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ABSTRACT. Modal superposition techniques are generally used to analyse low frequency 
dynamic responses of complex structures. Within this context, modal effective parameters 
allow us to characterize in a comprehensive and intrinsic manner the eigenmodes, and to 
compute frequency response functions while controlling truncation effects. The general 
formulation is first given, introducing the effective jlexibilities, masses and transmissibilities. 
These parameters provide a physical understanding of the dynamic phenomena; they also 
respect summation rules related to particular static properties so that truncation effects can 
be estimated in terms of residuals. Finally, they can be directly used for many purposes : 
selection of important modes, comparison of modal bases, elaboration of equivalent models, 
and computation of responses of any type. 

RESUME. Les techniques de superposition modale sont generalement utilisees pour analyser les 
reponses dynamiques des structures complexes aux basses frequences. Dans ce contexte, les 
parametres modaux effectifs permettent de caracteriser les modes propres de maniere 
comprehensive et intrinseque, et de calculer les reponses frequentielles tout en colllrolant les 
effets de troncature. La formulation generate, introduisant les flexibilites, masses et 
transmissibilites effectives est d'abord presentee. Ces parametres donnent en premier lieu une 
interpretation physique des phenomenes dynamiques ; its suivent aussi des regles de 
sommation faisant intervenir des proprietes statiques, permettant d'estimer les effets de 
troncature en termes de parametres residuels. En definitive, its peuvent etre utilises 
directement a diverses fins : selection de modes importants, comparaison de bases modales, 
elaboration de modeles equivalents et calcul de reponses de taus types. 

KEY WORDS : dynamic structural analysis, vibration mode, modal response, parameter 
identification. 
MOTS-CLES : analyse dynamique des structures, mode de vibration, reponse modale, 
identification de parametres. 
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Nomenclature 

Convention 

Xij matrix X with rows and columns related to the i-set and the j-set 
of degrees of freedom respectively - by reciprocity : Xii = Xi/ and 
xii symmetric 

Scalars and matrices 

A 
C, c 
d 
F 
G 
H 
I 
I 

K, k 
L 
M, m: 
0 
Q 
q 

rigid body mode filtering transformation matrix 
viscous damping matrix 
distance 
vector of applied forces 
flexibility, center of gravity 
dynamic amplification factor 
unit matrix, scalar inertia 
V-1 
stiffness matrix 
modal participation factor 
mass, mass matrix 
reference point 
amplification factor at resonance 
vector of modal coordinates 

r rotation 
T transmissibility 

translation 
u vector of displacements 
W power spectral density function 
X general matrix or parameter 
t; viscous damping ratio 
<l> matrix of constrained junction normal modes 
'P matrix of constraint modes 
\jf RMS value 
(J.) circular frequency 

Subscripts 

c constrained degree of freedom (c +I= i) 
internal degree of freedom 

J junction (interface) degree of freedom 
k normal mode 
I unconstrained degree of freedom (I + c = i) 
r rigid (statically determinate) junction degree of freedom 
res residual 
s selected 
x excitation 
y response 
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Superscripts 

X time derivation 
)(f transpose of X ( XG = Xj; ) 

X effective parameter 
X condensed matrix 

X variant of X or X 
--> 

X vector in 3 dimensions 

Abbreviations 

DOF Degree Of Freedom 
FRF Frequency Response Function 
PSD Power Spectral Density 

1. Introduction 

In the lower frequency range, the current practice for dynamic analysis of linear 
structures is based on the computation of dynamic response of its eigenmodes, 
considered as uncoupled one-DOF (Degree Of Freedom) systems. Dynamic responses 
are then obtained by summing the contribution of the first few modes only. This 
modal truncation decreases the computational effort, but may involve significant 
errors if not treated adequately. In addition, even if the number of selected modes is 
small with respect to the size of the system, they involve a large amount of data 
difficult to analyse for physical understanding. To overcome these difficulties, it is 
important prior to the dynamic response phase of the analysis, to identify the 
significant parameters which govern the dynamic phenomena. This leads to the 
general concept of modal effective parameters. 

Various attempts have already been made in this area. The mode-acceleration 
method [WIL 45] [CRA 81] was used early to compensate the truncation errors by 
improving the convergence. A semi-graphical method involving mobility 
calculations was introduced in the mid-fifties [PLU 54]. The effective mass concept 
was introduced and developed in the sixties and seventies [NEU 64] [BAM 71] 
[WAD 72] and used intensely, in particular in the aerospace industry [1MB 78a] 
[1MB 78b] [MOR 79], but it covers only one aspect of the problem. An extension 
to other modal parameters was then made in the mid-eighties [GIR 86] [GIR 87] to 
present a unified approach for these parameters. Since that time, extensive use of 
this concept has been made in various fields of structural dynamics. In fact, as it 
will be seen, the modal effective parameters have a simple physical meaning and can 
be used for many purposes : detection and selection of important modes for a given 
response, evaluation of truncation effects, comparison of modal bases from tests 
and/or analyses, elaboration of simple equivalent models, and comprehensive 
computation of responses of any type. 

In the present paper the fundamentals of the concept are reviewed, considering the 
general case of a structure excited by internal forces and/or interface motion and 
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producing internal motion or interface force response (chapter 2). Modal 
decomposition of the various types of frequency response functions yields the 
definition of the effective parameters (chapter 3). Numerical examples on beams are 
given for direct illustration, completed by a more complex case in an industrial 
context (chapter 4). 

2. Dynamic force and displacement responses 

2.1. Frequency response functions 

Let us consider a n-DOF linear structure with given boundary conditions 
(interface with the outer world, named "junction" in the following, for mnemonic 
reasons). The set of DOFs is therefore partitioned in two subsets, as illustrated in 
Figure 1 : 

the junction or interface DOFs (j-subset, null for a free-free structure), 
the internal DOFs (i-subset). 

CD 
Figure 1. Structural displacements and forces 

This structure is assumed to be subjected to prescribed junction motion 
(displacements ui for example) and/or internal forces Fi. The dynamic analysis 
objective is to provide estimates of the responses of unknown internal displacements 
ui and/or junction forces Fi. In the frequency domain w, the relationship between the 
possible excitations Fi, ui, and the possible responses ui, Fi, can be written using 
FRF (Frequency Response Functions) : 

(1) 

where G, T and K are the dynamic flexibility, transmissibility and stiffness matrices 
respectively (Tji == Ti/ from reciprocal principle). 



Modal effective parameters 237 

Let's recall, as mentioned in the nomenclature, that the subscripts correspond to the 
rows and columns of the matrices. For example, G;; designates a square matrix 
where the rows, as the columns, are related to the i-set, while T;i is a rectangular 
matrix where the rows are related to the i-set and the columns to the j-set. 

2.2. Equations of motion 

The previous FRF can be expressed using adequate modes of the structure and 
integrating the equations of motion. For that purpose, let's take the discrete 
equations of motion written as : 

(2) 

where M, C, and K are the mass, damping and stiffness matrices, u the vector of 
physical displacements, and F the vector of applied forces. The internal motion of 
the structure can then be written as the sum of the motion due to the junction and 
the internal motion expressed in the basis of the constrained junction normal 
modes: 

Uj = 'f';j Uj + <J>;k qk (3) 

where '¥ is the matrix of constraint modes and <I> is the matrix of normal modes, 
given by: 

(4) 

(-rot M;; + K;;) <l>;k = 0 (5) 

assuming that the j-set is sufficient to suppress the rigid body modes, redering the 
K;; matrix invertible. 

The following transformation : 

(6) 

applied to Eq. (2) results in 

where Mjj and Kjj are the mass and stiffness matrices condensed on the junction, mk, 
cb kk are the generalized mass, damping and stiffness diagonal matrices (uncoupled 
modal viscous damping [CRA 81 ]), and Lki is the matrix of modal participation 
factors, given by : 

(8) 
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2.3. Solutions 

Solving Eq. (7) leads to the following results for the FRF of Eq. (1) (details in 
[GIR 85]) : 

n 

Gii( ffi) = _2, Hk( ffi) <I>ik <l>ki 
k=l ffi( mk 

(9) 

(10) 

2 (~ LJk Lk1· -I ) Kjj(ffi) =- ffi L.. Tk(ffi) --- + Mjj - Mji Mii Mij + Kjj 
k=l mk 

(11) 

where Hk and T k are the amplification and transmissibility factors of mode k, related 
to its circular frequency ffik and its viscous damping ratio Sk : 

(12) 

(13) 

In the case of structural damping, 2/;k ( ffifffid is replaced by the modal loss 
factor Tlk in Eqs. (12) and (13). In Eqs. (9), ( 10) and (11 ), the summation clearly 
expresses the modal superposition, each mode behaving like a 1-DOF system. Every 
n-DOF system is in fact equivalent ton 1-DOF systems in parallel [MAC 71]. For 
free structures, the DOFs reduce to the i-set, and only Eq. (9) is relevant, with the 
contribution of the rigid body modes reducing to <l>ik <l>d( -ffi2 mk) . 

Equation (II) may be rewritten : 

(14) 

where: 

(15) 

Mjj(ffi) is the dynamic mass matrix which excludes Kjj rep~senting the static 

contribution from statically indeterminate junctions (otherwise Kjj null). The static 
terms outside of the summation over the modes in Eqs. (10) and (15) are directly 
related to the junction DOFs and result from the discretization itself. They tend 
towards zero as the mesh is refined and may often be neglected in practice. In the 
case of a continuous approach, they are null. 
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3. Modal effective parameters 

The three FRF matrices G, T and M (Eqs. (9), (10) and (15)) have the same basic 
form expressing each normal mode contribution as the product of an amplification 
factor, Hk(OJ) or T k(OJ), and a matrix of terms independent of OJ known as "effective" 
parameters : 

where 

n ~ 

Gii(OJ) = L Hk(OJ) Gii,k 
k=l 

n ~ 

Tij(OJ) = L Tk(OJ) Tij.k - Mii
1 

Mij 
k=l 

n ~ 

"' -1M Mjj(OJ) = L, Tk(OJ) Mjj,k + Mjj - Mji Mii ii 
k=l 

~ <l>k <l>k· Gk- I I 

II, - OJ( mk 

~ Lk Lk· 
Mjj.k = _.1 __ .1 

mk 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

are the effective flexibility, transmissibility and mass matrices of mode k. These 
effective parameters are independent of the normalization of the eigenvectors. They 
have the same dimension as the corresponding FRF and are directly related to 
physical quantities such as static flexibilitics, constraint modes and masses. 
Moreover, they characterize the importance of the mode in the overall behaviour, 
independently of the nature of the excitation. 

3.1. Summation rules 

From Eqs. (16) to (21 ), it can be shown that the effective parameters follow 
specific summation rules. In particular, the direct summation may be derived from 
Eq. (9), (1 0) and (15) with OJ = 0, leading to : 

n 

I. a-k = Gii (22) II, 

k=l 

n 

L T k IJ, = 'I' ij = 'I' ii + Mii
1 

Mij (23) 
k=l 

n 

I,Mk JJ, = M .IJ = - ( -1 ) Mjj - Mjj - Mji Mii Mij (24) 
k=l 
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where G;; = K;;- 1 is the static flexibility matrix corresponding to the 

i-set, discussed later, representing, along with 'l';i and Mjj , the physical static 
properties of the structure with respect to the i- and j-sets (the additional terms 
resulting from discretization, as previously mentioned). Eqs. (22) to (24) can be 
interpreted as a projection of the static terms in the normal modes basis. In 
particular, Eq. (23) expresses the constraint modes as a linear combination of the 
normal modes : 

(25) 

The summation rules can be generalized to include effective parameters multiplied 
by powers of rok2, as shown in Table 1. This is useful for taking into account 
higher-order terms such as inertia effects. 

~ ~ ~ ~ 

xk G;;,k T;j,k Mjj.k 

n 

L, ro~ xk Mi;
1 M:.l 

~ ,.... ~ 

II K;; 'I' ii 'l'j; K;; "'';i 
k-1 

n 

L Xk Ki;' tV ii = 'I' ii + Mi;' M;i 
,.... ~ ~ 

Mii = 'l'j; M;; 'l';j 
k-1 

n 

L,-1 xk Ki;'M;;Ki;' Ki;1 M;; lP;i lPj; M;; Ki;' 
,.... 

k-1 rot 
M;; 'l';i 

Table 1. Summation rules for effective parameters 

3.2. Truncation effects 

When computing responses with a truncated set of modes, the contribution of 
the excluded modes may be approximated using the previous considerations. Since 
their eigenfrequencies are significantly higher than the excitation frequency, their 
amplification factors (Eqs. (12) and (13)) approach 1 and their contributions to the 
FRF in Eqs. (16) to (18) reduce to their effective parameters (first order 
approximation), leading to : 

m 

G;;(ro) := L, Hk(ro) G;;,k + G;;,res (26) 
k=l 

m 

T;j(ro) := L, Tk(ro) 1\.k + T;j,rcs (27) 
k=l 

m 

Mjj(ro) := L, Tk(ro) Mjj.k + Mjj,res (28) 
k=l 
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where k denotes the m-set of truncated modes and G;i,res, T;j,res , Mjj,res are residual 
terms representing the contribution of the higher modes and the junction due to 
discretization : 

n ~ 

G;i,res = I, G;;,k 
k=m+l 

n 

T;j,res = L T;j,k - Mil M;i 
k=m+l 

- n ~ 

Mjj,res = L Mii.k + Mii - Mi; Mil M;i 
k=m+l 

(29) 

(30) 

(31) 

These residual terms can be directly derived from the static terms and the effective 
parameters of the retained modes, from Eqs. 22 to 24 : 

m ~ 

G;i,res = G;; - I, G;;,k 
k=l 

m -
T;j,res = 'l';j - I, T;j,k 

k=l 

- - m ,..._ 

Mjj,res = Mjj - I, Mjj,k 
k=l 

(32) 

(33) 

(34) 

Neglecting these terms in the computation of the responses can lead to 
significant errors. Using them minimizes truncation effects by taking into account 
the static contribution of the higher modes, while neglecting only the additional 
contribution due to their dynamic amplifications, which is small if the truncation is 
coherent with the frequency content of the excitation. 

3.3. Statically determinate junction 

The particular case of a statically determinate, or rigid, junction with (up to) 6 
DOFs does not affect the flexibilities, but simplifies the basic terms for masses and 
transmissibilities as shown in table 2 (j-subset renamed r-subset). 

General case Rigid junction Interpretation 
j r (up to) 6 rigid junction DOFs 

'I' ij 'I' ir 6 rigid body modes 

Kjj 0 condensed stiffness matrix null at junction 
- -

Mjj Mrr 6x6 rigid body mass matrix 
~ ~ 

Mii.k Mrr,k 6x6 "physical" effective mass matrix 

Table 2. Particular case of statically determinate (rigid) junction 
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In general, the r-subset may be composed of DOFs of several distinct nodes. 
However, it can always be reduced to the 6 DOFs of a single reference node by 
means of a rigid body transformation, as will be supposed in the following. 

Each modal effective mass matrix Mrr,k (6x6) has only 1 non null eigenvalue 
which is in fact the "mass" of mode k acting in the eigendirection L,k (see Eq. (21)). 
To illustrate this point, let's suppose that the r-set is related to the 6 DOFs of a 
node 0, (translations 1, 2, 3 and rotations 4, 5, 6), as shown in Figure 2. In this 

case, Mrr.k represents the masses, moments and inertia of the mode with respect 
to 0, including : 

Mk = M ll,k + M22.k + MJJ,k (35) 

-
Iok = ~4,k + Mss,k + M66,k (36) 

where Mk is the scalar mass acting in direction tk (Lki ,Lk2,Lk3), and IOk the scalar 

inertia acting around the direction f;_ (Lk4,Lks,Lk6) [BAM 71] [WAD 72]. 

I 

I 

I 

I 

- --

Figure 2. 1-DOF system from effective masses 

Additional considerations can be derived concerning the physical interpretation 

[GIR 91]. The center of gravity Gk ofMk may be found by considering its moment 
with respect to 0, giving : 

(37) 

and the inertia with respect to Gk is given by : 
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A physical representation of each mode may then be derived. Each mode k is 

equivalent to a 1-DOF system having the mass/inertia (Mk , lGk), moving at Gk 

like a corkscrew in the direction tk with a coupled translation and rotation in the 
--+ --+ J --+ 12 ,,-

ratio (tk . rk)~ tk = ± Y IGk/Mk , on a spring giving the frequency Wk and a dashpot 
giving the viscous damping ratio ~k' as depicted in Figure 2. This leads to an 
equivalent model for the structure with respect to the point 0 made of a collection of 
1-DOF systems completed by a residual term (from Eq. 34). The general case is 
difficult to depict graphically, but practical cases can be easily represented such as 
axial models (DOF 1) shown in Figure 3-a, and lateral models (DOFs 2 and 6) 

shown in Figure 3-b where the pure masses M22,k (IGk = 0 in Eq. (38)) act in 
direction 2 at distances dk = Lk6/Lk2 from 0 (from Eq. (37)). Similar results may 
be found for any r-set. 

Truncation 

r=1 

a) Axial Model 

Truncation 

t 
~ 

r= 2, 6 

b) Lateral Model 

Figure 3. Equivalent effective mass models 

These "effective mass models" are very useful in defining equivalent models with 
respect to the junction. They can easily be connected to the adjacent structure for 
coupled analysis. Although they are related to the junction and therefore excited by 
u, , they can also be used in the general case of excitations Fi and u,. The force Fi 
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in this case is proportionally distributed on each effective mass Mrr,k according to 

the corresponding effective transmissibility Tri,k : 

Fr,k = Tri,k F; (39) 

as depicted in Figure 4. 

Figure 4. Effective mass model - General case 

This is equivalent to considering an effective force/moment (Fk, Mk) applied 

directly to the mass/inertia (Mk , IGk) , with : 

Fk = _!!L_ <I>ki F; 
mk 

(40) 

(41) 

which represents the generalized force properly normalized. The effective mass 

excited by F; and ur results in a translation/rotation giving the displacement ii'r,k and 
the reaction force Fr,k . The physical displacements u; are then recovered by 

summing the ii'r,k weighted by the effective transmissibilities, whereas the reaction 
forces are recovered by summing directly the Fr,k : 

(42) 
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Fr = L Fr,k (43) 
k 

In case of modal truncation, residual terms have to be added : 

[ 
Ui,res l = [ 
Fr,res 

G;i,res T;r,res ] [ F;] 

- W
2 

Mrr,res Ur 

(44) 
-Tri,res 

This can be directly extended to any statically indeterminate j-set, even if the 
physical interpretation is more difficult. 

3.4. Static and pseudo-static flexibilities 

In dealing with constrained structures, the static flexibility matrix G;; introduced 
in Eq. (22) is the inverse of the stiffness matrix K;;. In practice, only a subset s 
(selected) of DOFs i is concerned by excitation forces. In this case, the problem 
reduces to: 

(45) 

where 1;, is an identity matrix partitioned on the s-set. Eq. (45) can be solved 
efficiently using a forward/backward substitution applied to the s-set. 

In the case of free structures, the summation of Eq. (22) is limited to the elastic 
modes. The stiffness matrix K;; is singular and the rigid body modes must be filtered 
to obtain the pseudo-flexibility matrix representing the flexibilities of the structure 
around its center of gravity. A classical approach is to constrain the structure at 
arbitrary DOFs c which prohibit all rigid body motion in order to obtain a 

"constrained flexibility matrix" G;;. The pseudo-flexibility matrix G;; is derived 
using the rigid body mode filtering transformation A (non symmetric): 

(46) 
where 

--I 
A;; = I;; - M;; '¥ ic Mcc '¥ ci (47) 

with 'P;c the rigid body constraint modes. A procedure similar to Eq. (45) may be 
applied to find more efficiently the submatrix G;, in two steps using the partitioned 

stiffness matrix K11 with I = i - c. First, G;, is obtained by the following two 
relations [RUB 75] [CRA 81] : 

(48) 

Secondly, G;, is derived by filtering the rigid body contribution from G;s 
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-" 

Gis = AiiT Gis (49) 

The columns of Gis contain the inertia relief modes of the free structure with 
respect to the s-set. 

3.5. Dynamic Responses 

In the frequency domain ro, a dynamic response is obtained by multiplying the 
dynamic excitation by the corresponding FRF, as in Eq. (1). This covers the case of 
sinusoidal forces of pulsation ro, and also the case of transient forces by using 
Fourier transforms. The basic FRF given in Eqs. (16) to (18) have the same shape 
due to their similar expressions, as shown in Figure 5. Each mode behaves as a 
1-DOF system, and contributes by its amplification factor multiplied by its effective 
parameter. At ro = 0, the FRF is equal to the accumulated effective parameters, i.e. 
the static value. Near each natural frequency, the corresponding mode is generally 
predominant (resonance) and the FRF is close to its contribution. Between two 
resonances, the bordering modes create a minimum : an antiresonance if the effective 
parameters of the bordering modes have the same sign, a trough if the effective 
parameters have opposite signs. Many other features concerning the FRF shape may 
be found by interpreting Eqs. (16) to ( 18). In addition, the shapes may be 
qualitatively found by considering only the natural frequencies, the damping ratios 
and the effective parameters. 

(In) I XI 

* same sign 

** opposite sign 
for consecutiveXk 

(In) ro 

Figure 5. FRF and effective parameters 
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In the case of a transient response, an equivalent effective mass model as defined 
previously and manipulated through Eqs. (39) to (44) may be used for frequency 
response spectrum calculations to provide directly the maximum contribution of 
each mode to the internal displacements and reaction forces. 

In the case of a random excitation x described by its PSD (Power Spectral 
Density) Wx(OJ) in a given frequency range, the PSD Wy(W) of a random response y 
is given by : 

(50) 

where Xyx is the FRF between x andy. The mean square value of the response 'l'/ 
is obtained by integrating W y in the entire frequency band. If Xyx is one of the three 
basic FRF of Eqs. (16) to (18), 'l'/ is generally well approximated by the following 
formula, assuming that W x is slowly varying in the vicinity of the natural 
frequencies and that the modes are relatively well separated : 

(51) 

where k is the set of modes included in the frequency band, fk the natu_ral frequencies, 

Qk = 1/2~k the amplification factors at fk, Xk the effective parameters related to 
Xyx• Xres the corresponding residual term (see Eqs. (32) to (34)), W,(fk) the 
excitation PSD at fk, and 'l'/ the mean square value of the excitation. As in the 
case of FRFs, each mode contributes as a 1-DOF system, and the last term of Eq. 
(51) represents the static contribution of the higher modes. 

3.6. Conclusions 

Modal effective flexibilities, transmissibilities and masses are inherent to 
solving the equations of motion in a modal basis. These parameters follow specific 
summation rules to recover relevant static properties so that truncation effects can be 
estimated by means of residuals. Consequently, they play a fundamental role in the 
context of modal superposition, providing physical understanding of dynamic 
responses. They can be used for many purposes as described in the introduction. 

These basic considerations are derived from the equations of motion for the 
reaction forces and displacements related to the structural DOFs. It is possible to 
extend these considerations to the next step of analysis, i.e. the recovery step at the 
element level, especially for the dynamic stresses which are often of primary 
importance [GIR 86] [GIR 87]. 
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4. Examples 

4.1. The Cantilever beam example 

Let's consider the cantilever beam of Figure 6 in pure bending, with length L, 
mass M, and bending stiffness EI (shear effect neglected). The r-set (statically 
determinate junction) is composed of DOFs 2 and 6 at the clamped end, and the i-set 
considered here is just composed of DOFs 2 and 6 at the free end. The static 
properties (Eqs. (22) to (24)) related to the i- and r-sets are as follows : 

~ir = [ ~ ~] ~ ~' 1 (52) 

Numerical results related to dimensionless modal parameters are given in Table 3 
(continuous system formulation - see details in [GIR 85] [GIR 86] [GIR 87]). 
Accumulated effective parameters are plotted in Figure 6 versus frequency, showing 
the convergence with respect to the summation rules (Eqs. (22) to (24)). 

For example, concerning the effective masses M22,k the first mode concentrates 
61 %of the total mass M, the second mode 19 %, etc. These values can be directly 
used to derive the equivalent model of Figure 3b, the parameters dk being given by 
~ ~ 

M26.k I M22.k. i.e. 0.7265 L for the first mode, 0.2092 L for the second mode, etc. 

4.2. Industrial example 

For complex structures, modal effective parameters are extremely useful in 
detecting modal contribution and assessing truncation errors. An industrial example 
is presented using a symmetrically modeled car seat and floorboard shown in 
Figure 7. The finite element model obtained using MSC/NASTRAN™ [MSC 95] 
contains over 50 000 degrees of freedom. It is clamped along the edges of the 
floorboard and "guided" in the plane of symmetry, thus generating 77 symmetrical 
modes up to 300 Hz. 

Modal effective flexibilities computed using PROTO-Dynamique [ITS 97] are 
illustrated in Figure 8a for a point dynamic flexibility at the base of the car seat. 
Individual modal parameters are shown by circles and spikes, whereas the cumulative 
sum is shown as a staircase plot. The horizontal line represents the corresponding 
static term. Note that for the given transfer, over 70 % of the total contribution 
(given by the static term) is coming from only 6 modes. Moreover, the 
contribution of the 77 modes results in a truncation error of approximately 10 % 
with respect to the static flexibility. The corresponding dynamic flexibility 
calculated with 2% modal damping and including the static residual flexibility is 
plotted in Figure 8b. 
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k ~ (JG;;') k ~ 

L Mrr,k L Tir,k 
I I 

) --
Mrr Gii \fir 

2 
166(22l 62 

r6 r 
122=66 I 

22(66) r-1 I 
I 

26 -I I 

(In) ffik (In) ffik 

{JF {JF 3 

0 0 -"" 
k=I 2 3 4 k=I 2 3 4 

G) ~ -----... 2 
-I 

-2~--------~---L--~--

Figure 6. Cantilever beam - Accumulated effective parameters 

- - ~ 

ki#r; Mz2,k1Mn Mz6,k/M26 M66,kiM66 Tn,k Tz6,k 
~ 

~ 

--- T62,k 

= G66,k/G66 = Gz6,k/Gz6 = Gn,k/Gzz = T66,k L 
3 

I 3.5I6 0.6I3I 0.8908 0.9707 + 1.5660 +1.1377 + 2.I556 
2 22.03 O.I883 0.0788 0.0247 - 0.8679 - O.I8I5 - 4.I494 
3 6I.70 0.0647 O.OI65 0.0032 + 0.5088 +0.0648 + 3.9936 
4 I20.9 0.033I 0.0060 0.0008 - 0.3638 -0.033I -4.0002 

>4 ((2\I)1tr ( 4 r ( 4 r 3 ( 4 r -8 ( -1l -16 ( -1 )k k 

(2k-1)1t (2k-1)1t 4 (2k-1)1t (2k-I)1t ((2k-1)1tf 
-4 ( -1) 

L - I 1 1 1 I ±2 

Table 3. Cantilever beam - Dimensionless modal parameters 
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Figure 8. Industrial example - Car seat and floorboard model 

A second transfer function involving the transmissibility between the base of the 
car seat and the rigid junction of the floorboard is illustrated in Figure 9. The modal 
effective transmissibilities shown in Figure 9a have both positive and negative 
values leading to a non-monotonic cumulative sum which "overshoots" the static 
term of 1 (unit translation). As before, a small number of modes account for the 
majority of the total static contribution. The dynamic transmissibility is plotted in 
Figure 9b and displays a characteristically intricate behavior including antiresonances 
as a result of the sign changes in the modal effective parameters. Note that at low 
excitation frequencies, the response converges to the exact static value thanks to the 
addition of the residual term. 

5. Conclusions 

Modal effective parameters within the context of modal superposition techniques 
play an important and integral role in terms of better understanding the behavior and 
limitations of the modal representation of a physical structure. Independent of mode 
shape normalization, the modal effective parameters bridge the gap between the 
modal and physical (static) worlds and allow the engineer to quantitatively identify 
important modes and compensate for mode truncation effects. In addition to their 
diagnostic features, the modal effective parameters ca.1 be directly exploited in 
response calculations including stresses, and used to elaborate equivalent models for 
analysis or substructuring. 

The authors hope that this paper will allow engineers to benefit from the 
simplifying and practical aspects of modal effective parameters and use them as a 
general and efficient tool in dynamic analysis and design problems. 
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Figure 8. Industrial example - Point flexibility 
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