (3) governing the k-c tur­
bulence model is similar to Eq. (2) governing the averaged Navier-Stokes flow. 
Only the two vectors Wt and W are different. Hence, the finite volume and fi­
nite element semidiscretization methods discussed in the previous sections can 
be equally applied to Eq. (3). 

Following the same procedure outlined in Section 3.1., we first transform 
Eq. (3)into 

: 1 WtdDx + { F[(Wt,x).ndu =- L 1 Rt(Wt).\i'<p;dDx 
t C;(t) j 8C;(t) /(t), iE/(t) 7(t) 

+ 1 Rt(Wt).n<p;du + L 1 O(Wt)<p;dDx 
r(t) l(t), iE7(t) l(t) 

(17) 
Next, we summarize the semidiscretization of the above equation. 
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3.2.1. Approximation of the turbulence convective terms 

It is important to note that the specific semidiscretization of the turbulence 
equation must be such that the quantities pk and ps remain positive. Therefore, 
we adopt Larrouturou's positivity preserving multicomponent Riemann flux 
function [19] to approximate the convective term in Eq. (17) 

{ F[(Wt, x).ndo- = 
lac,(t) 
L ci>Larr(Wt;, Wtj, n;j, O"ij) + ci>Larr(Wt;, Wtoo, n;oo, O"ioo) 

jEV(i) 

(18) 

where n;j, n;oo, O"ij and o-;00 have been defined in Section 3.1.1., and ci>Larr is 
defined by [19] 

ci>Larr(W . W . . . . ·) _ ( max(<I>WeP, 0) · k; + min(<I>WeP, 0) · kj ) 
t1 l t3 l n,J l (TIJ - (""-~oeP 0) . . + • (""-~OeP 0) . . max '1!,3 , s, m1n '1!,3 , s3 

Here, ci>~oeP denotes the component of Roe's numerical flux that approximates 
the ALE convective flux of the density across aC;(t) n8Cj(t). The extension of 
this approximation to second-order accuracy and the corresponding limitation 
procedure are similar to those discussed in Section 3.1.1. 

3.2.2. Approximation of the tu.rbulence diffusive and source terms 

As for the case of the averaged Navier-Stokes equations, we approximate 
the diffusive fluxes of the turbulence equations - and the source term - by 
piecewise linear finite elements 

L 1 Rt(Wt).V'<p;dDx = L Area(T)Rt(T).V'<p;IT (19) 
T(t), iET(t) T(t) T(t), iET(t) 

L 1 r!(Wt)<p;dDx = L Are;(T) n(T) (20) 
T(t), iET(t) T(t) T(t), iET(t) 

where Rt (T) and r!(T) denote the constant values on T of Rt and n, respec­
tively. 

3.2.3. Governing semidiscrete turbulence equations 

It follows that the semidiscrete version of Eq. (17) can be written as 
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where A;= 1 dO..,, W1 is the vector formed by the collection of W1;, xis 
C;(t) 

the vector of time-dependent grid point positions, F1; and R1; are the semi­
discrete ALE convective and diffusive turbulence fluxes, respectively, and 0.; is 
the semidiscrete turbulence source term. 

4. Time-discretization 

The efficient time-discretization of Eqs. (2,3) is more challenging than that 
of conventional computational fluid dynamics (CFD) problems, because these 
ALE equations involve dynamic meshes. In particular, it was shown in [20] that 
a straightforward extension to moving grids of a time-integration algorithm ori­
ginally developed for the solution of CFD problems on fixed grids does not in 
general preserve the order of time-accuracy of this algorithm. Next, we address 
this specific issue and specify our time-integration algorithms. 

Our objective is the design of a second-order time-accurate implicit scheme 
because the dynamics of the boundaries of the flow problems we are interested 
in solving are dominated by low frequencies, and therefore it should be possible 
to solve these unsteady problems efficiently using relatively large time-steps. 

4.1. Time-integration of the semidiscrete averaged Navier-Stokes equations 

Let tn and t!.tn = tn+l - tn denote the n-th time-station and the ( n + 1 )-th 
time-step, respectively. Integrating Eq. (16) between tn and tn+l leads to 

t•+l t•+l t•+l 

1 d
d (A;W;)dt + 1 F;(W, x, x)dt = 1 R;(W, x)dt (22) 

t• t t• t• 

t•+l 

The proper evaluation of the integral1 F;(W, x, x)dt raises the question of 
t• 

where to integrate the convective fluxes: on the mesh configuration at (tn, xn), 
on that at (tn+l, xn+l ), in between these two configurations, outside these two 
configurations, or on a combination of all of these configurations? Similar ques-

tions arise as to the evaluation of ft1:+' R; (W, x )dt and the computation of 
the mesh velocity vector :i:. For small time-steps, it does not matter in prac­
tice on which mesh configuration the fluxes are computed, because the diffe­
rences between these configurations are not significant. However, for the desired 

large time-steps, the proper evaluation of the integrals f
1

1:+' F;(W, x, x)dt and 

ft1:+' R; (W, x) dt has a dramatic effect on accuracy. This specific issue has been 
addressed in [21, 22] for first-order time-accurate schemes, and more recently 
in [20] for second-order time-accurate algorithms. Here, we summarize the ap­
proach and major findings presented in [22, 20], and specify the second-order 
time-integration algorithm adopted in this paper. 
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A second-order time-accurate implicit algorithm that is popular in CFD is 
the second-order backward difference scheme. A generalization of this algorithm 
for dynamic meshes that addresses the questions raised above can be written as 

Atn•T• (Wn+l n-1 n n+m · n-j · n · n+k) 0 
L.l. "'i ,x , ... ,x , ... ,x ,x , ... ,x , ... ,x = (23) 

where j, k, l, and mare positive integers, xn = x(tn), 

1 + 2r r 2 D.tn 
O'n+l = ---, O'n = -1- T, O'n-1 = --, T = ---

1+r 1+r D.tn-l 

~; = L w~F;(wn+l, xn~, .rn~)- w~R;(wn+l, xn~), 

w; and w~ are real coefficients that satisfy L w~ = 1, L w~ = 1, and xn~, 
• • 

xn~, and .in~ are some linear combinations of the mesh configurations 
{ n I n n+m} d th · 1 't' { · n j 'n · n+k} A · t t x - , .. , x , .. , x an eu ve oc1 1es x - , .. , x , .. , x . n 1mpor an 
issue is then the proper construction of~; so that the generalized algorithm 
(23) retains as much as possible second-order time-accuracy on moving grids. 

It can be shown that a sufficient condition for the time-integrator (23) to 
be mathematically consistent - that is, to be at least first-order time-accurate 
- is to predict exactly the state of a uniform flow. This sufficient condition, 
which was formulated in [20] as a geometric conservation law (GCL), can be 
used to determine the coefficients w~ and the mesh configurations (xn~, .in~). 
For example, it was shown in [20] that for two-dimensional problems, the time­
integrator (23) equipped with the following two w; coefficients and two mesh 
configurations (xn~, .i:n~) satisfies the GCL and achieves high accuracy 

(24) 

and for three-dimensional problems, the proposed time-integrator equipped 
with the following four w; coefficients and four mesh configurations (xn~, .i:n~) 
satisfies the GCL and achieves high accuracy 
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(25) 

In practice, the expression of 111; can be simplified as follows. For the convec­
tive terms, instead of averaging fluxes on different mesh configurations, a single 
flux is computed using geometrical quantities that are averaged on the same 
mesh configurations as in Eq. (25) and using the same weights, which reduces 
the computational complexity of the flux computation phase (see [20] for more 
details). 

The principle of conservation of the state of a uniform flow w• cannot be 
used as a guideline for determining the viscous coefficients w: and the cor-
responding mesh configurations x"~, because R;(w•, x"~) 0. However, 
these unknowns can be determined by performing a truncation error analy-

sis of .J/ .. "+1 

R;(wn+l, x)dt using a Taylor series expansion, and requiring that 

the quantity ~t" 2::
8 

w: R;(W"+1
, x"~) approximates this integral with an er­

ror 0 (~t3). In [23], the authors have shown that for both two- and three­
dimensional problems 

It follows that the time-integrator (23) can be used with the following w: 
coefficient and mesh configuration x": 

=1 
- :r;n.+lt,;n. 

2 

(26) 

In summary, we advocate here the time-integration of the semidiscrete ALE 
averaged Navier-Stokes equations using the algorithm (23) equipped with the 
w: coefficient and the mesh confi~uration given in (26), and thew~ coefficients 
and mesh configurations (x":' x"·) given in (24) for two-dimensional problems, 
and in (25) for three-dimensional ones. 
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4.2. Time-integration of the semidiscrete turbulence equations 

The time-integration method described in the previous section is equally 
applicable to the semidiscrete ALE turbulence equations (3). The turbulence 

tn+l 
source term ftn r2;(Wt, x)dt can be evaluated in the same manner as 

tn+l . tn+l 
ftn Rt;(Wt,x)dt -that IS, the same manner as ftn R;(W,x)dt. 

5. Implicit iterative defect correction method 

The time-integration methodology described in the previous sections leads 
at each time-step to the following set on nonlinear equations 

An+1wn+1 Anwn + An-1wn-1 + Atn,y, 0 an+1 ; i +an i i an-1 ; ; u '*i = 

An+1wn+1 + Anwn + An-lurn-1 + Atn,y, O an+1 ; t; an i t; an-1 i vvt; u '*t; = 
where 

n+1 + n 
"ilft; = ['~= w~Ft;(W~+l, xn~, xn~)] - Rt;(W~+ 1 , x 

2 
x ) 

n+1 + n 
- r2·(Wn+l X X ) 

• t ' 2 

An+l - A·(xn+1) An - A-(xn) An- 1 - A·(xn- 1) and the coefficients we i-s ,i-s 'i -, ' ! 

and mesh configurations (xn;, xn~) are given in Eq. (24) for two-dimensional 
problems, and Eq. (25) for three-dimensional ones. 

The linearization of these equations can be written as 

( a A?+I + ~tn oW; (Wn)) (W?+1 - W'!) = 
n+1 ' oW ' ' 

Atn•T• (Wn) An+1wn Anum An-1urn-1 -u -r; -an+1 i ; -an ; vv; -an-1 ; vv; 

( An+1 Atn O"ilft; (Wn)) (wn+1 wn) an+1 ; + u oW t t; - t; = 
Atn•T• (Wn) An+1wn Anwn An-1wn-1 

- u '*t; t; - an+1 ; t; -an ; t; - an-1 ; t; 

where, 'IT; and "ilft; are second-order space accurate, as discussed in Section 3. It 
is well-known that constructing a second-order accurate spatial discretization of 

the jacobians ~ and ~~ is a complex task [24]. For this reason, we perform 
a first-order semidiscretization of these jacobians and solve the above nonlinear 
equations by a defect-correction (Newton-like) method [25] whose convergence 
properties have been analyzed in [24]. For fixed meshes, it was shown in [26] 
that a few iterations suffice to produce a solution that is second-order accurate 
both in space and time. 
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6. Torsional springs for viscous deforming grids 

A popular method for constructing a dynamic fluid mesh is the spring 
analogy method [27] where the fluid grid is viewed as a quasi-static pseudo­
structural discrete system. In this analogy, a fictitious lineal spring is attached 
along each edge connecting two vertices i and j of the fluid mesh, and the 
stiffness coefficient of this spring is chosen to be inversely proportional to the 
length l;j of the supporting edge 

1 
k;j ex (27) 

l;j 

Then, at each time-station t", the position of the dynamic fluid mesh is 
obtained from the solution of the quasi-static problem 

= 0 
= q" on r 

where Klineal is the stiffness matrix associated with the fictitious lineal springs, 
q" is the current displacement vector defined by 

n _ n 0 
q; -X; -Xi 

and q denotes the prescribed or somehow determined displacement vector of 
the moving boundary r. 

The value of k;j given in Eq. (27) is motivated by the fact that if during the 
mesh motion two vertices tend to get closer, the lineal spring attached to the 
edge they belong to becomes stiffer and therefore prevents them from colliding. 

For many simple configurations such as isolated airfoils and wings, the li­
neal spring analogy method works well, provided that the fluid mesh is not 
very fine, and that its motion has a relatively small amplitude. However, it has 
been demonstrated that this method is not failure proof [28] as for more com­
plex geometries, or larger mesh motion amplitudes, and more specifically for 
viscous problems that call for fine meshes, this method often results in invalid 
triangulations due to grid lines crossovers. This is essentially because, by de­
sign, a tension/compression lineal spring with k;j ex 1/l;j prevents two vertices 
from colliding, but does not prevent a vertex from crossing an edge that faces it. 

Recently, for two-dimensional problems, the authors of [29] have proposed 
to upgrade the lineal spring analogy method with torsional springs that are 
designed to prevent a vertex from crossing an edge that faces it. The basic idea 
is to attach to each vertex i, and for each triangle Tiik connected to i and to 
vertices j and k, a torsional spring with a stiffness coefficient cfik given by 

1 
(28) 
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where e;jk is the angle between the two edges ij and ik (Fig. 2), and Aijk is the 
"k "k "k area of the triangle Tijk· Because C? -+ oo when either B? -+ 71' or B? -+ 0, 

the torsional springs attached to vertex i prevent this vertex from crossing any 
edge that faces it and any triangle from having a zero or negative area, and 
therefore prevent neighboring triangles from interpenetrating each other. 

FIG. 2 - Torsional springs for two-dimensional meshes 

Using both lineal and torsional springs, the position of the dynamic fluid 
mesh can be updated at each time-step by solving the following quasi-static 
problem 

= 0 
= q_n on r 

where Ktor 6ional denotes the stiffness matrix associated with the fictitious tor­
sional springs. In practice, a few iterations of a preconditioned conjugate gra­
dient algorithm applied to the above system of equations suffice to reasonably 
update the dynamic mesh. 

The spring analogy method equipped with both lineal and torsional springs 
provides an excellent mean for constructing an unstructured dynamic mesh 
where, at each time-step, no two vertices can collide, and no grid line crossover 
can occur, even under extreme deformation conditions. Furthermore, it was 
shown in [29] that such a strategy generates a dynamic mesh where at each 
time-step each triangle has as good an aspect ratio as mathematically pos­
sible; this allows a CFL(Courant-Friedrichs-Lewy)-based time-step to be kept 
as large as possible, which is crucial for computational performance. 

In this work, we adopt the improved spring analogy method described above 
for generating a dynamic mesh. However, we also present a generalization of 
the torsional spring concept to three-dimensional unstructured meshes. 

Let Vijkl denote the tetrahedron attached to vertices i, j, k, and l, i1 the 
midpoint between vertices j and k (Fig. 3), ii1 the median of triangle Tijk 

originating from vertex i, e;itl the angle between the two edges ii1 and il, and 
e;; 11 the angle between the two edges li and li1 . Consider now triangle 7;;1,. 
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Two torsional springs with stiffness coefficients Cji 1 t and Cf; 11 determined from 
the two-dimensional method described above can be attached to vertices i and 
l. Because c;;11 -t oo when either o;; 11 -t rr or o;; 11 --+ 0, and Cf; 11 -t oo 
when either o:ill --+ 1r or o:ill -t 0, these two torsional springs prevent vertex 
i from crossing the three-dimensional edge Tjkt and that edge from collapsing, 
and prevent vertex l from crossing the three-dimensional edge T;jk and that 
edge from collapsing. Hence, by applying the two-dimensional torsional spring 
method to triangle T;; 1 t, 4 of the collapsing mechanisms of tetrahedron V;jkt 
are eliminated. Since 3 medians originating from vertex i can be constructed, 
3 torsional springs based on the two-dimensional theory can be designed and 
attached to this vertex. Hence, using the two-dimensional approach, a total of 
12 torsional springs each with a stiffness coefficient similar to that expressed 
in Eq. (28) can be designed and attached to vertices i, j, k, and l to prevent 
the volumetric collapse mechanisms of tetrahedron V;jkl· The combination of 
these torsional springs with the lineal springs prevents all possible collapse 
mechanisms of tetrahedron V;jkl· 

Fro. 3 - Torsional springs for three-dimensional meshes 

7. The square cylinder benchmark problem 

For vortex shedding flows such as those encountered in the buffeting analysis 
of aircraft and the aerodynamic stability analysis of suspension bridges, it is 
essential to capture correctly the Strouhal number 

JD 
Str=­

Voo 

where f is the frequency of vortex shedding, D is a reference length, and V 00 

the flow free-stream velocity. Here, our objective is to assess the potential of the 
k-e turbulence model for the solution of such unsteady viscous flow problems, 
when equipped with the wall law described in Section 2.3, and discretized by 
the methods presented in this paper. It should be pointed out that, a priori, 
the k-e turbulence model is not designed for non-equilibrium flows. However, 
its popularity in the engineering community, and the important computational 
resources required by DNS and LES methods for high Reynolds flows are such 
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that the investigation of the potential of this turbulence model for vortex do­
minated aeroelastic applications is worthwhile. 

For this purpose, we consider first the two-dimensional numerical simulation 
of the low-speed flow past a square cylinder investigated experimentally by Lyn 
and by Durao, because 

- this problem is representative of a large class of low-speed flows past bluff 
bodies, including the flow past the H section of the Tacoma Narrows· 
Bridge investigated in Section 8. Hence, this model problem is useful for 
tuning some of the key parameters of our simulation methodology- such 
as the f3 parameter that controls numerical dissipation (see Eq. (12)) -
for bluff body configurations. 

- computational results for this problem using a variety of turbulence mo­
dels are available in the literature (see for example [7]). 

- a comprehensive set of experimental data is available for this flow problem 
[7]. 

The cylinder considered here has a 1 em x 1 em cross section. The far-field 
flow is assumed to be uniform. The free-stream Mach number is M 00 = 0.1, 
and the Reynolds number is Re = 22000. 

The two-dimensional computational domain surrounding the cross section 
of the cylinder is discretized into 15896 vertices (Fig. 4). The wall boundary 
is placed at a distance 0 = 9 X 10-3 from the physical surface of the obstacle. 
Three numerical simulations are performed on an 8-processor Silicon Graphics 
Origin 2000 system. In the first simulation, f3 (see Eq. (12)) is set to f3 = 1/3, 
because in that case the approximation of the ALE convective flux can be 
shown to be third-order space accurate for advection problems. In the second 
simulation, f3 is kept to f3 = 1/3, but the slope limiter is turned off. In the third 
simulation, f3 is set to f3 = 1/100 in order to minimize numerical dissipation, 
and the slope limiter is kept turned off. In all three simulations, the CFL 
number is programmed to increase from 1 to 200 during the first 10 time-steps, 
and is maintained at the value of 200 during all subsequent time-steps. (This 
corresponds to sampling the captured vortex shedding period in 36 time-steps). 
The calculated time histories of the lift and drag coefficients are reported in 
Fig. 5-6 and Fig. 7-8, respectively. A snapshot of the Mach number contours 
is also shown in Fig. 9 for the third simulation. 
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FIG. 4 - Discretization of the computational domain 
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FIG. 5 - Evolution m time of the lift coefficient Ct (fJ = 1/3) 
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Numerical simulation of vortex shedding flows 633 
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FIG. 8- Evolution in time of the drag coefficient Cd ({3 = 1/100} 

FIG. 9- Vortex shedding {Mach contourplot, {3 ~ 1/100} 

The reader can observe that all three simulations capture vortex shedding. 
However, for {3 = 1/3, the oscillations of the lift and drag coefficients appear 
to be damped, especially when the slope limiter is turned on, and their period 
appears to be overestimated. l,From the lift coefficient time-histories and using 
a reference length D = 0.01 em, we find that for the case {3 = 1/3 and with 
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slope limiter, the simulated Strouhal number is Str = 0.103. For f3 = 1/3 and 
without slope limiter, the simulated Strouhal number is Str = 0.104. 

For f3 = 1/100 and without slope limiter, the computed Strouhal number 
is Str = 0.137. This number is in excellent agreement with the experimental 
results of Lyn and Durao [7], and shows that the third simulation resolves cor­
rectly the vortex shedding frequency. More importantly, this result disagrees 
with the conclusion made in [7] - namely, that "the k-c turbulence model 
combined with wall functions introduces too much damping so that no vortex 
shedding is predicted" . 

For the simulation with f3 = 1/100 and without slope limiter, we report in 
Table 1 the computed time-averaged drag coefficient Cd, and c~puted ampli­
tudes of the oscillations of the lift and drag coefficients Ct and Cd. We contrast 
these results with the computational results of Franke and Rodi using a k - c 
and a Reynolds stress equation (RSE) turbulence models with logarithmic wall 
functions [7], and compare them with the experimental results of Lyn as well 
as those of Durao [7]. We conclude that when properly discretized in space 
and time, the k-c turbulence model with Reichardt's wall law can resolve the 
unsteady mean of a vortex shedding flow. 

Table 1. Validation of the computational results 

Franke & Rodi Franke & Rodi This Work Experimental 
Turb. Model k-c RSE k-c -
Str stationary 0.136 0.137 Lyn 0.135 

Durao 0.139 
cd 1.55 2.15 1.97 2.05-2.23 

cd - 0.383 0.085 -
c, - 2.11 1.74 -

8. Aeroelastic analysis of the Tacoma Narrows Bridge 

Next, we proceed to the aerodynamic stability analysis of the Tacoma Nar­
rows Bridge. This bridge had an H-shaped cross section that is known to give 
rise to vortex shedding. When the frequency of shedding vortices agrees with a 
natural frequency of the structure (resonance condition), the structure becomes 
aeroelastically unstable as its amplitude of oscillation reaches the maximum and 
leads to destruction. It was observed that the Tacoma Narrows Bridge failed at 
a critical wind speed of 42 mph {18.8 m/s) while developing a torsional oscilla­
tory movement. The structure as built should have been able to resist a steady 
wind of at least 100 mph {44.7 m/s) if no oscillation had occurred [3]. 

Our objective here is to apply the simulation methodology described in the 
previous sections to predict numerically the {torsional) critical wind speed of 
the Tacoma Narrows Bridge. 
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8.1. Computational models 

In most wind tunnel tests, sectional models are used for the examination 
of the aerodynamic stability of bridge road decks. Typically, a representative 
length of the deck is supported in the wind tunnel by a system of springs 
representing the elastic properties of the bridge. Therefore, we adopt here the 
two-dimensional computational structural model graphically depicted in Fig. 
10. This model has two-degrees offreedom: uy representing the bending motion 
of the deck, and ue representing its torsional motion. 

M 

a=O 

FIG. 10- Two-dimensional aeroelastic model of a suspension bridge 

The computational structural model described here is assumed to be un­
damped. Because of symmetry, the elastic center of the structure is located at 
its center of gravity, and its bending and torsion modes are uncoupled. Hence, 
the dynamic behavior of this structural model is governed by the ordinary dif­
ferential equations 

U(t) + 0 2U(t) 
U(O) 
U(O) 

= F(t) 
Uo 
Uo 

(29) 

where a dot superscript designates a time-derivative, Uo and Uo are the specified 
initial displacement and velocity vectors, 

U(t) = [ uy(t) ] 
ue(t) F(t) [ 

l(t) ] 
m(t) 
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wi ktfm 
w~ (k2 + k1a2)j J 
l(t) ( tPoo V:;,LooCI)/m 
m(t) ( 2Poo v:;,L~Cm)/ J 

w1 is the circular frequency of the bending mode, w2 is the circular frequency 
of the torsion mode, m is the mass per unit length and J the mass moment of 
inertia per unit length of the deck, V00 is the free-stream wind velocity, and £ 00 

is the length of the structural model. For the Tacoma Narrows Bridge deck, 
reference [33] recommends the following values 

It wtf27r = 0.84 Hz 
h = w2/27r 1.11 Hz 
m 8500 Kg/m 
J 167344 Kgm2 jm 
Loo = 12m 

The modeling of the deck of the Tacoma Narrows Bridge as an H-shaped 
profile is supported by studies reported in [30]. Indeed, the authors of [30] have 
shown that the torsional stability of an H-shaped section is similar to that 
of the Tacoma Narrows deck when its depth-to-width ratio is set to that of 
the real bridge section (value = 0.21). The flow domain around this H-shaped 
obstacle is discretized by an unstructured mesh with 13232 vertices (Fig. 11). 

FIG. 11 -Discretization of the computational flow domain 
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We solve the coupled fluid/structure equations (Eq. (16), Eq. (21) and Eq. 
(29)) by a staggered procedure [31) where the time-integrator (23) is applied 
to the flow problem, and the trapezoidal rule [32) to the structural problem. 

8.2. Investigation of the critical wind speed 

Throughout this section, the Reynolds number is set to Re = 106 , the free­
stream density to Poo = 1.293 Kg/m3 , the free-stream pressure to P00 = 101300 
Pa, and the (3 parameter to (3 = 1/100. The wall boundary is placed at a dis­
tance o = 3 x 10-3 from the physical surface of the obstacle. The slope limiter 
is turned off, and the time-stepping strategy employed for the square cylinder 
benchmark problem is also applied here (36 time-steps per vortex shedding 
period). 

First, the structural model is frozen at a zero angle of attack, and a series 
of flow computations at different free-stream Mach numbers are performed to 
determine a value of Moo for which the computed vortex shedding frequency is 
close to that of the torsion mode of the structure f2 = 1.11 Hz. It is found that 
at Moo = 0.07 (Voo = 23.18 m/s), the vortices shed at a frequency equal to 1.09 
Hz. This suggests that Moo = 0.07 is a good approximation of the torsional 
critical Mach number. 

Next, three aeroelastic simulations are performed with Moo = 0.068, Moo= 
0.070, and Moo = 0.072. The corresponding structural vibration results are re­
ported in Fig. 12 and Fig. 13. From the computed time-histories of the twisting 
angle u11, we conclude that the critical Mach number for torsion is M00 = 0.07, 
and therefore the critical wind speed is V00 = 23.18 m/s. Since the critical 
wind speed that was "observed" for the torsional instability was estimated at 
Voo = 18.8 m/s [3], it follows that our numerical simulations reproduce the ob­
served results with a 23% relative error. Note that the computed critical wind 
speed strongly depends on the value of w2 used in the numerical simulations, 
and that in this work, this value was set to that recommended in [33]. 

From the results reported in Fig. 13, we also conclude that the deck is aeroe­
lastically unstable in bending at Moo = 0.068 and Moo = 0.070, but becomes 
aeroelastically stable in bending at Moo = 0.072. Hence, our numerical simu­
lations indicate the existence of (a) a critical Mach number (Moo = 0.068) at 
which the deck is aeroelastically unstable in bending but is stable in torsion, 
(b) a higher critical Mach number (Moo = 0.07) at which the deck becomes 
aeroelatically unstable in both bending and torsion, (c) an even higher criti­
cal Mach number (Moo = 0.072) at which the deck re-becomes aeroelastically 
stable in bending, but remains unstable in torsion. This qualitative result is in 
agreement with the experiments performed by Dunn on an H-shaped aeroelas­
tic deck model and described in [3). 

Finally, we display in Fig. 14 a snapshot of the shedding vortices at Moo = 
0.07 when the twisting angle reaches the value Ug = 3deg. 
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FIG. 14- Vortex shedding for Moo = 0.07 and at a= 3deg 

9. Conclusion 

We have overviewed a methodology for the solution on unstructured dyna­
mic meshes of the time-averaged Navier-Stokes equations equipped with the k-c 
turbulence model and Reichardt's wall law. We have applied this methodology 
to the simulation of the flow past a fixed square cylinder, and the aeroelastic 
stability analysis of a sectional dynamic model of the Tacoma Narrows Bridge. 
For both low-speed high Reynolds applications, we have shown that when pro­
perly discretized, the k-c turbulence model with Reichardt's wall law is capable 
of resolving the unsteady mean of the vortex shedding dominated flow. 
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