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ABSTRACI'. This paper is devoted to shape optimization for Partial Differential Equations 
( PDE) systems related to Computational Fluid Dynamics (CFD ). Numerical approximation of 
the PDE's relies on schemes satisfying discrete maximum principles and using unstructured 
meshes generated from the shape parameters. The theory of control is applied to the discrete 
design problem with the resulting constrained optimization problem solved by gradient based 
algorithms. An automatic differentiation procedure for Fortran codes is extensively used to 
carry out the CFD sensitivity analysis. 

RESUME. Cet article est consacre a l' optimisation de formes aerodynamique pour les systemes 
d'Equations aux Derivees Partielles (EDP) appliquees ala mecanique des fluides 
numeriques. L'approximation numerique des EDP repose sur des schemas satisfaisant les 
principes des maximum discrets, et cons ide rant des maillages non structures is sus des formes 
parametrees. La theorie du controle est appliquee au probleme discret, le probleme 
d'optimisation avec contraintes qui en est issu erant resolu par des algorithmes utilisant le 
calcul du gradient. Un programme de differentiation automatique de codes Fortran est utilise 
dans l'erape de calcul des gradients. 
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1 Introduction 

Numerical optimization based on CFD tools demands specific developments to 
derive efficient strategies based on complex flow models. Among alternative 
methods, we have chosen to treat design problems using the theory of control 
[10],[14] of systems governed by partial differential equations. Flow equations 
are treated as constraints which necessitate the solution of the linear system 
called the adjoint equation, involving the transposed Jacobian matrix of the 
system of equations. These methods avoid the limitations of classical optimiza­
tion algorithms where the gradient is computed by finite differences meaning 
that the computational effort is directly proportional to the number of design 
variables (optimization parameters) considered. In the approach selected here, 
the gradient is evaluated without additional fl.owfield computations ; it only 
requires a computational effort related to the solution of the adjoint linear sys­
tem which is considerably limited compared to a fl.owfield evaluation. We have 
selected the discrete sensitivity analysis where the control theory is applied 
on the discrete system itself. Specific developements on Euler equations will 
be addressed ; Finite Volume Galerkin methods, upwind, centered. Implicit 
methods will use the system derived from the first-order accurate approxima­
tion or directly the second-order linearized system computed with automated 
differentiation tools. As the boundary conditions are included in the formula­
tion, the matrix involved in the implicit time integration leads directly to the 
adjoint system. An other possible ingredient introduced by A. Dervieux [7] is 
the multilevel parametrization for hierarchical optimization, which is envisaged 
in a near future. 
Some illustrations will be given on examples of optimization of 2D airfoils using 
unstructured meshes. 

2 Optimization strategies 

The general formulation of a shape optimization problem has been introduced 
by many authors [4], [14], [7]. It has been applied in many situations and 
recently by Jameson [8]. He advocates the application of the control theory 
directly to the system of partial differential equations. The adjoint equations 
are formed as a system of differential equations. These differential equations 
are then discretized and solved in the same manner as the original flow equa­
tions. This approach can be called as continuous sensitivity analysis. Here, a 
different approach, called discrete sensitivity analysis is applied consisting in 
applying the control theory to the discrete equations itselves. Two advantages 
make it attractive: one manipulates exact gradient and the adjoint operator is 
easily derived from the implicit matrix. 

The general formulation may be written as : 
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Find a shape 1 E 0 (a family of shapes) such that 1* = arg minj('Y) 
-yEO 

where j('Y) denotes a cost function given by 

j('Y) = J('Y, W('Y)) = i C(W('Y))du 

- C is a function incorporating the global aerodynamic coefficients to be opti­
mized and some penalized constraints. 

- d denotes the space dimension (2 or 3) for the flow domain n E JRd around 
shape 'Y· 

- W('Y) is the state-vector (e.g. density, momentum, energy) solution of the 
state equation : 

E('Y, W('Y)) = 0 in n 

- V is a subspace of L2 (n). 

The shape 1* satisfies the optimality condition dJd. ('Y) = 0 , where the 
. 'Y 

derivative of cost function j('Y) is given by : 

dj('Y) 8J 8J dW 
d;{81 = 81 81 + < 8W' d1 81 > . 

The dependance of W and 1 to the flow domain n is expressed by : 

8E~ 8E dW ~ 
0! U/ + 8W d! U/ = o. 

Introducing an adjoint state (or Lagrange multiplier) 'II satisfying the ad­
joint equation 

8E * 8J 
8W 'II = 8W' 

the gradient of the cost function can be reformulated into the following 
expression : 

dj('Y) 
8 

8J 
8 

'II 8E 8 . 
7.7 'Y = 0! 'Y - < ' 0! 'Y > 

We will treat the case of two-dimensional shape optimization for (multi) -
airfoil profiles including the capacity of multi-point optimization. The objec­
tive is to select relevant strategies before going to 3D cases. As a first step, 
we will limit ourselves to inviscid flow as a model for compressible flow. In a 
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first study, we applied the theoretical approach to treat full potential equation 
in [19]. In this present paper, we will detail the construction of the optimiza­
tion algorithm when using numerical approximations of the Euler equations 
described in the first section. 

As our numerical methods are based on unstructured meshes in order to 
treat general geometries, a key point of the method is the relation between 
optimization parameters and geometrical characteristics of the mesh used in 
numerical approximations. This geometric modeller, which will be described 
in the next section, involves two mesh representations : 

- a surface mesh representation, usually defined by a CAD software. 

- a volume mesh representation, prescribed by an unstructured mesh genera-
tor/ deformer. 

Once, the whole chain of operations from shape 1 to state vector W is 
obtained,we have sufficient information to apply the control theory which sets 
up the following system of equations : 

{ 

E(7, W('y)) = 0 (state) 
aE • aJ aw('y, W('y)) · 'll('y) = aw('y, W('y)) (adjoint) 
. aJ aE 
J'(r) = a, ('y, W('y)) - < 'l!('y), a, (7, W('y)) > (optimality) 

(1) 

The introduction of the adjoint problem resulted from the application of the 
control theory on the continuous system where the flow equations are viewed 
as a constraint. This analysis can be directly performed on the discretized 
system. This discrete sensitivity analysis is detailed hereafter. 

Once the derivative of cost function j is obtained, it can be fed into a 
numerical optimization algorithm to obtain an improved design. A first class 
of problems addressed are the inverse problems aiming to control a prescribed 
boundary pressure distribution. The cost function can be formulated as 

j(7) = 1 (p- pobj) 2da or in discrete form j(7) = L a1 (p1 - p~bj) 2 

~ IE£ 

where card(.C) is the number of pressure points given on the profile. 

A second class of problem is related to the minimization of a general cost 
function. Among them, problem of minimizing the drag coefficient will be ad­
dressed in defining the cost function as the pressure drag coefficient (augmented 
with viscous drag if a viscous correction is considered) submitted to constraints 
as given target pressure distribution or given lift. 
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For each of these problems, we will use a conjugate gradient based [15] 
numerical optimizer, where constraints are incorporated into the cost function 
through penalty terms. 

3 Discretization schemes 

3.1 The CFD solver 

3.1.1 General formulation 

From these last years, design principles of numerical schemes for compressible 
flows tend to emerge in a frame shared by the whole CFD community based 
on schemes satisfying discrete maximum principles for scalar equations. This 
frame dictates the way followed by various teams to construct high-order non­
oscillatory schemes. 

For conservation laws, a convenient approach to design discretization schemes 
is based on two steps: 

(1) Monotonicity principle for non-oscillatory low-order scheme 
(2) High-order construction preserving property (1) 

On this basis (to satisfy (2)) are constructed a large number of family of 
schemes (at the top, stand MUSCL type reconstruction or introduction of anti- . 
diffusive term). Successful attemps avoiding step (2) are reported comprising 
Finite Element approaches based on Petrov-Galerkin formulations ([17]), dis-
tributive schemes balancing fluxes on the element ([6]) and recently mixed 
Finite Volume approximations considering the gradient as a degree of freedom 
[2]. In this paper, we rely on a classical MUSCL reconstruction or diffusive 
term addition. 

Concerning the point (1), for a large number of years, total variation dimi­
nushing (TVD) schemes concept has dominated. This notion is difficult to ex­
tend in more than one-dimension and specially when dealing with unstructured 
meshes. Moreover, this is confirmed by recent theoretical investigations on the 
convergence of schemes on unstructured meshes ([5], [13]) where the functional 
space BV is not the appropriate one for weak convergence. As mentionned 
before, a more incisive frame is to search for a discrete maximum principle. 
This has motivated to construct discretizations with positive coefficients ( [3], 
[8], [1]). 

We consider the following hyperbolic system of d + 2 conservation laws in 
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the flow domain !1 E JRd : 

Wt + ~·F(W) =0 (2) 

where 

- The vector of unknowns W belongs to vd+2, V being a subspace of £ 2 (!1). 

- Wt denotes the time-derivative of W. 

- F(W) = (F 0 (W))1:5o:5d is the vector of flux functions Fa E yd+2. 

Next, we assume that n is a polyedral bounded domain of JRd and let Vh 
be the set of continuous, piecewise linear polynomial functions defined on a 
standard "triangulation" of !1. A Lagrange-Galerkin formulation of equation 
(2) can be written as : 

fo Wt ¢dO + fo ¢ ~. F(W) dO= o , '<1¢ e vh (3) 

For thespace vh, we define a set of basis functions {¢ih<i<N 'where N is 
the number of vertices of the mesh and ¢i the basis function associated to vertex 

N 

i, with local compact support supp(i). In that case, ifF(W) = LFi(W)¢i, 
j=l 

and after some straight-forward integration by pa.rts, equations (3) can be re­
cast into: 

'<li , 1 ::; i ::; N 

where r = an and iJ is the outward unit normal to r. 

Next, we construct a dual mesh consisting of cells Ci (associated to vertex 
i) which form a partition of domain !1. The following vector is introduced for 
the edge between vertices i and j : 

ijij = f (¢/l¢j- ¢j ~¢i)dn = r ij de1 
supp(i) n supp(j) j 8C;n8C; 

~here ij is the normal to surface 8Ci n 8Ci, the direction of which is defined 
to be from vertex i to vertex j. The next identity holds for a close contour 
around vertex i : 

(5) 
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where K(i) is the set of neighbouring vertices to vertex i. With these def­
initions, a centered approximation of the Finite Volume Galerkin formulation 
for ( 4) would be : 

r <Pi wt do + 2: r r;ij. :F\(w) ~ Fj(w) 
ln iEK(iJ lnh 

+ { <Pi :F\(W) + :F\W) · ii da = o (6) 
lac,nr 2 

where W is a boundary state vector, which is a function of Wi and some 
prescribed boundary values. 

Finally, introducing a numerical flux function ci>F and using mass-lumping 
for the identity operator - which is a valid approximation for steady-state cal­
culations - the previous equation reduces to : 

dWi L ( - ) 1 Fi(W) +F(W) -S· -- + ci>F W· W· .,., .. + ""· ·vda=O ' dt ,, )l'll) '1'1 2 
iEK(i) ac,nr 

(7) 

where Si = 1 dO. 
C; 

In the sequel, we will be solely interested in the Euler equations of gas 
dynamics. 

As an example, for the Euler equations in two dimensions, i.e. d = 2 : 

( 

pv ) F W - puv 
2( ) - pv2 + p 

v(e + p) 

where p is the density, (u,v) is the velocity-vector, e is the total specific 
energy and p is the pressure., with the following equation of state for a perfect 
gas: 

p = p(p, e). 

3.L2 Upwind scheme 

A first example of a numerical flux ci>F is that given by Van Leer [18]. This ap­
proximation gives good results for high Mach number and is hereafter described 
in a one-dimensional framework: 

(8) 
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Assuming Jt = ~pc(~ + 1)2
, the numerical flux is given by: 

F if u 2: c, 

( 
Jt 

l j+ 
FJ(W) = - 1 (('y- 1) u + 2c) 

if - c < u < c, (9) + 
2(1{1_ 1) (('y- 1) u + 2c)2 

0 if u ~ -c 

Here, u is velocity, p is density, c is local speed of sound, and 'Y is the ratio 
of heat coefficients. 

For d > 1, one just have to define u, c, p along edges. We are using this 
scheme to derive easy-to-use first-order Jacobian for our implicit scheme (see 
section 3.1.4). 

3.1.3 Centered scheme 

A somewhat more elaborated scheme is constructed adding an artificial dissi­
pation term modulated by an adequate sensor to derive a monotone scheme 
(see Jameson in [9]). The level of artificial dissipation in smooth region is low 
while it is increased to a value in the neighborhood of a shock wave to recover a 
first-order scheme. Following Peraire and al [12], let us construct a fourth-order 
derivative of the solution, evaluated in the following manner, along the edge 
going from vertex Ni to vertex Nj : 

(10) 

where W is taken equal to W with the specific enthalpy replacing energy 
in the last equation. The gradient is constructed as follows: 

(11) 

Thep. the numerical flux is written as the sum of the centered scheme with a 
sensor-driven dissipation made of a second order term active for shock capturing 
and the fourth order term active in smooth regions 

~F(Wi, Wj,ijij) = 

~ F\(W) + F\(W) 
1Jij . 2 

The scalar viscosity considered here is governed by the maximum eigenvalue 
IAij I which is computed as 
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Aij = ~ (iii. Thi + Cillihill + Uj. ijij + CjllihiiD (13) 

We introduce a pressure sensor, based on second derivatives of pressure 
variable p. 

(14) 

Then the sensors can be defined as 

where k4 is some threshold value. 

3.1.4 Solution strategy 

The discretized state equations - solving the two-dimensional Euler equations 
- are given in formula (7) described above and can be summed up as follows : 

S· dWi + E. = 0 
' dt . (16) 

where Ei is the steady-state residual vector given by : 

(17) 

A linearized implicit solution of this system usually involves a representation 

of the Jacobian Aii = ::. through the following linear system: 
1 

si N 
-8W· + ~ A .. 8W·=-E­Llt ' ~ tJ 3 ' 

j=l 

where 8W is the time increment for state-vector W. 

The order of accuracy of the aerodynamic analysis is determined from the 
evaluation of the residual vector Ei, which can be first or second-order in space. 
However, using first-order Jacobian and Block-Jacobi rela.Xation for the linear 
system, is sufficient to converge the implicit scheme. In that case, only block­
diagonal matrices need to be stored, saving considerable memory, especially 
for 3D cases. To recover quadratic convergence, one can consider second-order 
Jacobian, obtained from automatic differentiation tools (see section 3.3.3). 
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3.2 The geometric modeller 

As pointed out before, a key point of our method is the relation between the 
optimization parameters, subsequently defined to be z = {zmh<m<M, and 
the geometrical characteristics of the numerical meshes. - -

In a standard CFD analysis, the user will start by specifying some values 
for z (e.g. airfoil length, thickness, twist, camber etc ... ). These values will be 
fed into a CAD software and will produce a surface mesh. Finally, a volume 
mesh is built on top of this surface mesh with the help of an unstructured mesh 
generator. 

Thus, the relation between z and the final numerical meshes can be de­
composed into elementary functions ; the overall gradient will be the product 
of these elementary gradients for each of which an appropriate evaluation can 
be used. For example, one can anticipate to use finite differences restricted 
to some specific elementary operations to calculate the necessary information. 
In the present work, this manner has been avoided by using analytical depen­
dance between intervening variables. The strategy chosen here can be easily 
described. 

For the surface mesh, an initial collection of boundary points - i.e. a surface 
topology and a initial position (x~b}, y~b}) for these points - is defined by the 
CAD software from an initial set of values for z . Subsequent perturbations 
arising from variations of z are handled - with the surface topology fixed -
by automatic differentiation via the ODYSSEE tool (cf INRIA (11]), of the 
relevant subroutines in the CAD software. In the results presented hereafter, 
the optimization parameters z chosen are explicit functions of the ordinates 
Vi of the control points (of coordinates ( Ui, vi)) of the cubic splines defining the 
boundary and the angle of attack a of the profile. 

For the volume mesh, an initial grid is constructed using an unstructured 
mesh generator starting from the prescribed initial surface mesh. Subsequent 
perturbed meshes in the optimization process are determined from variations 
of the position of these boundary mesh points by solving an elasticity equation 
which will provide a new position for the interior mesh points (of coordinates 
(x~m}, y~m>)). As the topology of the volume mesh is preserved by this approach, 
the relation between boundary and interior mesh points is differentiable and 
the corresponding gradient is easily computed. 

Thus, by working with fixed topologies for the surface and volume meshes, 
the relation between the optimizattion parameters and the numerical meshes 
is totally differentiable. However, it should be noted that our mesh adaption 
capability is somewhat limited : only mesh movement is permitted and mesh 
refinement is not allowed. 
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3.3 Sensitivity analysis 

3.3.1 Gradient of cost function 

As stated above, let us now apply control theory directly on the discretized 
system with optimization parameters {zmh<m<M· To fix ideas, let's take a 
cost function of the form 

1"' b' j(z) = J(z, W) = 2L...- a1 (PI-p~ 3 )
2 

IE.C 

designed for an inverse problem with a given target pressure distribution 
{pfbj}!e.C· Of course, apart from this particular definition of j, what follows is 
general and is not restricted to a specific problem. The partial derivatives of 

8J 
J(z, W) are oz and 

The state equation is now : 

Ei(z, W) = 0 , 1 ::; i ::; N (18) 

where Ei is the steady-state residual defined in ( 17). 

Its derivative with respect to parameters z is given by 

Some notations are required. We denote < < ., . > > the duality product in 
JRd+Z. For any operator B of .C(IRd+2, JRd+2), we define its adjoint operator 
to be BT such that : 

<<BTU, V >>=<< U,B V >> , 'VUE 1Rd+2 , 'V V E JRd+2. 

Introducing an adjoint state llr solution of the following system : 

N 

L A~ w j = aO:V. , 1 ::; i ::; N 
j=l • 

(19) 

we get the following for the derivative of j(z) : 
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for 1 ~ m ~ M 

dj 

dzm 

aJ N aJ 8Wk 
= ~+L:<<aw '-ll->> 

VZm k=l k VZm 

{jJ N N T aWk 
= 8 + 2::: << L:Aik'lti, -8- >> 

Zm k=l i=l Zm 

aJ N N aWk 
= az + L << 'ltj ' LAik_{j_ >> 

m i=l k=l Zm 

aJ N 8Ei 
= ---2::: << 'ltj , - >> 

OZm i=l OZm 

3.3.2 Solution strategy 

The computation of the gradient of the cost function requires the solution of the 
non-linear state equation (18) and the linear adjoint equation (19). Different 
strategies have been adopted which are taylored to the requirements of each 
problem. 

• solution of the state equation. 

Adopting the notations : 

A = [Aiih$i,i$N with Aii = ~WEi., D = diag(Si)l<i<N 
v 1 --

we recall the results of section 3.1.4 and rewrite equation (18) as : 

[~t + A] oW = - E(W) (20) 

which is a linearized implicit Newton-like iterative procedure to solve the non­
linear state equation(18). Since we are looking for steady-state solutions, time 
accuracy is not mandatory and, as noted in section 3.1.4, using an approximate 
operator A and block-Jacobi relaxation for the linear system, is sufficient to 
converge the Newton procedure. 

For A, we have used the following approximations : 

_ aEYLl 
Aij ~ Aij = oW· 

1 
(21) 

where EY Ll is the steady-state residual with a first-order upwind numerical 
flux from Van-Leer (see section 3.1.2). The block matrices {Aiih$i,i$N are 
stored in a block-sparse matrix fashion to be used hereafter. 
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• solution of the adjoint equation. 

We recall the adjoint equation (19) with the above notations : 

8J 
aw 

An accurate evaluation of the gradient :~ requires the "exact" Jacobian 

(22) 

A BEi h' h ~' d d · · · 1 · 1 ij = BW . , W lC , 10r a secon -or er approxtmatlOn lnVO vmg a arger nu-
J 

merical stencil, can be time-consuming to construct and will need a large stor-
age space. 

A first simple approach is to use, as for the state equation, the approximate 
operator AT for the adjoint equation. This leads to an approximate gradient 

dj h' h. £ . 1 dz w 1c ts atr y easy to construct. 

For more complex cases where accuracy is a must, we will use AT as a 
preconditionner in an iterative procedure to compute 'It : 

{ 
_AT 6,1Jt 

for k = 0 until convergence 
'ltk+l 

Such a procedure is interesting because : 

(23) 

- A more diagonally dominant matrix may be used to drive the solution of the 
linear systems (as opposed to the sometimes ill-conditionned high-order 
Jacobian). 

- The higher-order Jacobian resides on the right-hand side and may be dealt 
with in an explicit manner. 

- We don't really need the high-order approximation of the Jacobian, but only 
its product with a vector, which has a really lower cost. 

It can be noticed that building all of the required Jacobian and derivatives 
by hand, should be very complex. So, to get the second-orders corrective 
terms, we used automatic differentiation. The software ODYSSEE [11] has 
been utilized to obtain complex derivatives such as the numerical flux derived 
in (12). 

3.3.3 Automatic differentiation by ODYSSEE 

From the previous results, we see that to have the gradient of the cost function, 
we need to get the following derivatives : 
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• { :: } : this computation involves the CAD software subrou-
"'m l<m<M 

tines defining the surface mesh from parameters z. In our present case, 
cubic splines are used and the application of an automatic differentiator 
like ODYSSEE is straightforward. 

• { 
8
8

Ei } . : in addition to the CAD software subroutines 
Zm 19~N , l~m~M 

this computation involves the mesh deformation step to move the inte-
rior mesh points. Since this is done via a linear elasticity problem, the 
resulting Jacobian is easily computed. However, since the amount of 

storage for { ;:~ } is of the order of N x M, which can be very large, 

we have to set up a procedure to compute the matrix vector product 

{"£ << \I!i , ~:~ >>} which requires considerably less stor-
J=l l<m<M 

age. - -

• { {)J } application of ODYSSEE gives us a straightforward 
{)Wi l<i<N 

computation for this term. 

• {A 'f. = ( {)Ei ) T} this is the most time-consuming part of 
3' {)Wi l<i "<N 

- ,J_ 
the gradient computations. It involves only the steady-state residual 
vector Ei which can be evaluated as a first-order or a second-order scheme. 

For this last term, application of the automatic differentiator ODYSSEE in 
its adjoint mode has been done in a careful step-by-step manner and a thorough 
validation of the results has been done. Once again, in order to save storage 
space, only matrix-vector product subroutines are set-up, requiring that the 
adjoint equation be solved with an iterative algorithm. Verification of these 
subroutines is done in the following way : 

Let F be a real valued function : 

F: JRP -+ IRq 

x -+ F(x) 

and x0 be a vector in JRP. We assume that we have access to the following 

operation dF (x0).ox, for a given ox in JRP. 
dx 

Using Taylor expansion, a centered finite-difference approximation for the 
derivative will give the following error estimation : 
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F(xo + cox) ~ F(xo - cox) - ~~ (xo)ox ~ O(e2)11 ox 113 ' Ve > 0 (24) 

We have done these verifications for a two-dimensional flow around a 
NACA0012 profile at free-stream Mach number of 0.7 and an angle of at­
tack of 1.49 degree .The mesh used has 1814 vertices and 3425 triangles. Us­
ing the second-order centered scheme described in section 3.1.3, we have con­
verged to the steady-state {x?h<i<N and compute the matrix-vector product 
{ Ai;(x0)} 1<i "<N {ox; }1< "<N for a random vector { OXj }1< '<N of unit norm. 

- ,J_ -'- _,_ 
Figure (7)shows the error estimation of formula (24) for different values of e. 
We can see the variation in e2 up to a certain value of e, under which the 
round-off error becomes overwhelming. 

3.4 An optimization algorithm 

Finally, we can sum up our results and propose the following optimization 
algorithm: 

1 Mesh construction around the initial profile with initial parameters { zmH~m~M 

2 Solution of the state equation (second-order approximation) by a pseudo-
unsteady implicit method using the first-order Jacobian 

3 Computation of derivatives { aO:V. } 
1 1~j~N 

4 Solution of the adjoint equation, either with 

4a the first-order Jacobian transposed of step 2 

or 

4b the second-order Jacobian, using the first-order Jacobian as precon­
ditionner 

5 Computation of the gradient { adj } 
Zm 1~m~M 

6 Conjugate gradient minimization of j with gradient { adj } 
Zm 1~m~M 

7 Upgrade of optimization variables {zi}f~m~M 

S Construction of a new mesh 

Sa surface mesh perturbation by {zi}f~m~M 

Sa volume mesh deformation by solution of an elasticity equation 

Go back to step 2 
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4 Numerical experiments 

4.1 Design with a small number of parameters 

4.1.1 Description of the physical problem 

We study a very simple modelization, of the pseudo-balancing problem of a 
civil airplane (--+ naturally stable) in landing approach ( cf. Fig.l). 

Figure 1: Civil aircraft 

In the part of the flight domain, the speed must be reduced. To maintain 
a sufficient lift, the lift coefficient(C£) must be increased by augmenting the 
angle of attack (a:). However, the angle of attack must lie of course in the flight 
domain ( O:min ~ o: ~ O:max) · 

The deploying of the highlift devices (slat and flap) will assume the increase 
of CL, and if the couple (CL,v) is reachable in the admissible flight domain, 
the desired C L allowing to balance the plane. 

The presence of a stabilizer allows to obtain a null moment ( C M = 0) 
around the centro'id of the plane. In our simple model (wing+ forebody +flap), 
the CL can be estimated, supposing the distance between the aerodynamic 
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center of the wing and the one of the stabilizer equal to n times the chord (of 
the wing). We have: 

b . d b . . h h . 1 "l"b . (Cairplane 0) o tame y wntmg t at we are at t e mrp ane eqm 1 num M = . 
For the example presented below, n is taken equal to 5 (a typical value for civil 
business jets). 

4.1.2 Equilibrium with forebody, flap and incidence 

The methodology described herebefore is used to compute the configuration 
corresponding to the prescribed value of CL. Three parameters (a, <)b and <5v) 

are taken as design variables. 

The objective is to obtain a cfrplane equal to 4.481 . 

One can see on Fig.2 the evolution of cfrplane, on Fig.3 the evolution of 
the incidence angle a, which stabilizes itself at -0.36°, starting from 0°, on 
Fig.4 the evolution of the fore body's incline angle <)b, on Fig.5 the evolution of 
the flap's incline angle <)v, both of them standing around a convergence value of 
28.95°(starting from29.00°) and -19.04°(starting from- 19.00°) respectively. 
On Fig.6, one can see the evolution of the cost function's decimal logarithm. 
The desired solution is obtained in a few numbers of step. Concerning this 
study, more details could be found in (16]. 

4.2 Multipoint optimization 

4.2.1 Testing the adjoint on a centered-scheme 

The above algorithm has been applied to airfoil design problems using the 
conjugate gradient algorithm as optimizer. State equations are solved by the 
centered scheme described in the section 3.1.3. 

The first computation deals with a reconstruction problem of a NACA63215 
airfoil starting from a NACA0012 profile and aims to evaluate on this academic 
case the ability of the method. We have 8 control points on the profile, 550 
nodes in the mesh. It is a subsonic test case (Moo = 0.40). We compare the 
results of using an adjoint operator of the first-order and of the second-order. 

Despite the approximate discrete sensitivity approach chosen here, the 
NACA63215 airfoil is recovered in about 22 optimization steps if you choose 
a second-order adjoint. We observe that in the first-order adjoint case, we are 
blocked at the 15th iteration, and couldn't converge better as for the profile 
(Fig.8), as for the pressure distribution (Fig.9). 
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4.2.2 Test case TE4 

A multipoint problem has been treated by the above method. The objective 
of the problem is to find a profile combining desired properties in subsonic abd 
transonic regimes. Two profiles presented in Fig.lO corresponding respectively 
to a highlift airfoil designed for low speed i'egime and a low drag one for tran­
sonic regime have been selected. Pressure distributions obtained for each airfoil 
(at M00 = 0.2, a = 9° and Moo = 0.77, a = 1° respectively), have been 
taken as target values to form a cost function blending the two individual in­
verse cost functions. The obtained profile is compared to the initial one (taken 
as a NACA4412 airfoil) on Fig.ll. Pressure distributions for each regime on 
initial and final shapes are compared with the target one on Fig.l2 and Fig.l3 
respectively. 

The number of control points defining the optimization parameters is 35. 
The behaviour of the cost function with respect to the number of flow evaluation 
is presented and shows the difficult convergence of the method. An "optimized" 
profile is nevertheless obtained after 30 optimization steps. This profile is 
presented and some oscillations visible near the trailing edge indicates that the 
control is not sufficiently regular. 

5 Conclusion 

Control theory applied to the discrete system using an approximate discrete 
sensitivity analysis provides an effective approach to treat shape optimization 
problems using even complex unstructured mesh simulation tools. 

In this paper, this approach has been illustrated in a pre-industrial environ­
ment, resulting in a general two-dimensional aerodynamic shape optimization 
tool which combines : 

• a geometric surface representation by cubic splines; 

• an unstructured 2D mesh generatorfdeformer; 

• a CFD solver based on Euler equations. 

This tool is an useful test-bed for different numerical strategies to be adapted 
in more complex 3D cases. Future work will deal with multipoint optimization 
and constrained optimization based on interior point methods. 

The au.thors thanks A. Dervieux and his team from INRlA Sophia Antipolis 
and E. Laporte for his help in implementing the methods. 
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Figure 6: Evolution of the cost function's decimal logarithm 
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