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ABSTRACT. Within the framework of mixed Finite Element Methods, we analyze the numerical 
analysis of an error indicator. It relies on the residual of a linearized Drift-Diffusion model of 
the transport equation for electrons in semiconductor devices using Fermi-Dirac statistic. Inf­
sup condition, upper and lower bounds are proved. The results are optimal for the natural 
norms of H( div) and L2. 

RESUME. Dans le cadre de La methode des elements finis mixtes, nous presentons une analyse 
mathematique des indicateurs d'erreur locale pour ['equation linearisee de transport des 
particules chargees. Celle-ci est issue du modele de Derive-Diffusion degenere pour les 
semiconducteurs a heterojonction. La condition inf-sup ainsi que les homes inferieure et 
superieure de l'estimateur sont demontrees. L'estimateur obtenu est optimal pour La norme 
usuelle de H( div) x L2. 
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1 Introduction 

In computational heterojunction semiconductor devices, as in other problems 
of fluid dynamics or engineering, one often encounters the difficulty that the 
overall accuracy of the numerical solution is disturbed by local singularities 
such as those near heterojunction regions, critical points or boundary layers at 
ohmic contacts (see [5]). 

An obvious solution is to refine the discretization near the critical regions, 
i.e., to place more grid-points where the solution is less regular. The question 
then is how to identify these regions automatically and how to guarantee a 
good balance of the number of grid-points in the refined and un-refined regions 
so that the overall accuracy is optimal. Another closely related problem is to 
obtain reliable estimates of the accuracy of the computed numerical solution. A 
priori error estimates are in general not sufficient since they only yield asymp­
totic estimates which are not known explicitly. Moreover, they often require 
regularity assumptions about the solution which, for practical problems, are 
hardly satisfied. 

The problem addressed in this paper is principally to establish an 'a poste­
riori' error estimator for linearized transport equation for electrons in semicon­
ductor devices. Initially, classical formulation of this equation is considered, 
then introducing the current density i1 as independent variable, we deduce a 
mixed formulation for the problem that is later linearized to obtain a linear 
mixed equations in the variables p (electron quasi-Fermi level) and i1 (current 
density for electrons). A mixed Raviart-Thomas Finite Element method of 
minimal order is used to approximate the continuous problem in H(div) x £ 2

• 

A priori estimations are also provided. Finally, two theoretical results which 
guarantee the existence of an isotropic 'a posteriori' local estimator which con­
trols the approximation error are proved. No numerical experiences have been 
carried out by now. Future works will consider the extensions to anisotropic 
estimators as well as numerical comparison between isotropic and anisotropic 
estimators. 

2 Continuous problem 

Considering the boundary conditions, the transport equation for electrons in 
semiconductor devices is given by: 

{ 

-div (a(x,p)V1p) + c(x,p; 

(a(x,p)V1p) · n 

where n E IR? is a regular domain with anD U anN = an. 

(1) 
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2.1 Mixed formulation 

Let us consider 
i1 = o:(x,p)\lp, 

then the following mixed problem can be derived from equation [1]: find p 
and il, two real value functions such that 

{ 

a(x,p)il 

-div(il) + c(~,p~ 

u·n 

with a(x,p) = o:-1(x,p). 

\lp n, 
o n, 
gl anv, 
o anN, 

2.2 Linearization of the continuous model 

(2) 

A linear version of the problem [2] in a neighborhood of a point ( if1, p0
) is given 

by the following equations: 

with 

{ 

a(x)il- \lp- b(x)p 
-div (il) + c(x)p 

p 
il·n 

a(x) a(x,p0 (x)), 

f(x) n, 
g(x) n, 
gl anv, 
o anN, 

b(x) = a~(x,p0 (x))ifl(x), 
f(x) = a~(x,p0 (x))ifl(x)p0 (x), 
c(x) c~(x, p0 (x)), 
g(x) c~(x,p0 (x))p0 (x)- c(x,p0 (x)). 

(3) 

The problem [3] is going to be solved by a mixed variational method, thus, 
the functions a(.), b(.), c(.), J, g and g1 and the domain n are supposed to 
be regular enough so that the mixed variational formulation to be well posed 
in the function spaces L2 (n) and H(div, n) and to guarantee the existence, 
uniqueness and regularity of the weak solution. 

2.3 Mixed variational formulation of the linear model 
equations 

Let us define 
X= X(n) = H(div, n), 

Xo = Xo(n) = Ho,N(div, n), 

Y = Y(n) = L 2(n), 
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where 
H(div,n) = {V'E (L2 (n)) 2

: div(V) E L2 (n)}, 

HJ,v(n) = {V'E H 1 (n): vlan = 0 over onv}, 

Ho,N(div, n) = {v E H(div, n) : (V' · n, w) = 0 'Vw E HJ,v(n)}. 

The following mixed variational problem is considered: 
find (it,p) E Xo x Y so that: 

l 
Ina(x)il·vdx+ In~div(v)dx 

-In b(x)p. vdx = 

In div(il)qdx- In c(x)pqdx = 

(!, V) + (V' · n, g1) 'Vv E Xo, 

Now, we note 

Let A be defined as 

Z = Z(n) =X x Y, 

Zo = Zo(n) = Xo x Y, 

u = (il,p); v = (v, q). 

'Vq E y 

A(U, V) = l a(x)il· vdx + l div (v)pdx -In b(x)p · vdx 

+ l div (il)qdx -In c(x)pqdx, 

(4) 

by adding the two equations of problem [4]. The same process is applied to 
define the continuous linear form 

(F,V)= fotvdx+(gl,v·n)-lgqdx. 

Therefore, the mixed variational problem [4] is equivalent to the following prob­
lem: find U E Zo so that: 

A(U, V) = (F, V) 'VV E Zo. (5) 

Let us consider an arbitrary F = (!,g) E Zb, with f E Xb and g E Y. The 
second equation of [4] is equivalent to 

l c(x)pqdx = j div(il)qdx + (g,q). (6) 

Let us define C: L2 (n) ---t L2 (n) as 

l C(p)qdx = l c(x)pqdx, 
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that is, (C(p),q} = (c(x)p,q}, and suppose the following hypothesis: 3'}' > 0 so 
that, for all x E 0, c(x) 2: 'Y· In that case, C is invertible and 

IIC-1 11:::; !. 
'Y 

Let us define B: H(div, 0) --+ £ 2 (0) as 

In B(il)qdx =In div(il)qdx, 

i.e., (B(il),q} = {div(il),q}. Thus, the equation [6] can be written as 

C(p) = B(il) + g {:} p = c-1 (B(i1) +g). (7) 

Let us consider the following hypothesis for a(x): 3a > 0 so that for all 
X E 0, a(x) 2: a, and define A: (£2 (0))

2 --+ (£2 (0))
2 

as 

In A(il) · vdx =In a(x)il· vdx, (8) 

that is, (A(il),V) = (a(x)il,V). With these notations, the first equation of the 
mixed formulation can be written as: 

(A(il),V) + (B(V),p}- (p,b·iJ) = (f,iJ) (9) 

but p = c-1 (B(i1) +g), therefore 

(A(il), iJ) + (B(v)- b · v, c-1 (B(i1) +g)}= (!, iJ), 'r:/v E Xo, (10) 

and this expression is equivalent to 

(A(il),iJ) + (C- 1B(i1),B(v)}- (C-1B(u),b·i1) = 

(!, V)- (C- 1g, B(V)} + (C-1g,b · iJ), 'r:/v E Xo. 

Let us define the application 

v 1-t (!, iJ) - (C-1g, B(V)} + (C-1g,b · iJ) = l(V), {11) 

for which the following inequality holds: 

ll(V)I < llfllxbllvllxo + IIC-1giiPIIB(V)II + IIC-1giiPIIb· vll£2 
1 1 ~ 

:S C(llfllxb + ;:y IIYII£2 + ;:y IIYIIPIIbll£oo) IIVIIxo' 

that is, l E Xb. Let us study the properties of the bilinear form defined as 

a(il, V) = (A(il), V) + (C-1 B(il), B(v)}- (C-1 B(il), b · V). 
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la(u,V)I < IIA(ii)ll£211viiP + IIC-1B(u)II£211B(V)II£2 + IIC-1B(u)li£2llb·vll£2 
< llall£oolliiii£211VII£2 + IIC-1 II£oolldivvll£2lldivvll£2 

+IIC-1 11£00 lldiv ull£2llbll£oo IIVII£2 

< (11all£oo + IIC-1 II£oo(l + llbll£oo)) lliiiiH(div)lliiiiH(div)" 

To prove the ellipticity of the bilinear form a(·,·) note that 

and 

Imposing f.= 'Y, we obtain 

~lib· vlli2 =.!.lib· vlli2::; .!.llblliooiiVIIJ.2, 
f. 'Y 'Y 

Finally, the following expression can be derived, 

supposing that llbiiLoo is sufficiently small to verify 

a_ llbllloo > 8 > O 
2'Y - - ' 

(13) 

then, 

a(v, v) > 8llvlli2 + ~IIC- 1 B(V)IIi2 

> 8IIVIII2 + 2 IIC~Iioo lldivvlli2 

Therefore, under the hypothesis: 

1. a E £ 00
, a(x) 2.: a> 0, Vx E 0, 

2. c E £ 00
, c(x) 2.: 'Y > 0, Vx E 0, 

3. bE L00
, with llbll£oo verifying equation [13], 
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the mixed problem [5] is well passed, i.e., for all f E Xb, g E L 2, the mixed 
problem [5] has an unique solution (il,p) and continuous dependence of the 
solution with respect to data. 

Remark 2.1 It is easy to verify that the application j defined by 

is a linear form in Xb. 

As the mixed problem is well posed, then the bilinear form A(U, V) verifies 
the inf-sup condition, i.e., there exists a constant j3 > 0 so that: 

inf sup A(U, V) 
u,vt'o IIUIIziiVIIz ;::: j3 > 0' 

(14) 

3 Internal approximation by a mixed F .E.M of 
minimal order 

The mixed variational problem [4] is discretized using the Raviart-Thomas F .E. 
of minimal order. Let us consider a regular family of triangulations Th of n, 
0 < h S 1, that is, there exists a constant a independent of h so that ~ <a, 
for all triangle K E Th, where hK is the diameter of a triangle K and PK is the 
diameter of the circumscript circle to K. Geometrically speaking, the previous 
conditions is equivalent to 'minimal angles of triangles bounded from below'. 
Let us consider 

RTo(K) = (Po(K)) 2 + xPo(K); X Ern?' 

Ro(8K) = {q: q E L2 (8K), qiF, E Po(F;), i = 1,2,3}, 

where F;, i = 1, 2, 3 are the three edges of K and dimRT0 (K) = 3. The degrees 
of freedom for a triangle K are 

L = {(l;)i=l,3 : RTo(K) -+ IR} 
K 

where l; is a linear form defined by 

l;(iJ) = { iJ · nq ds; Vq E R 0 (8K); ViJ E RT0 (K). (15) 
laK 

Definition 3.1 (K, l.:K, RTo(K)) is a F.E. of Raviart-Thomas. 
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Remark 3.1 Using the degrees of freedom previously described, it is possible to 
define a local interpolation operator 1r K ( v K), for all v K E H ( div, K), provided 
v K is slightly smoother than merely belonging to H ( div , K). In general, it is 
not possible to compute expressions like faK v · ii w ds, where w E Ro ( aK), as 
VK · ii is only defined in H-112(8K). However, it is easy to check that if VK 
belongs to the space: 

(16) 

for s fixed > 2, then such a construction is possible. In that case the interpo­
lation operator 7rK : W(K) 1--t RTo(K) is defined by 

{ (vK- 7rK(VK )) · n ds = 0. 
laK 

(17) 

It is clear that the spaces defined previously can be used to define an 
internal approximation of H(div, 0). At this point, let us consider 

and 

Xh ={vEX: iiiK E RTo(K) 'VK E 7h}, 

Yh = {q E Y: qiK E Po(K) 'VK E 7h}, 

a global interpolation operator from 

W(O) = H(div, O) n (£8(0)) 2 , 

(s fixed > 2) into Xh can be defined by simply setting 

Clearly div (X h) = Yh. 
Now, due to boundary conditions, the following spaces are considered: 

zh = xh X yh and Zoh = Zo n zh. 

The discretization of the mixed variational problem [4] is given by: 

{ 

Find Uh = (i1h,Ph) E Zoh so that: 

A(Uh, Vh) = (:F, Vh)Z',Z 'VVh E Zoh· 

(18) 

(19) 

(20) 

The proof of existence and uniqueness of the previous discrete problem and 
the following convergence results are given in [3]. 
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Theorem 3.1 Let (ilh,Ph) be the solution of the mixed continuous problem [4]. 
Then, the approximation error can be estimated by the inequalities 

Remark 3.2 We observe that the former theorem proves convergence in Xo x 
Y, at an optimal rate and with minimal smoothness requirements on the solu­
tion. 

4 · 'A posteriori' error estimator for the linear 
equations 

As problem [5] is well-posed, that is, there exists a unique solution for it and 
the suitable choice of approximation spaces imply the existence of a constant, 
independent of h, (3 > 0 so that: 

A(U- Uh, V) = l a(x)(il- ilh) · v dx + l divv(p- Ph)dx 

- l b(x) · v(p- Ph) dx + l div (il- ilh)q dx 

- l c(x)(p- Ph)q dx 

~ ([ a(x)(il- ilh) · v dx + [ divv(p- Ph) dx 

- [ b(x) · v(p- Ph) dx + [ div (u- uh)q dx 

- [ c(x)(p- Ph)q dx) . 

Applying now the Green's formula to the term: 

[ divv(p- Ph) dx, 

and using the boundary conditions, we obtain 
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A(U- uh,-v) = ll(i a(x)(il- ilh). v dx- L v. \i'(p- Ph) dx 

+ (v. ii,p- Ph)aK- L b(x). v(p- Ph) dx 

+ L div (il- ilh)q dx- L c(x)(p- Ph)q dx) 

Let us define S(K) as the set of edges of K, F;, i = 1, 2, 3, so that F; ct. 80. 
Then, the following expression is obtained: 

A(U- Uh, V) = ~ (£ (f- a(x)ilh + \i'ph + b(x)ph) · v dx 

+ L (-g-divilh+c(x)ph)qdx 

+ L (-Ph,v·ii)F+ 2: (gl-Ph,v·ii)F). 
FES(K) FC8Kn80v 

Thus, for all V =f. 0 E Z0 , the following estimation is derived: 

A(U- Uh, V) 

IIVIIzo < L (llf- a(x)ilh + \i'ph + b(x)phii£2(K ) 
K 

+ II- g- divilh + c(x)Phii£2(K) 

+ ~ L h~!ll[ph]II£2(F) + L h~!ll91- Phii£2(F)) . 
FES(K) FC8Kn80v 

Noting 

ry(K) I If- a(x)ilh + \i'ph + b(x)Phii£2(K) 

+ II- g- divilh + c(x)PhiiL2(K) (22) 

+ ~ L h~!ll[ph]II£2(F) + L h~!ll91- Phii£2(F) 
FES(K) FC8Kn80v 

the following result is obtained: 

Proposition 4.1 Let (il,p) be the solution of the problem [4] and (ilh,Ph) 
be the solution of the discrete problem {20}, then the following 'a posteriori' 
estimation is obtained: 

llil- ilhllx +liP- Phllv :S C( L ry(K) 2)!, (23) 
KET,. 

where C is a positive constant depending on {3. 
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Remark 4.1 If we note 

'TJ = ( L 'TJ(K)2 )~, 
KETh 

then 'TJ is named an 'a posteriori' estimator computed with the residual of the 
equation and it can be used in isotropic mesh adaptation procedures. 

In practice, equation (22] is replaced by 

'T/R(K) llf:h- a(x)uh + 'Vph + b(x)Phii£2(K) 

+ II- gmh- divi1h + c(x)phii£2(K) (24) 

+ ~ L h~}ii(ph]ii£2(F) + L h~}ilih(g1)- Phii£2(F) 
FES(K) FE8Kn8fl.v 

where gmh (respectively f-;,h) is an approximation of g (respectively j), ih is 
an interpolation operator and m is an integer greater than zero. Trivially, an 
analogous estimation to [23] can be derived: 

Proposition 4.2 Let us consider the same hypotheses as in proposition [4.1], 
then the following estimation is obtained: 

+ ill- f:hlli2(K) (25) 

+ L h.1(1iig1- ih(gt)lli2(F})~ 
FE8Kn8fl.v 

Remark 4.2 We are principally interested in deducing an 'a posteriori' error 
estimation for the initial non linear problem. Thus, the error indicator 'TJ(K) 
given in equation {22] can be considered as an approximation of first order of 
the following estimator 

'TJ(K) = II- a(x,ph)i1h + 'Vphli£2(K) 
+ II- divi1h + c(x,ph)ii£2(K) (26) 

+ ~h~~ L ii[Ph]ii£2(F) + h~~ L 1191- Phii£2(F)· 
FES(K) FE8Kn8fl.v 

Up to now, no theoretical proof of this estimator has been done. It will be 
considered in future works. 

Interpretation: The two first terms of estimator {22} correspond to the 
residuals of the two equations of the discretized mixed variational problem. 
Thus, if the equations are assumed to be numerically well-solved, then these 
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two quantities must be small. The third term controls the discontinuity of the 
primal variable p across the mesh edges. Finally, the last term controls if the 
imposition of the boundary condition over the device ohmic contacts is verified. 
The first and the two last terms cannot be estimated in an optimal way. This is 
due to the anisotropy of H(div, !1). Moreover, the traces of H(div, D)-functions 
are only in H- 112 (80). In order to avoid the negative exponent, different norms 
must be used (in particular mesh-dependent norms). 

Figure 1. Definition of w K 

Let us proof a reciprocal result to proposition [4.1]. 

Proposition 4.3 With the definition {22], there is a constant C, which only 
depends on the minimal angle in the triangulation such that 

17(K):::; C(llii- uhiiH(div,wK) + h[/iiP- PhiiP(wK)), (27) 

where WK = {Ko E Th: Ko n K = Fi edges of K, i = 1,2,3}. 

Proof 
The proof of this proposition is quite technique and it is based on the study of 
a function £ defined by 

then 

£(V) = A(U- Uh, V), 'v'V E Zo, 

£(V) L r (f- a(x)ilh + 'Vph + b(x)ph) . v dx 
K jK 

+ [ (-g- divilh + c(x)ph)q dx 

+ L (-ph,V. ii}F + L (gl- Ph,V. ii}F· 
FES(K) FE8Kn80v 
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Let us introduce the following notations: 

I = I If- a(x)ih + \lph + b(x)phii£2(K)• 

II = II- g- divuh + c(x)PhiiP(K)• 

III ~h~i L ll[ph]II£2(F)• 
FES(K) 

FEOKnOO.v 

For all triangle K E 7Jt, let us consider a function 'PK defined as: 

(x) = { cpk o Fi(
1
(x) if x E K 

r.p K 0 otherwise, 

where k is the reference element and cpk is real function verifying that: 

• 0 ~ cpk(x) ~ 1, for all x E K, with cpk(x) = 0, for all x E of< and 

• cpk E C1(K) and \lcpk E L00 (K) 2 • 

Clearly, for all K E 7Jt and for all VK element of a finite dimensional subspace 
of L 2 (K), using the fact that norms are equivalent in finite dimentional spaces 
and passing through the reference element k, we obtain 

CoiiVKIIP(KJ ~ IIVK'PK(x)!IIL2(KJ ~ ClllvKIIP(K), (28) 

where Co and cl are independent of K and VK· We can also obtain that 

IIVK'PK(x)IIP(KJ ~ llvKII£2(KJ 

Majoration of 1: Let us consider the following test function 

VK = 'PK(x)(f(x)- a(x)uh + \lph + b(x)ph)· 

(29) 

From its definition VK is an element of H(div, 0) (vK E H(div, K) and we 
have the continuity of the normal component v K · n F, , where Fi are the interior 
edges of K, in fact their are all 0). Denoting by V = ( v K, 0) then 

£(V) [ (f- a(x)uh + \lph + b(x)ph) 2 r.pK dx 

_, ..... 1 2 = II(!- a(x)uh + \lph + b(x)ph)'Pi<IIP(K) 
I ~ ~ 2 

> C1ll/- a(x)uh + \lph + b(x)phii£2(K)• 

thus, 

(1) 2 < £(V) 

< C£IIU- Uhllz(KJIIVIIz(KJ 

< c£ (I lit- ithiiH(div ,K) +liP- PhiiL2(K)) 

IICf- a(x)uh + \lph + b(x)p,;)r.pKIIH(div ,K)' 
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now, using the equivalence of norms in finite dimentional spaces in the reference 
configuration and an inverse inequality for the div-norm we obtain 

Majoration of II: Let us consider the following test function 

As in the previous estimation, it is clear that qK is an element of £ 2 (!1). Noting 
by V = (O,qK) then 

therefore, 

t'(V) = [ (-g-divih+c(x)ph) 2cpKdx 

1 
= II( -g- divuh + c(x)ph)cpf<Jli2cKl 

> C{
1
JJ- g- divuh + c(x)phJIL2(K)' 

(II) 2 < t'(V) 

< C£
1
JJU- UhJlzcK)IJVJJzcK) 

< C£
1 
(JJu- uhJJH(div ,K) + JJp- PhJJ£2(K)) 

JJ(-g- divuh + c(x)ph)'PKII£2(K) 

< C{
1 
(JJu- uhJJH(div ,K) + JJp- PhJJL2(K)) 

II- g- divuh + c(x)phll£2(K), 

thus, II is upper bounded by 

Remark 4.3 To stablish similar the majorations of I and II, we can also work 
with polynomial interpolations fh, gh, ch, ah and bh off, g, c, a and b. 

Majoration of III: Let F be an internal edge, therefore, there exists two 
triangles Kf and Kf so that F = Kf n Kf. Let us define wp = Kf U Kf 
(see fig. [2)). Observing that [ph] IF is constant, then a suitable function Pp is 
constructed by: 

p ([p ])( ) _ { iJf(x) if x E Kf 
F h x - iJf( x) otherwise (30) 

where iJf (respectively iJf) is the unique polynomial defined over K{ (respec­
tively Kf} in RTo so that each degree of freedom is 0 except the one in F 
that it is imposed to be [ph]· It is clear from the definition of Pp([ph]) that 
it belongs to H(div ,WK ). Similar constructions can be considered if [ph] is 
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Figure 2. Definition of wp = K[ U Kf 

polynomial over F using the appropriated generalized Raviart-Thomas F .E. It 
is not very difficult to prove that PF is linear and verifies 

I 

IJPF([ph])IIH(div ,wF):::; Ch}ll[ph]IIP(F)> 

Let us consider the test function 

then 

thus 

ll[ph]lli2(F) < IIAIIIIU- UhiiZ(wF)IJPF([ph])llz(wF) 

+ llf- a(x)ilh +'\'ph+ b(x)phliL2(wF)iJPF([ph])IIL2(wF)' 

using now the majoration of PF we obtain 

Majoration of IV. Finally, let F be a boundary edge satisfying FE oO.v 
and let Kf' be the triangle containing F. For the sake of simplicity, let us 
suppose 91 constant over F. In this case the function PF is constructed: 

(31) 

where v[ is the unique polynomial defined over Kf' in RT0 so that each degree 
of freedom are 0 except the one in F that it is imposed to be 91 - Ph. As in 
previous case, PF is linear and verifies 

I 

IJPF(91- Ph)IIH(div ,K[) :::; Ch}ll91- PhiiL2(F)' 
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Let us consider the test function 

then 

thus 

t'(V)- 1 (!- a(x)ilh +\?ph+ b(x)ph) 
llg1 - PhJJi2(F) ~ Kf 

PF (g1 - Ph) dx 

llg1- Phlli2(F) < IIAIIIIU- Uhllz(K[)IIPF(g1- Ph)llz(K[) 

+ llf- a(x)iih +\?ph+ b(x)phllP(K[) 

IIPF(g1- Ph)ll£2(k[)• 

using the majoration of PF we obtain 
1 

h;2 JJg1- Phll£2(F) ~ CkviiU- Uhllz(K[)· 

In the general case, where g1 is not constant over F, then a suitable poly­
nomial approximation g18 is considered. In that case the following estimation 
is obtained: 

- 1 IV 1 
hF 21ig1- Phll£2(F) ~ Ch (JJU- UhiiZ(K[) + h- 2 JJg1- g1sll£2(F))· 

Finally, if the estimator given by the equation [24] is considered, then the 
following proposition can be derived: 

Proposition 4.4 With the definition {24} the following estimation is obtained 

TJR(K) ~ C (JJii- iihJIH(div,wK) + h[/JJp- PhllP(wK)) (32) 
- - _.!. + II/- fmhll£2(wK) + JJg- gmhllL2 (wK) + hK2 1ig1 - ih(g1)11£2(8Kn8flo) 

where WK = {Ko E Th: Ko n K = Fi edges of K, i = 1, 2, 3} {see fig. {1}). 

5 Conclusion 

The paper has outlined an 'a posteriori' local error estimator based on the 
residual of the linearized transport equation for electrons. Two theoretical re­
sults gives an idea about the efficacity of the error estimator. Future works will 
consider the construction of an anisotropic estimator based on local corrections 
of numerical solution as well as numerical experiences comparing the isotropic 
and anisotropic estimators. 
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