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ABSTRACT. This paper introduces and describes a second order interior point method well 
adapted to. constrained shape optimal design in engineering. The· theoritical background is 
presented and detailed implementation procedures are given in the case of nonlinear 
inequality constraints. The algorithm is then applied to two significative shape optimum 
problems in Computational Fluid dynamics. 

RESUME. Cet article propose et decrit un algorithme de point interieur pour ['optimisation de 
formes en ingenierie. Il rappelle les principes de base de la methode et decrit en details les 
procedures de calcul necessaires a son utilisation sur ordinateur, dans le cas de probtemes 
avec contraintes de type inegalites non lineaires. L'algorithme est enfin illustre par deux 
exemples d'application a des problemes d'optimisation de formes en Mecanique des Fluides. 
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1. Introduction 

This paper is concerned with the local numerical minimization of a function sub­
mitted to a set of nonlinear smooth equality and inequality constraints. Enginee­
ring design is a natural application for this problem, since designers want to find the 
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best design that minimizes a given cost and satisfies all the requirements of fea­
sibility. Calling [x1, x2 , ... , xn] the design variables, f(x) the objective function, 
g; (x); i = 1, 2, .. , m the inequality constraints and h; (x); i = 1, 2, .. , p the equal­
ity constraints, the optimization problem can be written in all generality 

minimize f ( x) } 
subjectto g(x) ::; 0 

and h(x) = 0, 

where g E Rm and h E RP are functions in Rn. 

(1) 

In optimal design, x E Rn usually denote certain space coordinates of a set of con­
trol points from which the shape of the object under optimisation is deduced by spline 
interpolation. Moreover, in such problems, the cost function is usually a fuction of two 
variables f(x) = j(x, u(x) ), the state variable u(x) E U being implicitely defined as 
a function of x by solving a state equation E(x, u(x)) = 0 E U which characterises 
the state of the system under study as a function of its shape. Such optimum design 
problems have two main characteristics that make them difficult to solve. First, the 
cost function is very difficult to compute because each evaluation requires the solu­
tion of a the state equation. Second, the resulting optimisation problem is often poorly 
conditioned and higly constrained. 

Feasible direction algorithms are an important class of methods for solving such 
constrained optimization problems. At each iteration, the search direction is a feasible 
direction of the inequality constraints and, at the same time, a descent direction of the 
objective or an other appropriate function. A constrained line search is then performed 
to obtain a satisfactory reduction of the function, without loosing the feasibility. 

The fact of giving feasible points makes feasible direction algorithms very efficient 
in engineering design, where functions evaluation is in general very expensive. Since 
any intermediate design can be employed, the iterations can be stopped when the cost 
reduction per iteration becoines small. Moreover, there are also several examples that 
deal with an objective function, or constraints, that are not defined at infeasible points. 
This is very frequent with size or shape constraints in structural optimization: struc­
tures or flows become unstable or impossible to compute for certain shapes. In another 
direction, feasible points are very useful for real time problems. When applying fea­
sible direction algorithms to real time problems, as feasibility is maintained and cost 
reduced, the controls can be activated at each iteration. Last, second order feasible 
direction algorithms have the additional advantage of being rather insensitive to the 
condition number of the problem, which is a big advantage in engineering design. 

In this paper we discuss the numerical implementation of a quasi -Newton feasible 
direction algorithms that uses fixed point iterations to solve the nonlinear equalities in­
cluded in the Karush-Kuhn-Tucker optimality conditions. With the object of ensuring 
convergence to admissible points, the system is solved in such a way as to have the in­
equalities in Karush-Kuhn-Tucker conditions satisfied at each iteration. Based on the 
present general technique, first order, quasi Newton or Newton algorithms can also be 
obtained. In particular, the algorithms described in [6, 8] and the quasi Newton one 
presented in [7] can be recovered. 
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each iteration, followed by an inexact line search. In practical applications, advantage 
of the structure of the problem and particularities of the functions in it, can be taken 
to improve calculus efficienty. This is the case of the Newton algorithm for linear 
and quadratic programming presented in [17], the Newton algorithm for limit analysis 
of solids, [19] and the Newton algorithm for stress analysis of linear elastic solids in 
contact, [1, 18]. 

Several problems in Engineering Optimization were solved using the present method. 
We can mention applications in structural optimization, [10, 16], fluid mechanics, 
[2, 4, 5] and multidisciplinary optimization with aerodynamics and electromagnetism, 
[2, 3]. Two applications are presented at the end of the paper in order to illustrate the 
performances of the proposed algorithms in aerodynamic optimum design. 

2. The feasible direction interior point method 

To describe the basic ideas of these technique, we consider the inequality con­
strained optimization problem 

minimize f ( x) } 
subject to g(x) :S 0. 

(2) 

We denote 'Vg(x) E nnxm the matrix of derivatives of g and call .A E Rm the 
vector of dual variables, L(x, .A) = f(x) + .Atg(x) the Lagrangian and H(x, .A) = 
\72 f(x) + 2:~1 .A; \72g;(x) its Hessian. Finally, G(x) denotes a diagonal matrix such 
that G;;(x) = g;(x). 

The corresponding Karush Kuhn Tucker first order optimality conditions can be 
expressed as 

'Vf(x) + 'Vg(x).A = 0 

G(x).A = 0 

..\20 

g(x) :S 0. 

(3) 

(4) 

(5) 

(6) 

Modem interior point techniques try to solve the quadratic optimality conditions 
(3)-(4) by a Newton's algorithm, which is modified in order to verify the admissibility 
inequalities (5)-(6) at each step. In this framework, a typical Newton's iteration to 
solve the nonlinear system of equations (3)-( 4) in ( x, .A) is given by 

where (xk, .Ak) is the starting point of the iteration and (x~+l, .x~+l) is the new esti­
mate, B = H ( xk, .A k) and A k a diagonal matrix with A7; = .A7. 
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Figure 1: Search direction 

In this paper, we can take B equal to a quasi-Newton estimate of H ( x, ..\) or to the 
identity matrix. To ensure global convergence, the updating rule for B must generate 
positive definite matrices, (see [11]). 

Iterations (7) are modified in a way to get, for a given interior (admissible) pair 
( xk, ..\ k i, a new interior estimate with a better objective. With this purpose, a direction 
d~ = x0 +

1 
- xk is first defined in the primal space by the Newton update (7): 

Bkd~ + V'g(xk)..\~+1 = -V'f(xk) 

AkY'l(xk)d~ + G(xk)..\~+ 1 = 0, 

(8) 

(9) 

It can be proved that d~ is a descent direction of f. However, d~ is not useful as 
a search direction since it is not necessarily feasible. This is due to the fact that if 
any constraint goes to zero, (9) forces d~ to tend to a direction tangent to the feasible 
set, (see [11], and thus the search line xk + td~ will not in general be included in this 
feasible set. 

To obtain a feasible direction, we define the new linear system in dk and Xk+1 

Bkdk + V'g(xk),Xk+l = -V'f(xk) 

AkV'l(xk)dk +G(xk),Xk+1 = -l.Ak, 

(10) 

(11) 

obtained by adding a negative vector to the right side of (9), where pk > 0, dk is the 
new direction and ,Xk+1 is the new estimate of..\. We have now that dk is a feasible 
direction, since V' g~ (xk)dk = -l < 0 for the active constraints. 

The inclusion of a negative number in the right hand side of (9) produces a deflec­
tion of d~, proportional to l, towards the interior of the feasible region. To ensure 
that d is a descent direction also, we establish an upper bound on pk by imposing 
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(dkt'vf(xk) ~ a(d~t'vf(xk);a E (0, 1), (12) 

which implies (dk)t\7 f(xk) < 0. Thus, dk is a feasible descent direction. 
To obtain the upper bound on l. we solve the linear system in ( d1, .x~+t) 

Since 

we have that, if 

then (12) holds. 

Bd~ + 'Vg(xk)_x~+l = 0 

Ak'Vl(xk)d~ + G(xk)_x~+l = -.Ak. 

(13) 

(14) 

(15) 

A new primal point is finally obtained by an inexact line search along dk, look­
ing for a new interior point ( xk + tk dk) with a satisfactory decrease of the function. 
Different rules can be employed to define new positive dual variables .Ak+1• 

In general, the rate of descent off along the new direction dk will be smaller than 
along d~. This is a price that we pay for obtaining a feasible descent direction. To keep 
this price small in the neighborhood of the solution (and thus to maintain superlinear 
convergence), we will also bound pk by an adequate function of the residual. 

In Figure 1, the search direction of an optimization problem with two design vari­
ables and one constraint is illustrated. At xk on the boundary, the descent direction 
d0 is tangent to the constraint. Even if in this exemple we can prove that dt is or­
thogonal to d0 , in general we can only say that d1 is in the subspace orthogonal to the 
active constraints at xk. Since d1 points to the interior of the feasible domain, it im­
proves feasibility. Observe finally that for linear constraints, the tangent direction do 
is admissible, and that therefore no deflexion along d1 is needed for such constraints. 

3. Line Search Procedures for Interior Point Algorithms 

Interior Point algorithms need an efficient constrained line search. In the present 
method, once a search direction is obtained, the first idea would consist in finding 
t that minimizes f(xk + tdk) subject to g(xk + tdk) ~ 0. Instead of making such an 
exact minimization on t, it is in fact much more efficient to employ inexact line search 
techniques. For that, we have to state a criterium to know wether a proposed step 
length is good or not and if not to define an iterative algorithm to obtain a good step 
length. We recall below the inexact line search criteria proposed in [12], extending 
to interior point algorithms the Armijo's and Wolfe's criteria originally developed for 
unconstrained optimization. 
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3.1. Armijo's Constrained Line Search Scheme 

Define the step length t as the first number of the sequence { 1, v, v2, v 3 , ... } satisfying 

f(x + td) ~ f(x) + tT]1Y't(x)d 

and 

g(x + td) ~ 0, 

where both TJ1 and v belong to the open interval ( 0, 1). 

3.2. Wolfe's Constrained Line Search Criterion 

(16) 

(17) 

0 

Wolfe's criterion adds to Annijo's constraints (16) and (17) the requirement that either 
the gradient direction has a significative change between two iterates or one constraint 
has a significative growth. It writes : 

accept a step length t if (16) and (17) are true and at least one of the followings 
m + 1 conditions hold: 

and 
g;(x + td) 2:: ')'g;(x); i = 1, 2, ... , m 

where now TJ1 E (0, 1/2), T)2 E (TJ1, 1) and 'Y E (0, 1). 

(18) 

(19) 

0 

Conditions (16) and (17) define upper bounds on the step length in both criteria 
and, in Wolfe's criterion, a lower bound is given by one of the conditions (18) and 
(19). The iterative procedure to find a step length satisfying Wolfe's criterion will be 
presented later. 

4. The Algorithms 

Based on the ideas presented above, we describe in this section the main algorithm 
for inequality constrained optimisation, including the quasi - Newton updating rule 
and the line search algorithm. 

4.1. The Quasi - Newton Interior Point Algorithm 

Parameters. a E ( 0, 1) and positive <p, f., j3 and ,\1 . 

Data. Initialize x such that g(x) < 0, ,\ > 0 and B E Rnxn symmetric and positive 
definite. 
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Step 1. Computation of the search direction d. 

i) Solve the linear system for (do, .Ao) 

If do = 0, stop. 

Bdo + \i'g(x).Ao = -V'f(x), 

A Y'l(x)do + G(x).Ao = 0. 

ii) Solve the linear system for ( d 1 , .A 1) 

Bdt + V'g(x).At = 0, 

A Y'l(x)dt + G(x).At =-.A. 

iii) If di Y' f(x) > 0, set 

p = inf[<p II do 11 2
; (a -I)d~Y'f(x)fdiV'f(x)]. 

Otherwise, set 
P = 'P II do 11

2 
• 

iv) Compute the search direction 

d=do+pdl. 

Step 2. Line search. 

Find a step length t satisfying a given constrained line search criterion on the 
objective function f and such that g ( x + td) < 0. 

Step 3. Updates. 

i) Define a new x: 
X= X +td 

ii) Define a new .A: 
Set, fori= 1, m, 

.A; := sup [Ao;; f II do 11 2
]. 

If g;(x) 2: -/3 and .A; <,AI, set .A; =AI. 

iii) Update B symmetric and positive definite. 

iv) Go back to Step 1. 

We assume that the updating rule of B satisfies: 
Assumption There are positive u1 and u2 such that 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

0 

0 
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In Step 1 p is bounded as in (15) and, in addition, it is not allowed to grow faster 
than d5. The new components of..\. are a second order perturbation of the components 
of .Ao, given by Newton's iteration (8). If {3 and ..\.1 are taken sufficiently small, then 
after a finite number of iterations, ..\.; becomes equal to ..\.0; for all active constraints. 
Observe also that..\.; can be eliminated from systems (20)-(21) or (22)-(23), yielding 
an equation with unknown d and matrix 

"'"" ..\.; t 2 "'"" ( 1 2 1 t) M = B + L.....J ~ \1 9; \1 9; ~ D f + L.....J ..\.;9; ---: D 9; - 2\1 9i \1 9; . 
i 9• i 9· 9; 

The method can therefore be viewed locally as a penalty method associated to the 
penalty (barrier) function ln( -9;), and to a dynamically updated penalty coefficient 
.x~-ll- 1 • The second order corrections on..\.; control in fact this penalty coefficient 
from below. 

The theoretical analysis in [11] includes first a proof that the solutions of the linear 
systems (20)-(21) and (22)-(23) are unique, provided that the vectors \lh;(x), for 
i = 1, 2, ... , p, and \1 9i ( x) for i E I( x) are linearly independent. Then, it is shown 
that under the previous assumption any sequence { xk} generated by the algorithm 
converges to a Karush-Kuhn-Tucker point of the problem, whatever updating strategy 
is used for..\. and B. We also have that (xk, ..\.~)converges to a Karush-Kuhn-Tucker 
pair ( x*, ..\. *) and, then global convergence in the dual space is also obtained. 

In [11] it was also proved that the convergence of the present quasi - Newton 
algorithm is two-step superlinear, provided that a unit step length is obtained after a 
finite number of iterations. 

In constrained optimization, B is a quasi - Newton approximation of the Hessian 
of the Lagrangian H(x, ..\.).We can use the exact Hessian (exact Newton) or we could 
obtain B by using the same updating rules as in unconstrained optimization, but taking 
\1 .,L(x, ..\.)instead of \1 f(x). 

However, since H(x, ..\.)is not necessarily positive definite at a K-K-T point, it is 
not always possible to get B positive definite, as required by the present method. To 
overcome this difficulty, we employ BFGS updating rule as modified by Powell, [15]: 

4.2. The Quasi- Newton Matrix Updating 

Take 

and 

If 

then compute 
o.sot Bko 

¢ = ot Bk o - ot-y 
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and take 

Set 

0 

4.3. The Line Search Algorithm 

A step length satisfying Wolfe's criterion for interior point algorithms can be ob­
tained iteratively in a similar way as in [13]. Given an initial t, if it is too short, 
extrapolations are done until a good or a too long step is obtained. If a too long step 
was already obtained, interpolations based on the longest short step and the shortest 
long step are done, until the criterion is satisfied. Since the function and the direc­
tional derivative are evaluated for each new t, cubic interpolations of f can be done. 
As the criterion of acceptance is not severe, the process generally requires very few 
iterations. Altogether, this leads to the following algorithm : 
Parameters. '171 E (0, 0.5), '172 E (TJt, 1) and 1 E {0, 1). 

Data. Define an intial estimate ofthe step length, t > 0. Set the upper estimate tR and 
the lower estimate t L to zero. 

Step 1. Test for the upper bound on t. 

If, 
f(x +td):::; f(x) +tTJt"Vl(x)d 

and 
g(x+td):::; 0, 

Go to Step 2. Else, the upper bound is too large and therefore go to Step 4. 

Step 2. Test for the lower bound on t. 
If 

or any 
g;(x + td);::: /9;(x) fori= 1, 2, ... , m, 

then t verifies Wolfe's Criterium. STOP. 

Else, go to Step 3. 

Step 3. Get a longer t. 

Set tL = t 

i) If tR = 0, find a newt by extrapolation based on (0, t). 

ii) If tR > 0, find a newt by interpolation in (t, tR). 
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Step 4. Get a shorter t. 

Set tR = t. 
Find a new t by interpolation in ( t L, t) Return to Step 1. 0 

5. Optimization of Rib lets 

5.1. Formulation of the Problem 

The goal of the present application is the drag reduction of riblets. The problem 
to solve is to minimise the drag of the riblet with respect to its shape w, while keep­
ing a constant flow area. More precisely, we want to minimize the drag of a steady 
laminar incompressible flow inside a channel delimited by two vertical planes and 
two horizontal walls with riblets (the floor and the ceiling (Figure (2). The riblets are 
usually small and shaped like a saw tooth. 

In theory, the flow is governed by the three-dimensional Navier-Stokes equations. 
Shape optimisation with such a state equation is out of reach. Therefore, we begin 
by neglecting all diffusion effects along the axial direction z = x3 . The resulting 
Navier-Stokes equations reduce then to the system 

V'v + u3,3 

U3V,3 + v.V'v -vl:l..v + Y'pt 

0 

f in f2 = W X (0, Zmax) 

u3u3,3 + v.V'u3- vl:l..u3 + Pt,3 fs. 

Above, (v,u3) = (u1,u2,u3) denote the three dimensional velocity field, and the 
differential operators V', 1::!.. denote the gradient and Laplacian with respect to the two­
dimensional variables (x1 , x2). Differentiation of a given function f with respect to 
the longitudinal direction x 3 = z is denoted by !,3 . In addition, we also suppose 
that the pressure gradient along the x3 direction is quasi independent of the two­
dimensional variables (x1 , x2). This amounts to assume that the total pressure field is 
of the form 

with 
'( ) op A x3 >> -

8 
. 

X3 

The equations reduce then to the Parabolised Navier-Stokes equations (PNS) 

V'v + u3,3 

u3v,3 + v.V'v- vl:l..v + V'p 

0 

f in f2 = W X (0, Zmax) (28) 

U3U3,3 + v.V'u3- vl:l..u3 + A,3(x3) fs. 

In view of the PNS equations (28), it seems perfectly natural to treat the axial 
variable z = x3 as the standard time variable in a two-dimensional time evolution 
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Figure 2: General geometry 
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problem, to treat all derivatives in z = x 3 by a first order backward Euler discretisation 
scheme, and to treat all convection terms in v by the method of characteristics. 

For this purpose, for any given point x E w, for any given cross section z, we first 
compute the characteristic curve xz arriving at point x in section z by solving the first 
order differential equation 

axz (x; r) - v(xz' r) 
or - u3 (xz, T) ' 

xz(x,O) = x. 

(29) 

(30) 

We then approximate all convection terms on the cross section n + 1 by the first 
order upwind formula 

( f + "ilf)( n+l)- n (r+l- roxn(x, -~z)) 
u3 ,3 v x, z - u3 ~z · (31) 

With this choice, the PNS equations written on a given section n + 1 take the form 

(
un+l unoxn( ~z)) un 3 - 3 - _ 1/~Un+l + _xn+l _ p+l (32) 

3 ~z 3 - 3 ' 

1 u~+l = 1 ug, (33) 

(34) 

n+l n n( A ) 
n (V - V OX -llZ ) A n+l 't"7 n+l _ Jn+l u3 - llllV + v p - . 

~z 
(35) 

Problem (32)-(35) is now a sequence of perturbed two-dimensional Stokes type prob­
lems which can be solved by standard finite element methods. 

The associated optimal design problem to solve is then to minimize the drag 

MinwesJ(w) 

with function cost 

J(w) 1::u CjdZ 

~ t"'"" 1i"Vvl2 + i"Vu3i 2dwdz 
2 Jz=O w 

N-1 

~ v~z L {1 (i"Vvnl2 + i"Vu~i2})dw 
n=l w 

+ v~z 1 (i"VvNI2 + i"Vu~i2)dw + v~z 1 (i"Vvol2 + i"Vu312)dw. 
4 w 4 w 

Here v 0 et u3 are the invariant initial data on the inflow cross section and the state 
variables v = ( u3 , v, Pt) are solution of the above parabolic system (32)-(35) that we 
we write under the variational form 

a(v, <P) = 0, V<P. 
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Finally, S is the set of admissible controls defining the two-dimensional shape w of 
the riblet. 

We want to solve the above constrained optimisation problem by the quasi-Newton 
algorithm described in the preceeding section. This requires an analytic calculation of 
the gradient of J. For this purpose, we first transform the function to minimize and 
obtain the resulting gradient by introducing and computing an adjoint state. 

5.2. Reduction to a transpiration problem 

At first order, changing the shape of the flow domain while conserving its volume 
can be identified to a change of Dirichlet boundary conditions. To be more specific, 
let v be the solution of the flow equation 

a(v,w) = o on ~i, 

set on the initial domain ni with boundary condition 

v = o on ri. 
Let any point i of the initial boundary r~ move of a given small displacement di. Let 
v + dv be the solution of our initial equation on the same initial domain, but with the 
new boundary condition 

v+dv= -\lv.di on ri. 
At first order, we have on the new boundary 

(v + dV)(i + di) (v + dV)(i) + v(v + dV).di 
-vv.di + vv.di + O(ldil 2

) 

0. 

Hence v + dv is solution of the original flow problem set on the new domain n = 
n; + dn with noslip boundary condition 

v + dv = o on ri + dr 1· 

In other words, updating the shape of the domain n amounts to update the boundary 
conditions of the original problem by the quantity -\1 v.di. 

In variational form, this means that we can locally replace the state equation for any 
shape configuration close to the initial shape ni by the new equation 

a(v + dv- Tr- 1(\lv.di), w;) = 0, 

'Vwi E v;, v + dv E vi, 

where the variational form a and the functional space Vi are associated to the fixed 
domain n; and are considered as independent of the shape variables. 
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5.3. Calculation of the gradient 

Introducing the Lagrange multiplier (the adjoint state) of this new state equation, 
we can reformulate our shape optimum problem ( P m) locally around the present shape 
n as the problem of finding the critical points of the lagrangian : 

.C(dx, dv, w) = J(x + dx, v + dv)- a(v + dv- Tr- 1 (\lv.dx)dv, w). 

The differentiation with respect to vat the present configuration dx = 0 yields the 
adjoint state equation ~~ = 0, that is 

a~(dv, w) = ~~(x, V).dv, Vdv. 

Then, if v and w are solutions of the state equation and adjoint state equations respec­
tively, the total gradient of the cost function with respect to the control variable r is 
classically given by the simple formula 

dJ(~ ~(~)) d~ o.c(~ ;;') d~ dx x, v x . x ox x, v,. x 

5.4. One-dimensional Validation 

oJ(~ ;nd~ 
OX x,v,. X 

-a~( -Tr- 1(\lv.dx), w) 

!:. f {
1 

I'V'vl 2(x + sdx) d~~s 
2 Jr, Jo x.n 

-a~ ( -Tr- 1 (\lv.dx), w). 

The depth ~ = 2o of a tooth is the design parameter, which is to be optimized in 
the process. The Reynolds number is based on the horizontal velocity in the centre of 
the channel w 0 , at the inflow cross section. The Reynolds number and riblet spacing 
are given by Re = w0 Dfv = 4200 and d/ D = 0.1135respectively. In order to keep 
a constant cross section during the design, the height 2D of the riblet is the average 
height of the channel (measured at half slope) and not the maximum height. 

We have observed in our direct simulations that all major effects on friction were 
governed by the first part of the riblet. Therefore, in our optimisation process, and in 
order to reduce simulation costs, we have reduced the computational domain to the 
strip 

0 ::; z ::; lOD 

and run all tests with ~z = 0 .1. 
The test optimisation problem tries to find the maximum value of o for which the 

drag is less than 1.1 times the drag of a flat plate : 

maxo, with J(o) = 1 C1dz :S 1.1 * J(O). 
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r3 
r--------------,- - - - - - - - - - - -

(l) 
D 

d 

d/0=0.1135 
Figure 3: Cross section for a half rib let 
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iter 8 val.max constraint 
1.0 2.0335981e-02 -1.050727 4e-04 
2.0 7 .4844836e-02 -4.2366251e-06 
3.0 7.5881480e-02 -1.2365828e-06 
4.0 7 .6243493e-02 -1.8012456e-07 
5.0 7.6303915e-02 -3.1610285e-09 
6.0 7 .6304996e-02 -5.7011147e-10 

Table 1: Convergence of the Herskovits interior point algorithm for the inverse prob­
lem (optimisation of 8). 

Using our interior point algorithm, which amounts here to use a succession of line 
searches, we obtain a solution 8 = 7.6305 10-2 in six iterations. For this value, the 
drag constraint is saturated within a 10-10 accuracy (Table 2). 

6. Airfoil Optimization for Unsteady Flows 

6.1. Formulation of the Problem 

The problem to solve is to minimize the drag of the airfoil with respect to its 
shape 1, while keeping a minimum area for the airfoil. More precisely, our goal is to 
minimize the drag of an airfoil 1 in a viscous transonic flow in an unbounded domain. 
(cf. fig. 4) 

Figure 4: Airfoil in an unbounded domain (Uo = velocity in the free stream). 

When the angle of attack a is 0°, the drag is mostly due to pressure efforts and 
can therefore be approximated by 

where Pry (t) is the pressure distribution on the airfoil 1 at the instant t. The pressure 
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depends on the state variables W-y ( t, i) which statisfy the state equation 

E ('y, W-y) = 0, (36) 

where E can be the Euler or the Navier-Stokes equations. 
In our case, the initial state W0 and the integration (pseudo)-time T are given 

data of the problem and we suppose that a converge steady state is reached at timeT. 
Then for a given airfoil "Y· we will solve the state equation (36) on [0, T], then we will 
compute the following cost function 

which can be re-written as 
j ('y) = J ('y, W-y). 

We define a set So of admissible airfoils with the help of a "minimum airfoil" and 
a "maximum airfoil" (cf. fig. 5): if, for an airfoil "Y E So, we call w-y the open set of 
lR 2 which is enclosed by the curve "Y· then we must have 

Wmin C W-y C Wmax 

0.15 .----.-----.------,...------,------, 
admissible airfoil -

-0.15 L_ __ _.__ __ __._ __ __._ __ ___. __ _ 

0 0.2 0.4 0.6 0.8 

Figure 5: Definition of the set of admissible airfoils. 

In the constraints, we also want the area of the airfoil to be always greater than a 
given area. This constraint can be expressed under the inequality 

g ('y) ~ 0, 

where 

g ('y) = Cte- coef x 1 dx. 
w"'l 
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Usually, the constant will be the initial area g ('Yo) where 'Yo is the initial airfoil at the 
beginning of the optimization process, and the coefficient will be 1.01 . 

The optimal design constrained problem to solve is then: 

min j (!), 
"fESo 

under the constraint 
g (!) ::; 0. 

6.2. Discretization and Computation of the Gradient 

In the present study, the state equations governing the external flow are the Navier­
Stokes equations which can be written under the following form: 

where F and N represent respectively the advective and viscous operators. To com­
pute the state W"~, we use the flow solver NSC2KE [14], using a kinetic scheme of 
2nd order, Van Albada delimitors and local time stepping. Using an explicit time 
integration, the discretized formulation of this equation writes 

w;+l - wf = :F (x, wf) , 

where X is the vector of the mesh nodal coordinates and Wf the discretized state 
variables at the time-step k. Then the discrete cost function ih can be written 

where kT is the last time-step and h the discretization of J. 
As it would not be reasonnable to compute the matrix ~'i', we compute the gradi­

ent with the following algorithm using a discrete adjoint variable ..\ : 

The routines which compute the products(.,.) are obtained by the automatic dif­
ferentiator Odyssee [6]. As explained in a companion paper in this journal issue, 
automatic Differentiation (AD) is a tool which takes the Fortran subroutine comput­
ing a function and gives a Fortran subroutine computing the derivatives of this function 
(cf. following table). 
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math. func. Y = f (x) dydx = * (x) xad=((*(x)) ,yad) 

Routines f(x,y) fd(x,y,dydx) fad(x,y,xad,yad) 
In. var. X X x,yad 

Out. var. y y,dydx xad 

II Odyssee m. II Odyssee output 

We show respectively on the next figures 6 and 7 a partial view of a typical mesh (200 1 
nodes) and the vector field of the gradient of j h with respect to X: 

Figure 6: Mesh around an airfoil. 

Figure 7: Vector field of the gradient around the airfoil. 
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Having obtained the whole routine which computes the gradient of the function j h 

with respect to X, we only need to add a function transforming the discrete control 
variable eh into node coordinates X. This uses a smooth mesh adapter X (eh). Then 
the complete function writes 

ih (x (eh)) 

and the gradient of the cost function takes the final form : 

6.3. Numerical Experiment 

The numerical experiment considers the minimization of the previously defined 
cost function, initialising the optimisation algorithm with the RAE airfoil design. The 
Mach number is 0.85 . 

The mesh of the initial airfoil has 2001 nodes with 86 on the airfoil. The discrete 
control variables are the ordinates of the nodes on the airfoil, but the nodes at the 
leading edge and at the trailing edge are fixed. We have then 84 control parameters. 

To be sure that our airfoil, defined by eh, remains in So, we use box constraints: if 
em in (resp. em ax) is the vector of the control parameters which defines the "minimum" 
(resp. "maximum") airfoil, then the box constraints write 

With the area constraint, the total number of constraints is then 1 + 2 x 84 = 169. 
The CFL number is 1.5 and we use 200 time steps. 
On the following figure 8 is the convergence of the cost function. We have a 34.8% 

reduction of the cost function after 31 optimization iterations. 

0.7 

0.65 

§ 0.6 ·a 

~ 
1;; 

0.55 0 u 

0.5 

5 10 15 20 25 30 35 
Optimization Iterations 

Figure 8: Cost function during optimization. 
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On the next figure are the intial and optimized airfoils. We can see that due of our 
choice of parametrisation variables, the optimized airfoil has spurions oscillations. We 
smooth these oscillations to have a better shape. After smoothing, the cost reduction 
is of35.8%. 

Figure 9: Initial and Optimized Airfoils. 

7. Conclusion 

This paper has described a second order interior point method well adapted to con­
strained shape optimal design in fluid dynamics. The theoritical background has been 
explained and detailed implementation procedures have been given in the case without 
equality constraints. The algorithm has been successfully applied to many different 
engineering problems. Here, we have concentrated on two typical CFD problems. The 
first application to riblets design had very few control parameters, but the calculation 
of the gradient required a rather detailed variational rewriting of the state equation. 
The second application used a more straightforward code automatic differentiation 
procedure to compute gradients, but was more sensitive to the choice of a correct 
stopping criterion in solving the state and adjoint state equation, and to the choice of 
an adequate shape parametrisation of the airfoil. 

These applications illustrate the need of additional research developments in two 
main directions : 

• parametrisation strategies leading to well posed problems and efficient design, 

• use of approximate solutions of the state equation in the optimisation algorithm. 

This last point is related to the socalled oneshot methods which nolonger treat the 
state equation as an implicit definition of the state variables which are then eliminated 
from the optimisation problem, but consider these equations as equality constraints 
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in the original minimisation problem. It therefore relates to the ongoing effort on the 
development of interior point algorithms for problems with severe equality constraints. 
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