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ABSTRACT. This paper is devoted to an elementary introduction to the homogenization methods 
applied to topology and shape optimization of elastic structures under single and multiple 
external loads. The single load case, in the context of minimum compliance and weight design 
of elastic structures, has been fully described in its theoretical as well as its numerical aspects 
in [4]. It is here briefly recalled. In the more realistic context of "multiple loads", i.e. when 
the structure is optimized with respect to more than one set of external forces, most of the 
obtained theoretical results remain true. However, the parameters that define optimal 
composite materials cannot be computed explicity. In this paper, a method to treat 
numerically the multiple loads case is proposed. 

RESUME. Cet article est consacre a une introduction elementaire a La methode d'optimisation 
topologique de formes elastiques - soumises a un ou plusieurs jeux de forces exterieures -
par homogeneisation. Le cas mono-chargement, lorsque l'on cherche a minimiser La 
compliance de La structure elastique sous une contrainte de poids, a ere decrit en details -
d'un point de vue theorique et numerique- dans {4]. ll est rappete brievement ici. Dans le 
cas plus realiste ou La structure est optimisee pour resister a plusieurs jeux de forces 
exterieures (multi-chargements) appliques successivement, La plupart des resultats theoriques 
restent vrais. Toutefois, les parametres qui definissent les materiaux composites optimaux ne 
sont plus calculables explicitement. Nous presentons une methode pour traiter 
numeriquement le cas multi-chargements. 
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sequentiels. 
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1 Introduction 

The typical problem of structural optimization is to find the "best" structure 
which is, at the same time, of minimal weight and of maximum strength. Of 
course there is some subjectivity in the definition of what is "best". It depends 
on many different considerations: what is the underlying mechanical model 
(linear or nonlinear elasticity, plasticity, etc.) ? Are there any constraints on 
admissible shapes (industrial feasibility, smoothness of the boundary, etc.) ? 
What kind of stiffness criterion is used (maximum stress, compliance, etc.) ? 

Since the focus of this paper is to discuss the homogenization method for 
structural optimization, some assumptions are required for the definition of a 
suitable model problem. First of all, we deliberately forget about any feasibility 
or smoothness constraints on the shape's boundary. Indeed, the process of ho
mogenization (or relaxation) is intimately linked to the possibility of boundary 
oscillations (small ribs or holes), which are usually prevented by adding the 
above type of constraints. Then, to complete as far as possible our analysis, 
we work in the context of linear elasticity, and we choose the compliance (i.e. 
the work done by the load) as a global measure of rigidity. 

The main idea of the homogenization method is to replace the difficult "lay
out" problem of material distribution by a much easier "sizing" problem for the 
density and effective properties of a perforated composite material obtained by 
cutting small holes in the original homogeneous material. We focus on both 
the theoretical aspects - the so-called relaxation process - and the numerical 
aspects of this method. 

2 A model problem in shape optimization 

We consider a bounded reference domain n E RN (N = 2, 3 is the spatial di
mension), occupied by a linearly elastic material with isotropic elasticity tensor 
A (with bulk and shear moduli K and J.L) defined by 

(1) 

The domain S1 is successively submitted top surface loadings {/ih:s;i:s;p on its 
boundary an, and, for each set of forces, equilibrium of the domain is assumed, 
i.e., forallQ N x N symmetric matrix, 

r kn ds = 0, len { kQx.n ds = 0, 'v'i E {1, ... ,p}. len 
An admissible design w is a subset of the reference domain S1 obtained by 
removing one or more holes (the new boundaries created this way are traction-
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free). For each /i, the equations of elasticity for the resulting structure are 

{ 

1 t 
O"i = Ae(ui) e(ui) = 2(\7ui + \7 ui) 

div O"i = 0 in w 
O"i . n = fi on an 
O"i . n = 0 on ow \ an. 

(2) 

The sum of compliances of the design w is 

Introducing a positive Lagrange multiplier ..\, the goal is to minimize, over 
all subsets w c n, the weighted sum E(w) of the compliance and the weight 
(proportional to the volume lwl), namely to compute 

inf (E(w) = c(w) + ..\lwl). 
wen 

(4) 

The Lagrange multiplier ..\ has the effect of balancing the two contradictory ob
jectives of rigidity and lightness of the optimal structure (increasing its value 
decreases the weight). There exists a different formulation of the same struc
tural optimization problem which will be very helpful in the sequel. It is based 
on the principle of complementary energy which gives the value of the compli-
ance 

c(w)=t { fi·ui=t . min. 1A-1Ti·Ti· 
. Jan . diV T;=O m w W 
•=1 •=1 T;•n=f; on an 

T;·n=O on aw\an 

Extending the admissible stress Ti by 0 inside the holes, the compliance is also 
defined by 

c(w) = t . min. { (Xw(x)A)- 1Ti · Ti, 
. diV Ti =0 In n J n 
•=1 T;·n=fi on an 

(5) 

where Xw is the characteristic function of the design w. The infimum over 
designs and the minimum over statically admissible stresses can be switched. 
Then, for a fixed stress, the inside minimization over Xw = 0, 1 is easy. It yields 
that (4) is equivalent to 

if all Ti = 0 ) 

if at least one Ti =F 0 

(6) 
in the sense that minimizers of (4) and (6) (if any) are related by 

Xw(x) = 0 <=> O"(x) = 0, Xw(x) = 1 <=> O"(x) =fo 0. (7) 
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As is well known in the mathematical community, in absence of any ad
ditional constraints on the admissible designs w, the objective function E(w) 
may have no minimizer, i.e. there is no optimal shape (for striking counter
examples on similar, but simpler, problems, we refer to [30), [31), and to [14) for 
numerical evidence). This can also be guessed from the other formulation (6) 
where the objective function F(r) is obviously not convex and, as we shall see, 
not even lower semi-continuous (the correct mathematical notion for proving 
existence theorems). The physical reason for this non-existence is that it is 
often advantageous to cut infinitely many small holes (rather than just a few 
big ones) in a given design in order to decrease E(w). Thus, achieving the 
minimum may require a limiting procedure leading to a "generalized" design 
consisting of composite materials made by microperforation. 

To take into account this physical behavior of nearly optimal shapes, we have 
to enlarge the space of admissible designs by permitting perforated composites 
from the start: this process is called homogenization (or relaxation). Such 
a composite structure is determined by two functions: B(x), its local volume 
fraction of material taking values between 0 and 1, and A(x), its effective 
Hooke's law corresponding to its microstructure. Of course, we need to find an 
adequate definition of the homogenized (or relaxed) objective function E(B,A) 
which generalizes E(w). This is done in the next section by using the theories 
of homogenization and optimal bounds on the effective properties of composite 
materials. The ultimate goal is twofold: prove an existence theorem for the 
relaxed formulation of the above structural optimization problem, and find a 
new numerical algorithm for computing optimal shapes. 

For more details on the mathematical theory of relaxation by homogenization 
in the context of optimal design, we refer to the pioneering works [25), [27), 
[31)). In the specific framework of computational structural optimization, we 
refer e.g. to [3), [4), [5), [7), [10), [11), [12), [23), [36). 

3 Homogenized formulation 

In this section we describe the homogenization or relaxation process of the 
structural optimization problem (4) following [7) and [4). For simplicity we 
consider a single loading configuration (p = 1) in two or three space dimensions 
and we omit the i indices introduced in the previous section to identify each 
loading. 

Let (we)e--+O be a minimizing sequence of nearly optimal shapes for the ob
jective function (4), and denote by Xw. their characteristic functions. In the 
reference domain n, we regard it as a fine mixture of the original material A 
and void (holes). Then, as a result of the homogenization theory, there exists 
an effective behavior of this fine mixture, i.e. a composite material of density 
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8(x), taking any value in the interval [0, 1], and a Hooke's law A*(x) such that 

Xw.(x) ~ 8(x) weakly in £ 00 (0), 

and 
Xw.(x)A~A*(x) 

in the sense of H or G-convergence. In truth, the homogenization theory works 
only for composite materials made of two non-degenerate phases. Therefore, to 
be mathematically rigorous the holes are first filled with a weak material, then 
homogenization takes place, and, in the end, we have to justify the passing to 
the degenerate limit. For simplicity we skip these details here. 

The above homogenization result implies in particular the convergence of 
the compliance 

c(wE) --t c(8,A*) = l A*(x)-1cr 0 (T (8) 

where the stress cr is now solution of the following homogenized equation 

{ 

cr = A*(x)c:(u) c:(u) = ~(Vu + Vtu) 
div (T = 0 inn 
(T 0 n = f on an. 

(9) 

For a same value 8 of the density, there are many different possible effective 
Hooke's law A* corresponding to different microstructures (or geometric pat
terns of the holes), i.e. 

A* EGo 

where Go (the so-called G-closure set at volume fraction 8) is the set of all 
possible effective Hooke's law with material density 8. 

Applying these results, we pass to the limit in the objective function and 
obtain the homogenized or relaxed functional 

lim E(wE) = inf E(w) = min E(8, A*), 
E-+0 wen A*EG8 

0:509 

where 

E(8, A*) = c(8, A*)+.\ l8(x). (10) 

This relaxed formulation is not entirely explicit since the precise definition 
of the G-closure set Go is unknown! However, by using again the principle of 
complementary energy, we can use our knowledge of so-called optimal bounds on 
Go that will simplify the relaxed formulation by optimizing the microstructure 
and eliminating the dependence on A*. We rewrite the compliance as 

c(8,A*) = 0 min. r A*(x)-1r 0 T. 
dlvT=O m n ln 
T•n=f on an 

(11) 
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Then, switching the two minimizations and optimizing pointwise the micro
structure and density, the relaxed formulation becomes 

. min. {QF(7) = r min (A*-17. 7 + AB)}. (12) 
d1v T=O m !1 ln AEGe 
'T·n=f on an o::;e::;l 

For a fixed stress 7, the minimization of A*-17·7 on Go is a classical problem in 
the theory of optimal bounds on effective properties of composite materials see 
[8] [29]. It has been solved in 2-D in [6], and in 3-D in [2]. In two dimensions, 
the result is 

where 71 and 72 are the eigenvalues of the 2 by 2 symmetric matrix 7. Further
more, optimality in (13) is achieved for a so-called rank-2 sequential laminate 
aligned with the eigendirections of 7. 

In three dimensions, the result is messier, and we give it in the special case 
of Poisson's ratio equal to zero, i.e. 3K: = 21£ (the general case is not much 
different in essence, see [2]) 

where the eigenvalues of 7 are labeled in such a way that 

Furthermore, optimality in the first regime of (14) is achieved by a rank-3 
sequential laminate aligned with the eigendirections of 7, while in the second 
regime it is achieved by a rank-2 sequential laminate aligned with the two first 
eigendirections of 7. 

After this crucial step, the minimization over B can easily be done by hand, 
which completes the explicit calculation of the relaxed formulation. Remark 
also that, by virtue of formulae (13) and (14), the pointwise optimization of the 
density yields B = 0 if and only if 7 = 0, which means that holes are created 
only where the stress vanish. 

The final result is the following 

Theorem 3.1 Problem {10}, or equivalently {12), is the homogenized or re
laxed formulation of the original problem (4), or {6), in the sense that there 
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exists at least one "generalized" or homogenized optimal design (0, A*), which 
is the limit of a minimizing sequence of "classical" shapes w., and the minimal 
values of the original or homogenized energies coincide 

inf E(w) = min E(B,A*). 
wen A*EG9 

o:::;o9 

Its proof can be found in [7] for the 2-D case, and in [4] for the 3-D case. Remark 
that the homogenization process does not change the physics of the problem. 
Indeed, an homogenized optimal design is just a limit of nearly optimal classical 
designs, and the homogenized energy is precisely the average of the original 
energy when the nearly optimal classical designs oscillate (i.e., have many holes 
or ribs). In particular, any possible solution of the original problem is also a 
solution of the homogenized problem. 

3.1 Non-uniqueness 

There is a wild non-uniqueness for the optimal homogenized designs. In the 
first place, the optimal microstructure is not always unique. For example, the 
optimal sequential laminate is not uniquely defined in the case of an hydrostatic 
stress T proportional to the identity 12 (any orthonormal basis of :RN is a set 
of eigenvectors ofT and thus a set of lamination directions). It can be checked 
that different directions lead to different homogenized Hooke's law. But there 
is another type of non-uniqueness of the microstructure: sequential laminates 
are not the only known class of optimal microstructures (although probably 
the easiest to work with). The so-called concentric spheres construction [21] 
(generalized in [37] to confocal ellipsoids), or the periodic arrangement of ad
equately shaped inclusions in [38] (see also [19]) are also optimal in specific 
situations. 

Another possible non-uniqueness is that of the homogenized density. For 
example, in the case of a constant hydrostatic boundary condition f = p12 , the 
homogenized stress is exactly equal to p12 and the average compliance is ¥. 
where K-* is the so-called Hashin-Shtrikman upper bound on the bulk modulus 
[22]. A generalized optimal.design is given as a composite material of constant 
density 0 determined by the values of p and >.. But there are also an infi
nite number of classical optimal shapes obtained by the well-known concentric 
spheres constructions (see e.g. [15]). It amounts to cover the domain n by a 
dense packing of non-overlapping spheres of all sizes. Then, in each sphere, a 
concentric spherical hole is cut, and its radius is determined in a manner such 
that the volume fraction of material is precisely B. This yields a perforated do
main n with infinitely many disjoint spherical holes of all sizes. It is a classical 
result that, for such a perforated domain w under the hydrostatic boundary 
condition f = pl2, the exact compliance is equal to the homogenized compli
ance. Therefore, E(w) being equal to the minimal relaxed energy, w is also 
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an optimal shape. Remark that this type of classical optimal shapes would be 
very difficult to compute numerically, partly because they are not homogenized 
or averaged. Indeed its boundary is very complex since it involves an infinite 
number of connected components on various length scales. Therefore, even in 
this case, the relaxed problem is more practical from a numerical standpoint. 

3.2 Link to Michell trusses 

An important feature of the optimal sequential laminates is that they are 
"smart" materials. The optimal microstructure (namely the rank-N laminate) 
adapts itself to the stress that it should sustain, by aligning its lamination di
rections with the principal directions of the stress and adopting in each layer a 
volume fraction which is controlled by the values of the principal stresses. This 
correlation between microstructure and stress is a rigorous consequence of the 
homogenization theory and not a postulate. In particular in 2-D we recover the 
well-known principle of material economy in frame-structures due to Michell 
[28]. 

In two dimensions, when the Lagrange multiplier >. goes to infinity, it is 
easily seen (see [7]) that the relaxed problem is asymptotically equivalent to 
the so-called Michell trusses problem 

where r 1,r2 are the eigenvalues of the stress r. There is a rich literature on 
this problem (see e.g. [1], [24], [34], [35]). Note that this limiting case of the 
relaxed formulation may explain the success of our computations, and more 
precisely the fact that many of our optimal structures look like a network of 
trusses, or bars, in 2-D. 

3.3 Multiple loads case 

So far, we concentrated only on the so-called "single load" problem. Most of 
the obtained theoretical results hold true for the multiple loads problem stated 
in Section 2. The homogenized problem is 

1pin {E(O,A*) = t f A*(x)-1ui · ui + >. [ O(x)dx} 
A EGs . 1 Jn Jn 
0$9$1 •= 

However, the optimization over the microstructure A* cannot be done analyti
cally. In other words an explicit formula for the optimal microstructure is not 
available. We simply know that optimality is attained in the class of sequential 
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laminates, but the direction of laminations and the proportions are not spec
ified. For any number p of loading configurations, the number of laminations 
is never larger than 3 in 2-D [9], and 6 in 3-D [18]. Therefore, the optimal 
microstructure has to be determined numerically rather than through an ex
plicit formula. Numerical methods to compute these optimal composites will 
be discussed in Section 5. 

4 Computational aspects 

Up to now, using homogenization theory and introducing a relaxed formulation 
might appear to be just a trick for proving existence theorems. In fact its im
portance goes much further, and it is at the root of new numerical algorithms 
for computing optimal shapes. Indeed, it permits to separate the minimiza
tion process in two different tasks: first, optimize locally the microstructure 
(that is the effective Hooke's law A*) with explicit formula, second, minimize 
globally on the density 9(x). This has the effect of transforming a difficult 
"free-boundary" or layout problem into a much easier "sizing" optimization 
problem in a fixed domain. It has many advantages: on the one hand, the 
cost of a computation is very low compared to traditional algorithms since the 
mesh is the same for any shape in the iterative process of optimization; on the 
other hand, it behaves as a topology optimizer and the final optimal shape may 
have a topology completely different from that of the initial guess. As such the 
homogenization method is usually applied as a pre-processor for classical shape 
optimization algorithms (see, e.g., [33]): first, an optimal topology is found by 
homogenization, then the resulting shape is optimized by a sensitivity analysis 
of its boundary (for numerical examples, see [32]}. Note that classical shape 
optimization algorithms work with a fixed topology, namely that of the initial 
guess, and are therefore unable to optimize it (with the noticeable exception of 
the so-called bubble method [16]). 

The key features of homogenization-based algorithms have been first rec
ognized by M. Bendsoe and N. Kikuchi in their pioneering work [12]. Many 
generalizations have appeared since then. Here, we shall follow our approach 
advocated in [7], [5], [4]. 

4.1 A numerical algorithm for 2 and 3-dimensional shape 
optimization 

The proposed numerical algorithm for shape optimization, is based on the 
homogenization method as described in the previous section. The key idea is 
to compute "generalized" optimal shapes for the relaxed formulation, rather 
than "classical" shapes which are merely approximately optimal for the original 
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formulation. Recall that the relaxed or homogenized objective function is 

. min. {QF({ri})= f min (tA*-1Ti·Ti+>JJ)}· (15} 
d1v r;=O m fl ln AEGs . 
T;·n=fi on 8fl 0~11~1 •=1 

We introduced a so-called "alternate directions method", that is based on 
two key ideas. The first one is to consider the above relaxed problem as a mini
mization problem not only for the stress, but also for the structural parameters, 
the density (), and the microstructure A*. The second key idea is not to try to 
minimize directly in the triplet of variables ({ri},(),A*}, but rather to adopt 
an iterative approach and minimize separately and successively in the design 
variables ( (), A*) and in the field variable { Ti}. The minimization in Ti for fixed 
design variables amounts to the resolution of p linear elasticity problems for 
the structure defined by the previous design variables. In the single load case 
(p = 1}, the minimization in (8, A*) for a fixed stress field is explicit in view 
of the formulae (13} and (14}. If p > 1 (multiple loads case}, the minimiza
tion in A* for p fixed stress fields cannot be done explicitly. It is performed 
numerically, in each cell of the mesh, as described in the next section. The 
optimization in () remains explicit. In both cases, the algorithm is structured 
as follows: 

1. Initialization of the design parameters (80 , A0) (for example, taking ()0 = 
1 and A0 =A everywhere in the domain). 

2. Iteration until convergence: 

(a) Computation of {rih9~P through p linear elasticity problems with 
(Bn-1,A~_ 1 ) as design variables. 

(b) Updating of the design variables (8n,A~} by using the stresses ri 
in the explicit optimality formulae (single load case p = 1} or in 
numerical procedure (multiple loads case p > 1}. 

The alternate direction algorithm is apparented to two previously known 
methods: that of [12], [36], and that of [7]. It is a version of the well-known 
optimality criteria algorithm (see e.g. [35]}. 

Convergence is always achieved since the above iterative process always de
creases the value of the objective function at each iteration. In practice, con
vergence of this iterative algorithm is detected when the objective function be
comes stationary, or when the change in the design variables becomes smaller 
than some preset threshold. 

Our experience shows that this algorithm works very well and converges 
smoothly in a relatively small number of iterations (between 10 and 100, de
pending on the desired accuracy). Furthermore, it seems to be insensitive to 
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the choice of initial guess and convergent under mesh refinement, suggesting 
uniqueness of a global minimum (at least numerically). However, as expected, 
it usually produces "generalized" optimal designs that include large regions of 
composite materials with intermediate density. Figure 2 shows the resulting 
optimal density of material for the "2-D bridge" problem defined by the loading 
configuration and the boundary conditions shown on Figure 1. White regions 
are void, black regions are filled with material A, and grey regions represent 
composite material - fine mixture of A and void. Figure 6 shows, as an exam
ple of 3-D numerical result, an optimal 3-D bridge for the load and boundary 
conditions set on Figure 5. 

Figure 1: Loading configuration and boundary conditions for the 2-D bridge. 

Figure 2: Generalized solution for the 2-D bridge. 

4.2 Some technical issues 

The generalized Hooke's laws computed at each iteration turns out to be singu
lar, an undesired feature when solving linear elasticity problems. This singular 
behavior has several sources. 

First, we note that the effective tensor is equal to zero when the density van
ishes. Implicitly, the corresponding stress field should vanish simultaneously. 
This problem, which occurs in 2 and 3-D, is easily circumvented by imposing a 
positive threshold on the density. In practice, the smallest admissible value of 
()is fixed around w- 3 . Numerical experiments suggest that the choice of such 
a value is not important. 

We also remark that rank-1 and rank-2laminates produce degenerate Hooke's 
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laws. In 3-D, the lamination proportions in each (orthogonal) direction are 
forced to be greater than zero. Consequently, the algorithm only uses rank-3 
laminates, which are non-singular. In 2-D, rank-1 laminates are eliminated 
like in the 3-D case. However, the algorithm uses rank-2 laminates as optimal 
microstructures. The singularity is avoided by adding a small correction term 
to the composite Hooke's law. 

When using P1 or Q1 finite elements in a displacement formulation, our 
algorithm is subject to checkerboard instabilities for the density () similar to 
those reported in [11], [23]. Such a phenomenon does not occur if a stress-based 
or complementary formulation is used. Also, these instabilities do not appear if 
the displacements are computed using higher order elements (Q2 for example), 
while the lamination parameters are computed with only piecewise constant 
stresses. 

The numerical onset of checkerboard patterns is still mysterious. In prac
tice, such instabilities only appear after a large number of iterations, when the 
convergence criterion is very tight. 

In 2-D calculations, we eliminate these instabilities with a method used to 
filter pressure fields in a Stokes flow computation [13]. Once the piecewise con
stant optimal densities Of are determined, we project them on super-elements, 
which are clusters of 4 adjacent elements, so as to eliminate the checkerboard 
mode and preserve the overall density. We have not experienced any checker
board patterns in 3-D calculations. 

4.3 Penalization of intermediate densities 

As already explained the numerical computations deliver relaxed, or general
ized, optimal shapes - a density of material - rather than classical optimal 
shapes for the original formulation - a characteristic function of the material 
domain. In other words, our method produces a layout of material, which, 
as expected, includes large region of composite materials with intermediate 
density. From a practical standpoint, this is an undesirable feature since the 
primary goal is to find a real shape- a density taking only the values 0 or 1! 
This drawback is avoided through a post-processing technique that penalizes 
composite regions. The goal is to deduce, from the optimal densities, a quasi
optimal shape. In loose terms, the solution of the relaxed problem is projected 
onto the set of classical solutions of the original problem, in the hope that the 
value of the objective functional will not increase too much in the process. 

The strategy is as follows. Upon convergence to an optimal density, we run 
a few more iterations of our algorithm where we force the density to take values 
close to 0 or 1. This changes the optimal density and produces a quasi-optimal 
shape. In practice, instead of updating the density with the true optimal 
density ()opt, a value Open= (1- cos(7r0opt))/2 is used. Numerical experiments 
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show few variations in penalized designs for different choices of Open. 

Of course, the procedure is purely numerical and mesh dependent. The 
finer the mesh, the more detailed the resulting structure will appear at the 
outset of the penalization process. The method works well, because the relaxed 
design is characterized not only by a density() but also by a microstructure A*, 
which is hidden at the sub-mesh level. The penalization tends to reproduce the 
microstructure at the mesh level. 

Figure 3 shows the resulting penalized design for the 2-D bridge. Conver
gence history of the cost-function has been plotted on Figure 4. Note the small 
relative difference in performance between the converged composite design (it
eration 73) and the penalized design, compared to the performance of the initial 
configuration (iteration 1) where the whole domain is filled with A material. 

Figure 3: 2-D bridge: penalized design. 

25 

Beginning of penalization 

20 

\[~ 
----------------~ 

Iterations 

Figure 4: 2-D bridge: convergence history. 
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Figure 5: Computation domain, loading configuration and boundary conditions 
for a 3-D bridge. The domain is held fixed on grey regions. 

Figure 6: Optimal 3-D bridge from two different points of vue. The domain of 
{ e 2': 0.3} for the composite solution is represented. 

4.4 Homogenization versus "fictitious material" 

The preceding numerical algorithm for computing optimal shapes may seem 
a little bizarre: we spent a long time to introduce homogenization theory, 
a proper optimal microstructure, and complicated formulas for updating the 
design variables, and in the end, one could think that we are simply throwing 
away everything since we penalize and get rid of all the composite materials! 
Some authors (see e.g. [35]) have thus been led to propose a simpler approach 
that is sometimes called "fictitious material" method and coincides with the use 
of the convexification of the original problem. Their argument is the following: 
the idea of working with a density instead of a real shape is a good one, but, 
since in the end all intermediate densities are eliminated by penalization of 
the final result, why not suppress the delicate concept of a real microstructure 
and rather work simply with the same material A with a varying density (or 
thickness in the language of plate theory) ? Of course, such an approach has 
the real advantage of being straightforward to implement. However, as we shall 
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see, its results are not as good as the ones of the homogenization method. 

The "fictitious material" approach amounts to consider the following state 
equation 

{ 

(1' = 8(x)Ac(u) c(u) = HVu + vtu) 
div (1' = 0 inn 
(1' ·n = f on an 

(16) 

where 8(x) is a density function taking its values between 0 and 1. The goal is 
still to minimize, over all possible density, the weighted sum of the compliance 
and the weight, namely to compute 

min (c(8) +A f 8(x)) , 
o:::;e(o:)9 ln (17) 

where the compliance is defined by 

c(8) = f J · u = f (8(x)A)-1(1' · (1'. 
lan ln 

(18) 

By using the principle of complementary energy and switching the two mini
mizations, it is easily seen to have the following equivalent formulation which 
is the convexification of the stress-based formulation . 

. f (cF( ) - r { A-
1
T. T +A if A-

1
r. T ~ >. ) (19) 

div -r~O inn T - } 0 2VAA-1r • T if A-1r · T::; A 
T·n=f on of! 

Since it is a convex minimization problem, existence of optimal solutions is 
straightforward. By definition, the different energies of the stress r satisfies 
F(r) ~ QF(r) ~ CF(r), where the inequalities are strict for most choices of 
T. 

We have implemented numerically this convex formulation by using the same 
"alternate directions" strategy as before: for a given density 8, we compute the 
stress (1' solution of the linear elasticity state equation, then we update the 
design variable 8 by the following optimality relationship 

8 x ={ 1 ifA-1 (J'·(J'~A 
( ) JA-1A-1(1' · (1' if A-1(1' · (1'::; A (20) 

This algorithm converges quickly and smoothly, and we supplement it with 
the same penalization procedure as before. In general, the fictitious penalized 
design fails to have the same degree of complexity and detailed patterns as the 
homogenized penalized design (its energy E( w) is indeed larger). 

This sensibly worse behavior of the fictitious material approach takes its 
roots in the fact that there are no implicit microstructure hidden at the sub
mesh level like for the homogenization method. Thus, penalization does not re
veal any structure which was waiting to appear at the grid level. In other words, 
a solution of the convex formulation lies far away from any quasi-minimizer of 
the original formulation. 
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5 Multiple loads case 

The major difference between the single load case and the multiple load one, is 
that there are no explicit algebraic formulae to compute the lamination vari
ables (both directions and proportions) in the last case. Although we know 
from theoretical results ( cf. previous section) that rank-3 sequential laminate 
in two-dimensional case, and rank-6 in three-dimensional case, are the optimal 
laminates, we are not able to compute them explicitly. Therefore, we have 
to perform numerically this computation using some minimization algorithm. 
This optimization will occur at each iteration of our alternate directions algo
rithms, in each cell of the mesh. 

A different approach of multiple loads optimization has been advocated in 
[26], [20]. It is based on the fact that sequential laminates are represented by 
a positive measure on the unit sphere (giving the proportions of material in 
each direction of lamination) whose only relevant informations for optimization 
purposes are its fourth-order moments. The idea is thus to optimize in terms 
of these four.th-order moments rather than in terms of the original measure 
on the unit sphere. This approach is certainly more efficient than ours but 
is unfortunately restricted to the two-dimensional case since the set of fourth
order moments is explictly known only in this case (see [9]). 

5.1 Sequential laminates and lamination formulae 

Given p fixed stress tensors { ri}195P, we want to find 

p 

F(r,B) = min ~ A*-1ri · Ti, 
A*EGe LJ i=l 

(21) 

We know that optimality is achieved for a particular class of material named 
sequential laminates (see [8]). These materials are fully described with a few 
numbers of parameter: the number of laminations (rank of the laminate), the 
lamination directions and the proportions of lamination in each direction. Fur
thermore, given these parameters, the effective Hooke's law can be computed 
explicitly. For example, if A is the elasticity tensor of the initial material -
assumed to be isotropic for simplicity - with >. ~ 0 and J.L > 0 its Lame co
efficients, the effective Hooke's law of a rank-n laminate of A with void in 
proportion (} and (1 -B) can be written (see [17]) 

(22) 

where {mi}15i:::;n are the lamination proportions (0 ~ mi ~ 1, L~=l mi = 1), 
{ei} are the directions of lamination (leil = 1) and !A.(ei) are fourth order 
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tensors defined, for any N x N symmetric matrix ~ by 

Equation (21) can therefore be rewritten as 

(23) 

where L 9 is the set of all tensors A* defined by formula (22). 

Considering the function to minimize, we expect that the minimization over 
the lamination directions gives rise to some numerical difficulties; indeed, the 
lack of convexity with respect to { ei} variables may lead to unstable and ex
pensive numerical computations. 

To avoid this drawback, the idea is to keep fixed a given number n of direc
tions - sufficiently large to allow a good accuracy - and to minimize only on 
lamination proportions since formula (22) is convex in {mi}· Hence, in 2-D, 
we discretize the space uniformly by setting 

( 
k1r . k1r) 

ek = cos -:;;:, sm -:;;: , O~k~n-1 

and in 3-D, in a less uniform way when n is chosen such that n = n~ 

( 
l1r m1r . l1r m1r . m1r) 

ek = cos-cos-, sm-cos-, sm- , 0 ~ l,m ~ n. -1. 
ns n. n. n 8 n. 

The resulting approximate optimization problem amounts to find 

The minimization in () can be handled separately (and explicitly as function of 
fixed {mk}). Hence we have to solve a convex optimization problem in {mk} 
with both equality and inequalities constraints. 

5.2 Minimization over lamination proportions 

The minimization problem over proportions can be handled by different classi
cal algorithms; in our context the choice of an algorithm needs to satisfy some 
criteria. Since the minimization process is performed locally for each cell of the 
mesh, and for each iteration of the alternate directions method, the algorithm 
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chosen must combine a good rate of convergence with minimal cost in terms of 
computation time. 

The difficult point of this optimization consists in a good treatment of the 
constraints. Newton-like methods - like the interior points method - involving 
inversions of the Hessian matrix have been excluded for their CPU cost: com
putation of the Hessian (n2 coefficients) and an x n matrix inversion at each 
iteration. 

After numerous tries with different gradient-type algorithms, our choice has 
been fixed on the following: the equality constraint I:;=l mk = 1 has been 
eliminated taking for example m1 = 1- I:Z=2 mk. Numerical test have shown 
that the choice of the eliminated variable does not bias the solution. After this 
transformation, the problem becomes an optimization problem with only in
equalities constraints. It is treated by a classical projected gradient algorithm. 
Its efficiency depends strongly on the good performance of the line-search al
gorithm used along the descent directions. 

5.3 Orthogonal directions method 

This method is a fast alternative to the previous one. It is less accurate than 
the multiple loads method exposed above, but faster and sometimes, at least 
when one of the loads is preeminent, gives good results. 

The method is based on the following key idea: use rank-N laminates in 
N dimensions (as it has been rigorously established in the single load case), 
and align the lamination directions on the principal directions of the stronger 
stress tensor in each mesh cell. Hence, the minimization problem reduces to 
a minimization over one variable (the proportion m1 since m1 + m2 = 1) 
in 2-D and two variables in 3-D. When the lamination directions are fixed, 
the optimization in m1 can be done explicitly in 2-D, and is easy to perform 
numerically in 3-D. 

6 Numerical results 

The algorithm has been first tested independently from the shape optimization 
program: for some fixed stress tensors { Ti} we tried to solve, as fast as possible, 
and with the best accuracy problem (24). Figure 7 shows the values ofF( T, 8) 
obtained as function of the number of directions. The energy is globally de
creasing with the rank of the laminate chosen. Note that the energy does not 
monotonically decrease with the number of directions: for particular values of 
n it may happen that the "good" directions corresponding to the rank-3 lami
nate (in 2-D) that reaches the energy bound fall in the set of fixed directions, 
while some greater values of n can only approximate these directions. 
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Figure 7: 

At this stage, we conclude that the method is robust but quite expensive 
in CPU-time: the algorithm's cost grows roughly linearly with n. But in the 
context of the shape optimization algorithm we must do an important remark. 
As showed by Figure 4, the global design converges rapidly in the very first 
iterations of the method. Only small changes - but essential to the good con
vergence of the penalization process - occur after this first stage. The gradient 
method, when initialized with a good initial guess, can improve dramaticaly its 
performance. In our case, we experimented a good acceleration of the gradient 
algorithm after few iterations, when the global topology is established. 

To illustrate the efficiency of the method on a real - industrial - case, we 
performed the optimization on a benchmark proposed by Peugeot: a suspension 
triangle. Figure 8 shows the domain to optimize with the boundary conditions 
and the two loads. Each load corresponds to different situations of driving. 
The real piece must support successively these two kinds of external forces. 
The intensity of the second (horizontal) load have been increased in order to 
balance the respective importance of the two cases. 

Figure 8: Boundary conditions and loads for the suspension triangle. 

When optimized separately for each load, the piece is as shown on Figures 10 
and 11. The multiple loads optimization gives the shape drawn on Figure 12, 
more realistic from an automobile engineer point of view. 
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On Figure 9, the evolution of the objective function is plotted for 4 differ
ent methods: rank-n laminates with fixed directions (two cases: n = 10 and 
n = 25), convexification (or "fictitious material approach"), and "orthogonal 
directions" method. As expected, the convexified formulation shows a better 
performance in the composite phase but becomes less efficient than the other 
methods after penalization. The penalized design is slightly better with rank-
25 than with rank-10 laminates. The "orthogonal directions", far cheaper in 
CPU time than the rigorous approach using rank-n laminates, gives - for this 
particular test - acceptable results (comparable to rank-10 laminates). But 
its convergence, especially when the number of loads becomes large, is not 
guaranted. 

Conclusion 

We have presented an efficient method to treat numerically the multiple 
loads case. This approach leads to better numerical results than those of the 
"fictitious material" method or of the "othogonal directions" method. Its draw
back, at least in the 2-D case, is its cost in terms of CPU time, compared to 
the approach of [20] or [26]. However, in 3-D it is the only available method. 
Remark also that in 3-D the relative cost of the lamination proportions opti
mization is much smaller compared to the solution of the elasticity problem at 
each iteration. Although the gradient algorithm for computing the lamination 
proportions can certainly be enhanced by a suitable refinement procedure, our 
method is already reliable for industrial applications. 
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Figure 10: Composite (left) and penalized (right) solutions of the suspension 
triangle for the first loading case 

Figure 11: Composite (left) and penalized (right) solutions of the suspension 
triangle for the second loading case 

Figure 12: Composite (left) and penalized (right) solutions of the suspension 
triangle optimized by the multiple loads method 
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