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ABSTRACT. The problem of the identification of mechanical inclusion is theoritically ill-posed, 
and to-date numerical algorithms have demonstrated to be inaccurate and unstable. On the 
other hand, Evolutionary Algorithms provide a general approach to inverse problem solving. 
However, great care must be taken during the implementation : the choice of the 
representation, which determines the search space, is critical. Three representations are 
presented and discussed. Whereas the straightforward mesh-dependent representation suffers 
strong limitations, both mesh-independent representation provide outstanding results on 
simple instances of the identification problem, including experimental robustness in presence 
of noise. 

RESUME. L'identification d'inclusions est un probleme thioriquement mal pose, pour lequelles 
methodes numeriques deterministes se revelent instables. Les algorithmes evolutionaires sont 
des methodes d'optimisation stochastiques d'ordre 0 fournissant un cadre general a la 
resolution de problemes inverses. Cependant, ['application des algorithmes evolutionaires au 
probleme de ['identification d'inclusions doit faire face au probleme crucial du choix de la 
representation des solutions, c'est-a-dire de l'espace de recherche. Trois representations sont 
proposees. Les resultats numeriques constituent une avancee importante dans le domaine de 
l'identification d'inclusions mecaniques, et La robustesse des resultats en presence de bruit est 
experimentalement etablie. Enfin, les merites respectifs des differentes representations sont 
discutes. 
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1. Introduction 

In Structural Mechanics, the - non-destructive - identification of inclusions 
is a difficult problem, resisting to-date numerical methods: in its simplest in
stance, a structure is known to be made of two different materials of given 
mechanical characteristics, but their repartition in the structure is unknown. 
The available data consist of records of the mechanical behavior of the struc
ture under known loadings. The goal is to find the geometrical repartition of 
both materials from these experimental data. In steel manufacturing plants, 
for instance, it is of vital importance to check if coal scories are included in steel 
parts, and if their repartition does not dangerously weaken the whole part. For 
a given repartition of both materials, the computation of the simulated me
chanical behavior of the structure is straightforward, using any Finite Element 
Analysis (FEM) package. The identification can then be viewed as an inverse 
problem. 

Evolutionary Algorithms (EAs) are stochastic optimization methods that 
have been demonstrated useful to solve difficult, yet unsolved optimization 
problems. The most well-known algorithms referring to the Evolutionary Com
putation paradigm are the Genetic Algorithms (GAs), but other variations on 
the "survival of the fittest" theme also gave birth to powerful optimization 
algorithms. Requiring no regularity of the objective function (or on the con
straints), EAs are able to tackle optimization problems on different kinds of 
search spaces, such as continuous, discrete or mixed spaces, as well as spaces 
of graphs or lists. The only prerequisite is the definition of evolution operators 
such as crossover and mutation, satisfying as much as possible heuristically de
rived requirements. The two main drawbacks of EAs are first the large number 
of evaluations of the objective function they usually require before eventually 
reaching a good, if not optimal, solution; and second, their stochastic aspect, 
weakening their robustness. Hence, EAs should be used with care, on problems 
beyond the reach of standard deterministic optimization methods. 

This paper addresses the inverse problem of Mechanical Inclusions Identi
fication using EAs. A possible objective function for such inverse problems is 
the difference between the simulated mechanical behavior of a tentative repar
tition of both materials, and the actual (experimental) behavior of the real 
structure. However, the main difficulty is to define the search space in which 
the EA will search. Considering past works on the Optimum Design problem, 
(a closely related problem from the Evolutionary Computation point of view, 
where the goal is to find a partition of a design domain into material and void), 
a straightforward representation is defined from a fixed mesh of the structure, 
leading to a fixed-length bitstring representation well-suited to standard Ge
netic Algorithms. This "bitarray" approach allowed significant breakthroughs 
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in Topological Optimum Design (34, 36]. However, this approach suffers from 
strong limitations due to the dependency of its complexity on the underlying 
mesh: the optimization problem rapidly becomes intractable when this mesh is 
refined. To cope with that difficulty, two non-standard representations (termed 
the Voronoi" representation and the H-representation) were introduced [48, 49], 
independent of any a priori discretization, but leading to variable-length "in
dividuals" for which specific operators were designed and implemented. 

This paper is concerned in applying Evolutionary Algorithms working on 
these representations to the inclusion identification problem in the context of 
linear elasticity, and is organized as follows: 

The mechanical problem of inclusion identification is presented in details in 
Section 2. Section 3 gives a brief overview of the state-of-the-art in Evolution
ary Algorithms (EAs), introducing the different components of Evolutionary 
Computation. In Section 4, a general framework to address inverse problems 
with EAs is introduced: The only prerequisite is a good (i.e. accurate and 
robust) numerical model of the direct problem, ... and, of course, a good 
representation of the target search space. Three representations for that prob
lem are presented in Section 5, together with their specific evolution operators 
(crossover and mutations). The first results, using the Voronoi: representation, 
are presented in Section 6, demonstrating outstanding performance on artificial 
instances of the inclusion identification problem. Finally, comparative results 
of all three representations are discussed in Section 6.3, first reinforcing the a 
priori arguments against the bitstring representation, then giving hints on how 
to a priori choose between the Voronoi: representation and the H-representation 
on a given instance of a problem. Further directions of research are sketched 
in the conclusive Section 7. 

2. The Mechanical Problem 

This section gives a detailed presentation of the mechanical problem of in
clusion identification, and states the simplification hypotheses made throughout 
this paper. 

2.1. Background 

Consider an open bounded domain n c lRN (N = 2, 3), with a sufficiently 
smooth boundary an, filled with a linear elastic material (as in Figure 1). 
Under the hypothesis of small deformations (linear elasticity) the following 
equations hold: 

the strain tensor, (1) 



622 Revue europeenne des elements finis. Vol. 5- no 5-6/1996 

Figure 1: A sample inclusion problem 

and 
a(x) := A(x)e(x) the stress tensor, (2) 

where u(x) is the displacement field at point x and A(x) is the elasticity tensor 
(a fourth order tensor) involved in the Hooke's law (2): A is supposed to be 
inhomogeneous, which means that its value depends on the point x, and A(x) 
is a positive definite tensor which satisfies some symmetry conditions. 

When A is given, one can state two kinds of boundary value problems, 
respectively of Dirichlet and Neumann type: 

{ div: = 0 inn, 
= uo on an, (3) 

and 
{ diva = 0 inn, 

a.n = go on an, (4) 

where u0 and go are respectively a given displacement field and a given external 
force field on the boundary an. 

It is well known (see e.g. [13) that each of these problem has a unique 
solution (for the Neumann's problem, one has to impose an integral condition 
on g0 to ensure existence, and an integral condition on u to eliminate rigid 
displacements). 

In the following, the inverse problem will be considered: 

{ 

diva = 0 

find A such that , 'Vi E {1, ... , n }, 3u, u = Ui 
a.n = gi 

a = Ae, 

where (gi)i=l, .. ,n and (ui)i=l, .. ,n are given. 

inn, 
on an, 
on an, 

Problem (5) is a discrete version of the "ideal" inverse problem: 

find A, given the application: AA : u1an --+ al8!1· 

(5) 

(6) 
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The underlying physical problem is still lacking much more of known data 
than problem (5) since AA is only known through a finite number of experi
mental measurements performed at a finite number of points. Hence, the "real" 
identification problem treated by mechanical engineers can be stated as: 

{ 

diva = 0 
. u(xJ) = uj 

find A such that , 'Vz E {1, ... , n }, 3u, ( .) 1~ a x1 .n = 9; 
a = Ac:, 

inn, 
'Vj E {1, ... ,p}, 
'Vj E {1, ... ,p}, 

(7) 
where information on the boundary is only known at a finite number of exper
imental points (xJ)j=l, ... ,p for a finite number (n) of experiments. In addition, 
these data may be known with a certain amount of experimental error or noise. 

2. 2. State of the art 

If the aim is the numerical treatment of problem (6) (and a fortiori problem 
(5) or (7)) by "classical" (i.e. non-stochastic) methods, two theoretical points 
are crucial: 

• existence and uniqueness of A as a function of AA, 

• continuity of the dependency of A with respect to AA. 

Existence is of course essential to the pertinence of the identification problem, 
but uniqueness and continuity are only needed to ensure the reliability and the 
stability of deterministic numerical algorithms. On the other hand, EAs can 
deal with non-continuous functionals and non-unique solutions. 

Problem (6) is the elastic equivalent of the so-called tomography problem 
where the elliptic operator is the conductivity operator (div(A'\?u), u scalar 
field) instead of the elasticity one (div(Ac:(u)), u vector field). 

The tomography problem has been widely studied. Under some hypothesis, 
existence and uniqueness have been proved. However, the continuity of the 
functional is only known in a weak sense, that cannot help numerical simula
tions. 

The elasticity problem (6) is more difficult. Existence and uniqueness have 
been proved for isotropic Hooke's laws, but there is no continuity result (see 
(8, 9], or (15] for a comprehensive bibliographical discussion on this subject). 

Numerical simulations by classical methods have shown that both tomog
raphy (37] and elastic identification problems (15] are ill-posed, and thus EAs 
are good tentative choice for a robust numerical method. 
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2.3. The simplified problem 

In this preliminary paper, attention has been focused on representation and 
on specific operators for EAs. To highlight specific problems involved in these 
algorithms, the mechanical problem (7) was restricted to a two-dimensional 
simpler class of problems: 

Let A1 and A2 be two isotropic elasticity tensors, fully defined by Young's 
moduli E1 and E2 and Poisson ratios 111 and 112. The aim is to solve Problems 
(5) and (7), restricting allowable values of A(x) to 

A(x) = { ~~ if x(x) = 0 
if x(x) = 1 

where X is a characteristic function defined on !1. 

(8) 

These problems, although less general than (5) and (7) are still beyond the 
capabilities of deterministic algorithms (see (15]). 

However, Problem (7) can be treated in the same way, as well as identifica
tion in non-linear elasticity (this is part of on-going work, see Section 7). 

The direct elasticity problem is solved by a classical finite element method. 
All simulations (see Section 6) have been performed on a square domain, held 
fixed on its left side, discretized by a regular mesh of size 24 x 24 elements. All 
details and mechanical constants are specified in Section 6. 

3. Evolutionary Algorithms 

This section presents a brief overview of Evolutionary Algorithms, both 
giving a modern generic and pragmatic point of view, and presenting a historical 
perspective on Evolutionary Computation. 

3.1. The Generic Evolutionary Algorithm 

Evolutionary Algorithms are stochastic optimization algorithms based on a 
crude mimic of the Darwinian principle of the Survival of the fittest. 

Let the search space be a metric space E, and let F be a function from E 
on R called the fitness function. The problem is to find the optimum of F on 
E. 

A population of size P E lN' is a set of P individuals (points of E) not nec
essarily distinct. This population is generally initialized randomly, uniformly 
on E. The fitnesses of all individuals are computed. The population then 
undergoes a succession of generations, that can be described the following way: 

• Selection: Some P individuals are selected to give birth to 0ffspring. Nu
merous selection processes can be used, either deterministic or stochastic. 
However, all implement in one way or another the Darwinian principle of 
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the Survival of the fittest: the selection step is based on fitness compar
isons among individuals. Depending on the selection scheme used, some 
individuals can be selected more than once. At that point, the selected 
individuals give birth to copies of themselves (clones). 

• Application of evolution operators: To each one of these copies is ap
plied some evolution operator, giving birth to one or more offspring. The 
choice among possible operators is stochastic, according to user-supplied 
probabilities. These operators are always stochastic operators, and one 
usually distinguish between crossover (or recombination) operators, when 
two (or more) parents exchange part of their genetic material to build up 
one offspring, and mutation operators, in which one parent is randomly 
modified. 

• Evaluation: Computation of the fitnesses of all newborn offspring. 

• Replacement: Choice of which individuals will be part of next gener
ation. The choice can be made upon offspring only, or among offspring 
and parents. It is also based on fitness values. 

• Stopping criterion: The process stops when: A target value for the 
best fitness - when it is known - is reached, or some a priori maximal 
number of generations is run, or the best fitness value in the population 
does not improve during a user-defined number of generations, which ever 
comes first. If the stopping criterion is not fulfilled, another generation 
starts. 

Ideally, the evolution operators should be defined on the same space than 
the fitness function, called phenotype space, or behavioral space. Unfortunately, 
in most cases, one must introduce an intermediate space, called genotype space, 
or representation space. The mappings from the phenotype space in the geno
type space is termed coding. The inverse mapping from the genotype space 
in the phenotype space is termed decoding. Genotypes undergo evolution op
erators, and their fitness is evaluated on the corresponding phenotype. The 
properties of the coding mappings can greatly modify the dynamical behavior 
of the evolutionary algorithm. 

3.2. Historical EAs 

The most widely known Evolutionary Algorithms probably are Genetic Al
gorithms (GAs). First introduced by Holland [27], then popularized by Gold
berg [24], historical GAs are based on a binary representation of the individuals 
(then often termed chromosomes) and heavily rely on the cross-over operator 
(i.e. stochastic operators generating one offspring from two Darwinian-selected 
parents). Parents are selected based on their fitness, the operator considered 
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crucial is the crossover operator, and the replacement step simply replaces all 
parents by all offspring. 

On the other hand, historical Evolution Strategies (50, 44] and Evolution
ary Programming (20] try to use the "natural" search space for the problem at 
hand (e.g. R.n when it comes to real parameter optimization). All parents are 
selected randomly, the main operator is considered to be the mutation opera
tor, and the replacement step is a deterministic choice (based on fitness values) 
among offspring and possibly parents in Evolution Strategies, and a stochas
tic tournament between parents and offspring in Evolutionary Programming. 
Moreover, for real-valued parameter optimization, all these algorithms use what 
is called Gaussian mutation: 

mutation + N(O ) 
X --t X ,a, (9) 

where N(O, a) is a normal random variable with user-defined deviation a > 0. 

Nevertheless, modern Evolutionary Algorithms are defined on a pragmatic 
basis: be they real-encoded GAs (40] or generalized Evolution Strategies using 
recombination (50]. Moreover, any possible evolution scheme (i.e. choice of 
selection-replacement methods) can be used, "as long as it works". More details 
about the recent advances in Evolutionary Computation can be found in [1, 18). 
These references also describe examples of successes of Evolution Algorithms 
on difficult global optimization problems, on which standard classical methods 
(e.g. gradient-based methods for numerical optimization) fail. 

In any case, the price to pay for the wide application area is a fairly high 
computational cost. Moreover, many different parameters are involved (choice 
of the evolution scheme, population size, probability of application of differ
ent operators, stopping criterion). These parameters can have dreadful conse
quences on the overall convergence of the algorithm, they highly depend on the 
problem at hand, and no attempt to automatically adjust them has proved to 
be general enough (25, 26) but the usual trial-and-error systematic testing [47]. 

Theoretical results have been derived regarding the convergence of some 
specific instances of EAs. The strongest of such results deal with the conver
gence of ESs on convex functions. Not only do the algorithms converge to 
the global optimum with probability 1 (50], but also Beyer obtained very pre
cise quantitative convergence rates for various schemes in the ES framework 
[2, 3, 4, 5, 6]. On the GA side, a nice global convergence result in probability 
has been proved by Cerf [10, 11] on a modified bitstring GA, while different 
partial results- including a non-convergence result on the non-elitist GA- have 
been shown by Rudolph [46, 45]. However, these theoretical results are still of 
poor use when it comes to practical implementation (e.g. no convex function 
needs EA to be optimized, and the minimum population sizes obtained by 
Cerf are too large to be actually used). Hence, the user can only refer to past 
experimentations described in the literature. 
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3.3. Implementation hints 

As said above, one strength of EAs is their ability to work on weird search 
spaces (i.e. with non-standard representations), as long as evolution operators 
(crossover and mutation) are provided. Moreover, though no theoretical re
sults exist to show the way to design a successful evolutionary algorithm, some 
heuristically derived basic principles have been stated: 

• the variance of the fitness values of all individuals sharing some genetic 
materials (the schemata in GA terminology) should decrease when the 
amount of common material increases [43]; 

• crossing-over two individual should respect their common genetic material 
[42]; 

• mutation should be ergodic (42], i.e. a finite number of mutations should 
be able to join any two points of the search space; this point is also crucial 
for all theoretical convergence results based on Markov chain analysis (11]; 

• mutation should respect the principle of strong causality (44], i.e. small 
changes of the genotype should provide small variations of the fitness1 . 

Other important features to be considered are the the degeneracy of the 
representation {how many different genotypes map onto the same phenotype) 
and its redundancy (genetic material that could be omitted without modifying 
the phenotype). Whereas redundancy can be beneficial (see for instance the 
metaphor of natural introns (38]), it implies some degeneracy, which is usu
ally considered harmful to evolutionary optimization. Finally, the degree of 
epistasis of the representation (the interaction between different part of the 
genotype to build the phenotype) must also be taken into account. Section 7 
will consider the:;e questions for the specific representations used for the in
clusion identification problem, in the light of the experimental results of the 
evolutionary optimization method described in the rest of the paper. 

4. Evolutionary Inclusion Identification 

This section presents the general numerical framework that will be used 
to solve the mechanical problem introduced in Section 2, using Evolutionary 
Algorithms. 

4.1. An inverse problem 

The problem to solve is the inverse problem corresponding to the direct 
problem described by Equation 8 of Section 2. Having a good simulation of a 

1another approach to the relation between operators and fitness can be found in (19]. 



628 Revue europeenne des elements finis. Vol. 5- no 5-6/1996 

Experimental 
conditions 

Experimental 
results 

Fitness 
of current 
structure 

Figure 2: Evolutionary approach for the inverse problem of mechanical inclu
sion identification: The fitness of the individual at hand is achieved by compar
ing the actual experimental results with the numerical results obtained by Finite 
Element Analysis on the structure that the individual represents. 

direct problem through Finite Elements Analysis, Evolutionary Computation 
can be used to address the inverse problem in a straightforward manner, as 
described schematically in Figure 2: the results of the FE Analyses performed 
on the structure at hand are compared to original experimental results, and 
the goal is to reach the smallest possible error. 

The experimental data will consist in given displacements of the structure 
under given loading cases. 

4,.2. Experimental settings 

All numerical results for the problem at hand (Section 2) will be obtained 
on the two-dimensional square structure presented in Figure 3: the structure 
is held fixed on its left-side, and normal point-wise forces are applied at given 
points of the three other boundaries. 

The aim is to identify the repartition of two materials into the square: a 
hard material (E = 1.5 and v = 0.3) and a soft material (E = 1 and v = 0.3). 
A fixed mesh of size 24 x 24 will be used used throughout the experiments, 
unless otherwise mentioned. 

The reference experimental loading cases used to compute fitness values 
were actually computed from a known configuration of materials inside the 
structure. The optimal solution is thus known, which allows a better insight 
and understanding during the evolution of the population. Moreover, much 
flexibility was required during the tuning of the overall process, that actual 
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Figure 3: The experimental structure is fixed on its left boundary, and normal 
forces are applied on different points of the free boundary. The large dots are 
the 9 real-world-like measure points. 

Figure 4: The experimental structure, and the four test cases, respectively 
termed corner, checkerboard, asymmetric and symmetric. 

experimental results could not have bought. Finally, considerations about the 
noise in the experimental reference recording also favor simulated results: there 
still is a bias (due to numerical error in the Finite Element Analysis), but, this 
bias is hopefully the same for the experimental results and during the fitness 
computation. Hence, it should not weaken the results of the evolutionary al
gorithm, as could unpredictable noise in actual measures. Of course, further 
work will have to consider results of actual experiments to fully validate the 
approach. 

Figure 4 shows the four reference structures that will be used throughout 
this paper: the fairly easy corner problem and the checkerboard problem, diffi
cult from the mechanical engineers point of view, are taken from [15], while the 
asymmetric and symmetric problems are purposely designed to test different 
behaviors of the representations introduced further in this section. 



630 Revue europeenne des elements finis. Vol. 5- no 5-6/1996 

4..3. The fitness functions 

In real world situations, the design of the fitness function should take into 
account all available loading cases experimented on the real structure, using as 
much information as possible about the behavior of the structure to be iden
tified. However, the choice made in these preliminary experiments of using 
"simulated experiments" makes it possible to use as many loading cases as 
needed. In an attempt to have a sampling of the mechanical behavior of the 
structure as uniform as possible over the domain, 37 different loading cases 
were used, each loading case consisting of applying a given normal force at one 
point of the boundaryof the structure (as shown on Figure 3). 

A very important issue in inverse problem solving is the generalization ca
pability of the solution: How good is the result of the optimization process 
when used under experimental conditions that are different from the ones used 
during the optimization itself? The usual answer is to use, during the identifi
cation, many different experimental conditions, also termed fitness cases. The 
fitness is then the average of the error over all fitness cases. Needless to say, 
the total computational cost increases with the number of fitness cases. 

However, the use of simulated "experimental" values allows to test the over
all algorithm with different points of view: In real world situations, some gauges 
are placed to the boundary of the structure, and only the displacements at those 
points are available. Figure 3 is an example of such a situation, where 9 gauges 
are represented. However, it seems clear that the more measure points, the 
easier is the identification task. Hence, three different fitness functions have 
been used throughout the numerical experiments presented in Section 6, using 
the 37loading cases described above, with different numbers of measure points: 

• The most informative fitness function, referred hereafter to as the total 
fitness, takes into account the displacements at all nodes of the mesh. 

• An intermediate fitness function uses only the displacements of all nodes 
lying at the boundary fo the structure, and is termed the boundary fitness. 

• The real-world fitness uses only the 9 measure points represented on Fig
ure 3, incorporating much less information to the fitness function. 

4-.4-. The Evolutionary Algorithm 

The Evolutionary Algorithm used for all experiments presented in this pa
per is a standard GA scheme: rank-proportional selection (only the rank in 
the population of all individuals is taken into account in the selection process, 
regardless of the actual fitness values), crossover rate of 0.6, mutation rate per 
individual of 0.2, all offspring replace all parents. The population size is set to 
100, and at most 300 generations of the algorithms are allowed - but it stops 



Mechanical inclusions identification 631 

whenever 50 generations are run without any improvement of the overall best 
fitness. Hence, between 10000 and 25000 Finite Element Analyses (each involv
ing 37 loading cases, but with the same global matrix) were performed for each 
run, requiring around 2 hours of CPU time on a high range HP workstation 
(HP-PA 8000) for the 24 x 24 mesh used in most cases. 

However, the stochastic nature of the algorithm imposes that all experi
ments are run many times with different independent initial populations: as 
clearly stated in [30], "You should never draw any conclusion of a single run of 
any Evolutionary Algorithm". 

Hence, for each setting of experimental conditions (problem and represen
tation), 21 independent runs have been performed, and the forthcoming results 
of Section 6.3 presenting the online performances (fitness along generations) 
or the off-line performances (fitness reached in the end of evolution) of these 
runs are median results: At each generation, the best individuals of all runs 
are sorted according to fitness, and the median value (here, the 11th out of 21) 
is shown. Note that EA results are generally presented through their averages. 
But, as discussed in [21], whereas using the average values (together with stan
dard deviation and/or T-test results) make the implicit assumption of normal 
repartitions for the sampled values, choosing the median values seems more 
adapted to non-parametric statistics. Moreover, when dealing with fitnesses 
that can take very small values (as the mean square errors of the displace
ments), averages hardy reflect actual behavior of the algorithm: Error values 
for different runs can be of fairly different orders of magnitude. Hence, a few 
large values might hide a majority of very small errors. 

4.5. The genotype space 

The most critical step in evolutionary algorithms is the choice of the repre
sentation, which defines the search space. In any case, the algorithm will find 
a good - if not the best - solution in the search space. Hence it seems that 
larger search spaces allow better solutions to be found. However, the larger is 
the search space, the more difficult is the optimization task, and a trade-off has 
to be found. Next section will present different tentatives to address this issue. 

5. Representations for mechanical inclusions 

This section introduces three representations for the problem described in 
Section 4.2. The first one is the obvious mesh-based bitstring representation. 
The next two ones are variable-length representations, and use real numbers 
as main components. Hence, specific operators (e.g. crossover and mutation) 
have to be designed for each of these representation. 
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5.1. Prerequisites 

A solution to the inclusion identification problem is a partition of the do
main of the structure into two subsets, each subset representing one of the 
materials involved. Moreover, all connected components of any subset should 
have a non-void interior and a regular boundary. 

A theoretical framework has been developed by Ghaddar & al. (23] in the 
context of Structural Optimum Design: The search space is restricted to parti
tions with polygonal boundaries. Theoretical results are proven, approximation 
spaces are introduced and corresponding approximation results are obtained. 
Though the objective function considered in this paper is quite different from 
the one in (23], the same search space will be used here. 

However, a significant difference between the objective functions in (23] and 
the one to be used here is that the inclusion identification problem requires 
a Finite Element Analysis on the direct problem to compute the fitness of a 
point of the search space (i.e. a given repartition of both materials), as detailed 
in Section 4.3. It is well-known that meshing is a source of numerical errors 
(14]. Hence, for any Evolutionary Algorithm, using a fitness function based on 
the outputs of two Finite Element Analyses performed on different meshes is 
bound to failure, at least when the actual differences of behavior will become 
smaller than the unavoidable numerical noise due to remeshing. The use of 
the same mesh for all Finite Element Analyses is thus mandatory in order to 
obtain significant results, at least for structures whose mechanical behaviors 
are to be compared, i.e. inside the same generation. 

5.2. The bitarray representation 

Once the decision to use a fixed mesh has been taken, and with even very 
little knowledge of EAs, a straightforward representation for a partition of the 
given domain uses bitstrings. Each element of the fixed mesh belongs to either 
one of the subsets of the partition, which can be symbolically labeled 0 or 1. 
The resulting representation can be viewed as a bitstring or, more precisely, as 
a bitarray. Indeed, considering such array of bits as a one-dimensional bitstring 
is bound to failure, and specific two-dimensional crossover operators have to 
be designed (see (35]). Nevertheless, almost all previous works using Genetic 
Algorithms on the related Optimum Design problem did use that representation 
[28, 12, 33, 36]. 

However, the limits of this bitstring representation clearly appear when it 
comes to refine the mesh (in order to reach better precision of the resulting 
shape) or if one wants to apply evolutionary techniques to solve 3-dimensional 
problems: this would imply a huge bitstring, as the size of the bitstring is that 
of the underlying mesh. In order to reach convergence with large bitstrings, 
larger populations are required, increasing linearly with the size of the bitstring, 
according to both theoretical results of Cerf [11] and empirical studies (51]. 
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Moreover, more generations are also needed to reach convergence, and the 
resulting algorithm rapidly becomes intractable. Some numerical experiments 
of section 6 confirm this phenomenon. 

These considerations show the need for other representations, not relying 
on a given mesh - even if a fixed mesh is used thereafter to compute the fitness 
function. Two of such representations have been designed, and successfully 
used on the Optimum Design problem [48, 49]. 

5.3. The Voronoi" representation 

A possible way of representing partitions of a given domain comes from 
computational geometry, more precisely from the Vorono'i diagram theory. The 
ideas of Vorono'i diagrams are already well-known in the FEM community, as 
a powerful tool to generate good meshes [22]. However, the representation 
of partitions by Vorono'i diagrams to describe their evolutionary optimization 
seems to be original. 

Vorono1 diagrams: Consider a finite number of points V0 , ••. , VN (the Voro
noi" sites) of a given subset of Rn {the design domain). To each site Vi is 
associated the set of all points of the design domain for which the closest Voro
no'i site is Vi, termed Voronoi" cell. The Voronoi' diagram is the partition of the 
design domain defined by the Vorono'i cells. Each cell is a polyhedral subset 
of the design domain, and any partition of a domain of Rn into polyhedral 
subsets is the Vorono'i diagram of at least one set of Vorono'i sites (see [41, 7] 
for a detailed introduction to Vorono'i diagrams, and a general presentation of 
algorithmic geometry). 

The genotype: Consider now a (variable length) list of Vorono'i sites, each 
site being labeled 0 or 1. The corresponding Vorono'i diagram represents a 
partition of the design domain into two subsets, if each Vorono'i cell is labeled 
as the associated site {here the Vorono'i diagram is supposed regular, i.e. to 
each cell corresponds exactly one site). Example of Vorono'i representations 
can be seen in Figure 5. The Vorono'i sites are the dots in the center of the 
cells. Note that this representation does not depend in any way on the mesh 
that will be used to compute the mechanical behavior of the structure. Fur
thermore, Vorono'i diagrams being defined in any dimension, the extension of 
this representation to R 3 and Rn is straightforward. 

An important remark is that this representation presents a high degree of 
epistasis (the influence of one site on the physical shape is modulated by all 
neighbor sites). This will be discussed in more details in Section 7. 

Decoding: Practically, and for the reasons stated in Section 5.1 the fitness 
of all structures will be evaluated using the same fixed mesh. A partition de
scribed by Voronoi: sites is thus mapped on this fixed mesh: the subset an 
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Parent 1 

Offspring 1 Offspring 2 

Figure 5: The Voronoi' representation crossover operator. A random line is 
drawn across both diagrams, and the sites on one side are exchanged 

element belongs to is determined from the label of the Vorono'i cell in which 
the center of gravity of that element lies. 

Evolution operators: The evolution operators on the Vorono'i representation 
are inspired by the two-dimensional crossover operators designed for the bit
array representation [35, 33] and by the standard Gaussian mutation operators 
for real-valued evolutionary algorithms coming from Evolution Strategies [50]. 

• The crossover operators exchange Vorono'i sites on the basis of geometrically
based choice. In this respect it is similar to the specific bitarray crossover 
described in [35]; moreover, this mechanism easily extends to any dimen
sion [31]. Figure 5 demonstrates an application of this crossover operator. 

• a first mutation operator performs a Gaussian mutation on the coordi
nates of the sites, as in Evolution Strategies (see Equation 9) or randomly 
flips the boolean attribute of some sites. In all cases, the strength of the 
mutation (the standard deviation of the Gaussian mutation, or the num
ber of sites whose labels are flipped) is adjusted proportionally to the 
relative fitness of the individual at hand, as in Evolutionary Program
ming [17]: fit individuals undergo weak mutations while unfit individuals 
are more deeply modified. 
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Figure 6: The H-representation crossover operator. A random line is drawn 
across both structures, and the holes on one side are exchanged. 

• "standard" mutation operators for variable-length representations must 
include addition and destruction of some sites on the list. 

5.4. H-representation 

Another representation for partitions is based on an old-time heuristic 
method in Topological Optimum Design (TOD): from the initial design do
main, considered as plain material, one removes material at locations where the 
mechanical stress is minimal, until the constraints are violated. However, the 
lack of backtracking makes this method useless in most TOD problems. Nev
ertheless, this idea gave birth to the "holes" representation [16], later termed 
H-representation. 

The representation: The design domain is by default made of one material, 
and a (variable length) list of "holes" describes the repartition of the other 
material. These holes are elementary shapes taken from a library of possible 
simple shapes. Only homogeneous representations involving either rectangular 
or triangular holes are considered at the moment. Moreover, two different rep
resentations can be designed from each elementary form, depending on which 
material the "holes" actually stand for. Results of Section 6.3 will show that 
this choice does influence the results. Three representations will hence be con
sidered in the rest of the paper: the !-rectangle representation, in which holes 
are rectangles representing material!, the 0-rectangle representation where the 
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rectangular holes stand for material 0, and the !-triangle representation (with 
self-explained meaning). 

Example of structures described in the !-rectangle representation are pre
sented in Figure 6. The rectangles are taken in a domain larger than the design 
domain, in order not to bias the boundary parts of the design domain toward 
the default value. 

All holes representations, as the Voronol representation, is independent from 
any mesh, and hence its complexity does not depend on any required accuracy 
for the simulation of the mechanical behavior of the structure. Its merits and 
limitations will be discussed in the light of the experimental results presented 
in section 6. 

Decoding: As for the Voronol representation, the simulated behavior of the 
shapes is computed on a given fixed mesh, to limit the numerical noise due to 
re-meshing. The criterion to decide which subset an element does belong to, 
is based on whether its center of gravity belongs to a hole (in which case the 
whole element is considered made of the hole-material) or not. 

Evolution operators: The evolution operators are quite similar to those of 
the Voronol representation: 

• crossover by geometrical (2D or 3D) exchange of holes (see Figure 6 for 
an example); 

• mutation by Gaussian modification of the characteristics (coordinates of 
the center, width and length) of some holes, as defined by Equation 9; 

• mutation by addition or destruction of some holes; 

Initialization procedure: whereas the initialization procedure for the Voro
nol representation was straightforward (uniform choice of the number of Voro
nol sites between 1 and a user-supplied maximum number, and uniform choice 
of the sites in the structure, and of their label), that of the holes representa
tion raises some interesting issues (discussed in details in (32]), as no obvious 
procedure exists that would be "uniform" over the space of holes. Based on 
results involving Fitness Distance Correlation analyses (29, 32] that are out 
of the scope of this paper, the following were used, assuming a rectangular 
structure n = (0, Lx] X (0, Ly] : 

• In all cases, the number of holes is uniformly chosen in [1, N Max] for some 
user-supplied parameter N Max (50 in all experiments presented here). 

• For the rectangle representations, uniform random choice of the center of 
the rectangle in n, and uniform random choice of the width and height 
in (0, ¥] and (0, f=t] respectively. 

• For the triangle representations, uniform random choice of a first point in 
n, then determination of the two other points by gaussian perturbations 
of mean deviation XMax/2 of the coordinates of the first point. 
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6. Numerical Results 

This section presents some numerical experiments on the inclusion identi
fication problem using Evolutionary Algorithms. The first results address the 
feasibility issue. In subsection 6.2, EAs demonstrate their robustness in the 
presence of noise in the experimental data. Finally, comparative experiments 
of subsection 6.3 bring a partial answer to the question of the a priori choice 
of a representation for a given instance of problem. In particular, the bitarray 
representation definitely demonstrates its poor performances when compared 
to the mesh-independent representations (Voronoi' , 1- and 0-rectangles). 

6.1. Feasibility Results 

The very first experiments were performed using the Voronoi' representa
tion, described in Section 5.3. They were obtained on the reference partitions 
represented in Figure 4 of section 2. 

The first results on the corner problem were astonishingly good: the exact 
solution was found 3 times out of 10 independent runs, in less than 100 genera
tions when using the "total" fitness, and even twice (in about 250 generations) 
using the boundary fitness. Figure 7 shows an example of a successful run, 
where the best individual at different stages of evolution is plot together with 
the error. The Voronoi' sites are represented on the figure by grey little dots. 

On the symmetrical and asymmetric problems of Figure 4, some difference 
begin to appear between the different fitnesses, but these examples are still 
easy problems. And when it came to the checker problem, the total fitness 
gave much better results than the real-world fitness, as can be seen in Figure 
8. However, the real-world fitness gave some interesting results, as can be seen 
on Figure 8-b: the actual values are clearly identified along the free boundary, 
and badly along the fixed part of the boundary, where very little information 
is available. 

6.2. Results on noisy data 

After these first satisfactory results on exact data, further validation of the 
proposed approach had to take into account possible errors and noise in the 
data, before using actual - noisy - experimental data. In order to test the 
sensitivity of the algorithm to noise, artificial noise was purposely introduced 
in the reference "experimental" displacements. 

Figure 9 shows the results obtained on the (easy) "corner" example, when 
the relative amount of noise is set to 2% and 5%: all reference displacements 
were multiplied by a term (1 +c), where c was a random variable uniformly 
distributed in [ -0.02, 0.02] and [ -0.05, 0.05] respectively. The results are (of 
course !) degraded, but they demonstrate a fairly good robustness, at least on 
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Figure 7: A successful run of the Voronoi' representation on the corner problem 
using boundary fitness. Plots of the best individual at different generations of 
the evolution 
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Figure 8: The - difficult - checker problem: (a): with total fitness. (b): with 
real fitness. 

this example. 

6.3. Comparative results 

This section compares the four representations defined in section 5, namely 
the bitarray, the Voronol, the 1- and 0-rectangles and the triangle representa
tions. As discussed in Section 4.4, all results are median over 21 independent 
runs. 

Figure 10 presents the on-line results, i.e. the plots of error on the displace
ments along generations, while Table 1 presents the off-line results after 300 
generations. Note that the 0-rectangle was not tested on the two symmetrical 
problems (the symmetric and checker-board problems): though the problems 
are not mechanically symmetric (the hard and soft materials are exchanged), 
the asymmetry is hardly distinguishable from the EA point of view, and the 
results of the 0-rectangle representation are broadly of the same nature than 
those of the 1-rectangle on these problems. 

Some clear tendencies emerge from these results: 

• The bitarray representation is clearly outperformed by all other represen
tations, except on the checker-board problem, where the difference is not 
significant. Moreover, the best run of the bitarray trials was evolved up 
to 1000 generations, with resulting errors of respectively 0.014, 0.0004, 
0.0003 and 0.0005 for the 4 problems, and were worse than the results 
of most other representations in 300 generations. In particular they were 
never better than the Vorono'i representation. 

• The Vorono'i representation performs globally better than all Holes rep-
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Figure 9: Robustness to noise. (a): with 2% noise. (b): with 5% noise. 
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Figure 10: Comparative runs on 300 generations involving all representations 
on the four test problems: bitarray performances are lousy, except for the 
checker-board problem. 
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Asymmetric Symmetric Corner Checker 
best median best median best median best median 

bitarray 42 75 14* 14* 42 75 1.5* 1.5* 
Voronoi 0 0.232 0 0.003 0.002 0.036 0.071 0.282 
1-Rect. 0.004 0.048 0 0.028 0.24 0.81 0.355 1.07 
0-Rect. 0.085 0.27 0.39 3.1 
Triangle 0.0083 0.035 0 0.014 0.004 0.026 2.8 8.4 
(*): result of a smgle run 

Table 1: Off-line performances of GAs for all four 24 x 24 test problems and 
different representations. The best and median result from 21 runs of 300 
generations each are presented. The figures are the L 2 error on the displacement 
at the measure points: A null best error means that the actual global solution 
was found exactly at least once. 

resentations, with significant difference for the symmetric and checker
board problems. 

• The results on the asymmetric problem demonstrates ... the asymmetry 
of the holes representations: the 0-rectangle is widely outperformed by 
the !-rectangle on that- purposely defined- problem. 

• The shape of the target subset to be matched by the holes does influence 
the relative results of the Holes-representations: the triangle represen
tation outperforms the rectangle representation on the corner problem, 
while the reverse is clearly true on the checker-board problem. 

6.,4.. Influence of the mesh 

This section presents preliminary investigations to a posteriori justify the a 
priori arguments against the bitarray representation related to its dependency 
on the underlying mesh (see Section 5.2). Three different meshes are consid
ered: the 24 x 24 mesh used in the preceding sections, together with a two 
times coarser 12 x 12 mesh and a refined 48 x 48 mesh are used. The same 37 
loading cases are considered in the fitness (see section 4.3), and the reference 
displacements are computed on the same mesh than the following runs. 

Tables 2 and 3 give the respective off-line results of the bitarray, the Voro
noi and the !-rectangle representations, for the asymmetric and the checker
board problems of Figure 4. Further, Figures 11 and 12 show the result ob
tained by the bitarray-, the Voronoi- and the rectangle-representation on the 
asymmetric and the checker-board problems for one run of 300 generations on 
the 48 x 48 mesh: whereas both variable-length representations obtain a solu
tion resembling the actual structure, the bitarray representation ends up in a 
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Asymmetric Checker 
best median best median 

Voronoi 0 0.00012 0.00013 0.00026 
rectangle 0 0 0.00032 0.0017 
bitarray 0.003 0.0054 0.00055 0.00074 

Table 2: Off-line performances of GAs for two test problems on different rep
resentations using a 12x 12 mesh after 300 generations. 

Asymmetric Checker 
best median best median 

Voronoi 2.6e-05 0.0003 0.0005 0.0005 
Rectangle 1.6e-05 4e-05 0.0015 0.0015 
Bitarray 0.57 0.57 0.01 0.01 

Table 3: Partial results of off-line performances for two test problems on differ
ent representations using a 48x48 mesh. From one or three runs are aggregated 
here. 

totally irrelevant result. 
Although, for technical reasons (a single run for the 48 x 48 mesh take about 

10 hours of CPU time on a powerful HP-PA8000 processor), the results for the 
48 x 48 mesh are still incomplete, it is obvious that the performance of the 
bitarray representation does indeed decrease rapidly when the complexity of 
the mesh increases. 

I 
(a) Bitarray (b) Vorono1 (c) !-Rectangles 

Figure 11: Best structure after 300 generations on the asymmetric problem, on 
the 48 x 48 mesh (colors are inverted on the rectangle plot). 
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(a) Bitarray (b) Voronoi: (c) 1-Ftectangles 

Figure 12: Best structure after 300 generations on the checker-board problem, 
on the 48 x 48 mesh (colors are inverted on the rectangle plot). 

7. Discussion and further work 

Due to the monopolistic use of the bitarray representation in all works of the 
EA literature dealing with similar problems, it is necessary to emphasize here 
its inadequation for problems involving the search for a partition of a domain in 
R.n. A priori considerations on the complexity of the representation for fine (or 
3D) meshes, "Fitness Distance Correlation"-based heuristical results [32] and 
preliminary experimental results on the Topological Optimum Design problem 
[48, 49] gave a broad picture that is now clearly confirmed by the experimental 
results of Section 6. Note that the inclusion identification problems treated in 
this paper allow a finer control of the numerical experiments than the prob
lems of Topological Optimum Design (e.g. the global optimum is known, the 
problem is unconstrained, ... ). 

The validation results in the presence of noise of Section 6.2 are of course 
only a first step toward using results of actual mechanical experiments as ref
erence data. An intermediate step, part of on-going work, is to consider for 
reference data the results of simulations on a very fine mesh, and to test the 
reliability of the approach with respect to the accuracy of the numerical ap
proximation. 

Ftegarding the a priori choice of a representation for a given problem, the 
specific characteristics of the problem at hand should be taken into account: if 
there is strong evidence that one material is present only in small quantities, 
then one hole representation should be chosen, with the holes representing the 
minority material. Further, if the general shape of the small inclusions can be 
guessed, choosing elementary shapes for holes that easily fill up the supposed 
inclusion shapes can help the identification process. Though this is generally 
beyond what can be asked to mechanical experts, detailed Fitness Distance 
Correlation analyses [32] can be of some help here again. 

On the other hand, if both materials are approximately present in the same 
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proportions, the Voronoi representation clearly is to be preferred. Moreover, 
the Voronoi representation seems to be more robust to wrong guesses of actual 
proportions, and hence should probably be used in any doubtful case. 

Another important direction of research is to address the more general prob
lem (6), i.e. the case where the mechanical characteristics of the materials are 
unknown. The proposed representations can - and will - be extended easily to 
that framework: the label of Voronoi sites can easily be replaced by a set of 
real values (e.g. theE and v coefficient of the material); in the same line, real
valued coefficients can be attached to each hole in the Hole representation. The 
decoded values for a point in the structure will then be the average of all val
ues that cover it. First experiments on the problem of identification of spatial 
geological models in petroleum prospection (39] gave encouraging results. 

8. Summary and Conclusion 

This paper has presented the first results using Evolutionary Computation 
on an important engineering problem: non destructive inclusion identification 
in Structural Mechanics. In spite of theoretical results on the identifiability 
in the linear elastic case [9], the standard deterministic methods had to face 
a ill-conditioned problem, and has proved inaccurate and unstable. On the 
opposite, the evolutionary method demonstrates powerful on the simplified 
problem of linear elasticity involving two materials of known characteristics, 
widely outperforming the to-date results of specialized numerical methods. 

However, the - almost - standard representation of structures by arrays 
of bits (based on a given mesh) proved to be totally inaccurate to that type 
of problem, and the breakthrough results were obtained using non-standard 
representations together with specifically designed genetic operators. The Voro
noi representation uses a variable number of labeled Voronoi' sites to define a 
partition, while the Holes representations uses a list of elementary shapes over 
the structure: these elementary shapes indicate which parts of the structure 
are not made of the default value. 

First, the complexity of these representations are independent of any dis
cretization of the structure. Hence the complexity of the algorithm itself, in 
terms of number of fitness evaluations, only depends on the problem at hand. 

Second, the Voronoi representation seems more robust with respect to a 
priori knowledge about the quality of the solution: unless the solution is known 
to be made of very small parts of one material spread over in the structure, in 
which case a hole representation with default value to the majority material 
is the best choice, the Voronoi' representation performs as good or even better 
than the rectangle and triangle representations tested here. Moreover, the 
Voronoi' representation is independent of any guess regarding the shape of the 
inclusion itself, whereas the holes representation perform poorly if the wrong 
guess is made. 
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