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ABSTRACT. Finite rotations are traditionnally regarded as geometric operations on vectors. 
By adopting an algebraic point of view, they many also be regarded as linear 
transformations with invariance properties. They can thus be described in terms of a 
minimal set of parameters, the choice of which is very wide. The objective of the paper is 
to make a general presentation of finite and differential motion kinematics in algebraic 
fonn and to discuss different methods of parametrization. The proposed concepts are then 
applied to develop an energy conserving time integration strategy to compute the long 
term response of a spinning top in a gravity field. 

RESUME. Les rotations finies sont generalement assimilees ii des operations geometriques 
sur des vecteurs. D'un point de vue algebrique, on peut aussi les voir comme des 
transformations lineaires dotees de proprietes d'invariance. Elles peuvent done etre 
decrites en termes d'un ensemble minimal de parametres que ['on peut choisir de multiples 
farons. L'objectif de !'article est de faire une presentation generate de Ia cinematique des 
mouvements fini et differentiel sous forme algebrique et de discuter les differentes formes 
de parametrisation. Les concepts proposes sont ensuite appliques au developpement d'une 
strategie d'integration temporelle preservant l'energie du systeme pour le calcul de Ia 
reponse ii long terme d'une toupie dans un champ de gravite. 
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1. Introduction 

The kinematics of finite motion and, in particular, finite rotations, has been 
a topic of continuous interest since the pioneering work of Euler [EUL 76] in 
the development of classical dynamics. L. Euler's objective was the study of 
motion undergone by particles, rigid bodies and systems thereof. 

In particular, he has been the first to recognize the importance of spherical 
motion defined as the pure rotation motion occuring in a body fixed at one 
point. He also observed that a spherical motion can always be described as a 
unique rotation about an axis of given orientation in space. 

Many textbooks of classical dynamics cover the subject of kinematics of 
rigid motion, but most of the time with the only objective of treating the 
classical problem of the dynamics of a single rigid body in space. Let us mention 
in particular the classical works of Whittaker [WHI65], Goldstein [GOL64], 
Lur'e [LUR68] and Meirovitch [MEI70]. 

Two remarkable texts which are devoted exclusively to the study of kine­
matics ought to be mentioned : the now classical book of Bottema and Roth 
[BOT79] and a more recent monography by Angeles [ANG88] which have both 
been used extensively throughout the elaboration of the present review. 

Several points of view may be adopted to represent large rotations in a 
three-dimensional space [GER88, CAR89]. 

The geometrical point of view, which is found in most textbooks of classical 
dynamics [GOL64, MEI70, LUR68, WHI65], consists to express an arbitrary 
rotation in terms of elementary rotations about well defined axes. Euler himself 
introduced a set of angles, well known as Euler angles, which is particularly 
well suited to the study of spinning bodies such as tops and gyroscopes. 

The community of flight mechanics [ETK72, HUG86] has adopted another 
set of purely geometrical parameters, known as Bryant or nautical angles, which 
describe the rotation in terms of angular quantities known as roll, pitch and 
yaw. The latter have an easy geometric interpretation in the very context of 
flight mechanics. The same choice has been made in the early development of 
robotics to identify the motion of the end-effector of the robot relatively to its 
base [PAU81]. 

Despite their straightforward physical interpretation, geometric parameters 
have also serious drawbacks. They may lead to singularities in specific sit­
uations, and due to their trigonometric nature they are not computationally 
efficient to describe the arbitrarily large rotations which can be encountered in 
very complex systems such as articulated systems made of interconnected rigid 
and flexible bodies. Therefore, the main interest of geometric representations 
lies today in the post-processing of results following a numerical simulation. 

The development of the algebraic approach is based on the very fundamen­
tal observation that spherical motion preserves the length of the position vector 
of any point undergoing the rotation. The well known orthonormality property 
of the rotation operator follows immediatly and allows in turn to express its al­
gebraic structure in terms of invariants [AN G88]. A large variety of parameters 
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sets can be proposed to describe these invariants, the most well known being 
the Euler parameters and the Rodrigues parameters. A significant part of our 
review work will be devoted to the development of this algebraic approach and 
to analyzing the algebraic properties and computational merits of the various 
parameter sets which can be adopted. 

The use of the algebraic approach in a numerical context has become com­
mon practice with the development of the multibody dynamics discipline. Ef­
ficient use of Euler parameters for numerical simulation in rigid multibody 
dynamics can be found in textbooks such as [NIK88, HAU89]. The method­
ology was extended later to flexible multibody systems by several authors 
[GER86, VAN84]. 

The interest of the continuum mechanics community for the kinematic de­
scription of rotational motion is more recent, due to the slow development of 
geometrically nonlinear analysis of engineering structures until the early eight­
ies. In this context, appropriate formalism is however needed to describe locally 
the motion undergone by the continuum. Among the contributions of contin­
uum mechanics experts, one can mention in particular remarkable synthesis 
works by Argyris [ARG82] and Atluri [ATL95]. 

The most fundamental contribution in the context of the application to 
structural mechanics is certainly that contained in the impressive set of ar­
ticles by J. Simo and his co-workers [SIM86, SIM85, SIM95, SIM91, SIM89]. 
J. Simo has raised the level of abstraction of the algebraic approach by mak­
ing the choice to represent finite rotations as objects belonging to a non-linear 
manifold, the special orthogonal Lie group [SIM86]. The special orthogonal 
group concept has been used to develop a geometrically exact modelling of 
beams [SIM86] and shells [SIM89]. Special attention was brought to time 
integration aspects, showing in particular how to increment finite rotations 
according to the finite rotation composition rule. He also demonstrated that 
energy conserving algorithms can be developed even in presence of large rota­
tions, therefore requiring a specific incrementation procedure for finite rotations 
[SIM91, SIM95, SIM92]. 

The work accomplished by Cardona and Geradin [CAR88, CAR89, GER93a] 
is much inspired by the work of Simo, but extends and systematizes the concept 
of nonlinear finite element to flexible multibody dynamics. Their formalism has 
provided a general basis for the development of a large class of element models, 
including rigid bodies, elastic beams [CAR88] and specialized types of joints 
[GER93b, GER93a]. They have also proposed a very general methodology 
for substructuring in flexible multibody dynamics which avoids cumbersome 
computations for the evaluation of subsystem kinetic energy [GER91]. 

The present paper deals exclusively with rigid body dynamics aspects and 
is organized as follows. 

Section 2 is devoted to the kinematic description of rigid body motion. 
It is much inspired from ref. [ANG88] for the development of the algebraic 
approach to spherical motion starting from the concept of rotation invariants. 
Like in [ANG88], systematic use is made of the matrix notation to describe 
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vector operations in the Euclidian space. The explicit expression of the rotation 
operator is given under various forms, and the interpretation of general rigid 
body motion as a screw motion is also recalled. 

Section 3 deals with velocity analysis. It mainly establishes the material 
and spatial expressions of angular velocities in terms of rotations invariants and 
their time derivatives. It also introduces the concept of instantaneous screw 
axis for velocity analysis of general rigid body motion. 

Section 4 goes through the same steps for acceleration analysis. 
Section 5 discusses an important aspect of computational kinematic~ : in­

cremental rotational motion. It is shown that rotation increments behave as 
angular velocities. Special situations such as updating the rotation of the ref­
erence frame and motion analysis in a non inertial frame are also discussed. 

Sections 7 to 10 deal with the problem of selecting parameters to represent 
the spherical part of rigid body motion. Section 7 presents the most usual 
parameter sets of algebraic nature: the Cartesian rotation vector, the Rodrigues 
parameters and Euler parameters. Section 8 establishes the link between Euler 
parameters and quaternion algebra and derives additional sets of parameters: 
the conformal rotation vector (CRV) and the linear parameters. Section 10 
comes back to the problem of geometric interpretation of finite rotations by 
describing the concepts of Euler angles and Bryant angles. 

Section 11 presents an application of academic nature which has the merit to 
make use of many concepts presented in the previous sections. It demonstrates 
how an energy conserving integration strategy can be devised to numerically 
integrate the motion equations of a spinning top in a gravity field. The time 
integration scheme adopted is the mid-point rule, and its application requires 
the splitting of the total rotation increment in two equal parts to express dy­
namic equilibrium at mid-point [BAU95, GER94). It is shown that this is best 
achieved by making use of Euler parameters. 

The numerical tests achieved demonstrate the effectiveness of this compu­
tational approach. Physical interpretation of the results is obtained by post­
processing them in terms of Euler angles. 

2. Kinematic description of rigid body motion 

In the following presentation of kinematics of rigid motion, matrix notation 
has been systematically adopted. Vectors of the euclidian space £3 are repre­
sented by column matrices collecting their components in a given frame, and 
linear transformations are described by vector-matrix products. The notations 
adopted and the fundamental operations of linear algebra which will be invoked 
are given in appendix A. 

Unless specified otherwise, the column matrix collecting the spatial (iner­
tial) components of a vector is denoted by a lower case letter while the column 
matrix collecting the material (body fixed) components of the same vector is 
denoted by the same letter in upper case. 
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2.1. Spherical motion 

Spherical motion corresponds to the rotation of a rigid body about a fixed point 
in space. In other words, we can regard it as the motion of the end point of a 
vector with its origin remaining fixed (see figure 1). It is thus characterized by 

Figure 1: Spherical motion 

two invariance properties: 

(i) the length of the position vector of a given point P attached to the rigid 
body remains unaffected by the pure rotation; 

(ii) the relative angle between any two directions attached to the body remains 
constant under the transformation. 

Let us define 

X the position vector of point P in the reference configuration, of Cartesian 
components 

(1) 

X. the position vector of point P after transformation, of Cartesian components 

(2) 

[X1 X2 X3] and [x1 x2 x3] will be respectively referred to as the material and 
spatial coordinates of point P. 
Similarly, we define ,, 

[E1 E2 E3] a set of orthonormal base vectors attached to the body in the 
reference configuration. They form the so-called absolute or 
spatial frame. 
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(el e2 e3] the same set of orthonormal base vectors after transformation. 
They remain attached to the body in its current configuration 
and form thus the material or body frame. 

The pure rotation can be expressed as a linear transformation 

(3) 

which also applies to the base vectors 

e; = RE; (4) 

The length of the initial vector being preserved during the spherical motion, 
this implies 

(5) 

which means that the matrix describing a pure rotation is orthogonal 

(6) 

The base vectors before transformation forming an orthonormal set, we have 

and 

and therefore 

We have likewise by hypothesis 

and 

and therefore 
(e1e2f e3 = 1 

Let us now define the base vector matrices 

and 

which, owing to (8) and (10), have a unit determinant 

det(A) = 1 and det(B) = 1 

They are such as 
B=RA 

and therefore we have 
det(R) = 1 

which shows that the rotation matrix R is a proper orthogonal matrix*. 1 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

1 It can be shown that an unproper orthogonal matrix, characterized by det(R) = -1, 
would generate a reflection with respect to the plane orthogonal to n. 
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Let us now examine the properties of the eigensolutions of matrix R. Owing 
to (14) we have 

(15) 

The rotation matrix R also admits the spectral expansion 

R= XAX- 1 with X*X=I (16) 

and likewise, since R is real 

(17) 

and therefore 
(18) 

which implies 

tr(RTR) = tr(A* A)= 1>-il + 1>-~1 +I>.~ I= tr(I) = 3 (19) 

It is easily verified that the set of equations 

(20) 

has for solution 

>.2,3 = exp(±i¢) (¢arbitrary) (21) 

and therefore the proper orthogonal matrix R admits at least one eigenvector 
n such that 

Rn=n (22) 

which remains unaffected by the transformation: the unit vector n gives thus 
the rotation axis. 
The eigenvectors associated to >.2 and >.3 being necessarily complex conjugate, 
let us express the modal matrix X in the form 

X= [n u + iv u- iv] 

and thus 

X*= [(u~:vf] 
(u + iv)T 

Owing to property (16.b) we have 

[ 

nTn nT(u+iv) 
X*X= (u-iv)Tn (u-iv)T(u+iv) 

(u + ivfn (u + ivf(u + iv) 

nT(u- iv) l 
(u- iv)T(u- iv) =I 
(u + ivf(u- iv) 

(23) 

(24) 

(25) 



5 04 Revue europeenne des elements finis. Vol. 4 - no 5-6/1995 

which implies 
BTU= llTV = 0 
UTV = 0 
UTu+ VTV = 1 

(26) 

From the properties (26) we deduce that vectors u and v form an orthogonal 
set of base vectors in the plane perpendicular to rotation axis n. 
We next observe that the vectors 

R(u + iv) 
R(u- iv) 

can be developed in the form 

= exp (iif>)(u + iv) 
= exp ( -iif>)(u- iv) 

Ru + iR v = ( u cos¢> - v sin¢>) + i( u sin¢> + v cos¢>) 
Ru - iR v = ( u cos¢> - v sin¢>) - i( u sin¢> + v cos¢>) 

and therefore 
Ru = u cos ¢> - v sin ¢> 
R v = u sin ¢> + v cos ¢> 

(27) 

(28) 

(29) 

It shows that both vectors u and v undergo a plane rotation of angle ¢> in the 
plane perpendicular to the rotation axis. 
This result is known as the Theorem of Euler [EUL 76] on finite rotations: 

If a rigid body undergoes a motion leaving flxed one of its points, 
then a set of points of the body, lying on a line that passes through 
that point, remains flxed as well. 

2.2. Explicit expressions of the rotation operator 

The orthonormality property (14) implies the six constraints 

(i=1, ... j, j=1,2,3) 

and therefore the rotation matrix can be expressed in the form 

(30) 

(31) 

where 0:1, a:2, a:3 are 3 independent rotation parameters which can be chosen 
m many ways. 
Different explicit expressions of the rotation operator with direct geometric 
meaning can be deduced from the results of the previous section. 
A first series of expressions may be obtained in terms of the initial and trans­
formed base vectors. They do not involve a minimal set of parameters as 
indicated by eqn (31), but their physical interpretation is immediate. 
A second series of expressions is obtained in terms of the linear invariants of 
the rotation n and ¢>. The latter form an almost minimal set in the sense that 
they are simply linked by the normality constraint llnll = 1. 
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The outer product expression The outer product expression of the rotation 
operator is a direct consequence of eqn ( 13). By making use of eqn ( 11) we 
obtain 

(32) 

Expression in terms of direction cosines It is obtained by resolving the linear 
transformation describing the rotation into Cartesian components 

(33) 
j j j 

and therefore 
x; = Ef x = L E[ ejXj = L r;jXj (34) 

j j 

Hence the rotation operator explicit expression 

(35) 

in terms of inner products or, equivalently, direction cosines between the base 
vectors. 

Expression in terms of the linear invariants n and cp By making use of the 
projection operator (366), the vectors X and x = RX may be decomposed into 
their parts along and orthogonal to the rotation axis 

By observing that 

X =(I-Pn)X+PnX 
X =(I-Pn)x+Pnx 

(I- Pn)R = nnTR = nnT =I- Pn 

and with the definitions 

and 

Eqns (36) may be rewritten in the form 

X =(I-Pn)X+Y 
X =(I-Pn)X+y 

(36) 

(37) 

(38) 

(39) 

The orthogonal party of the transformed vector may be computed by observing 
that it undergoes a pure rotation in the plane orthogonal to n, and thus 

Yy = IIYII 2nsin cp 
yT y = IIYII2 cos¢ 

(40) 
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and therefore is solution of the ( 4 x 3) system 

[ ~] == IIYII2 [n sin c/J] Y y cosc/J ( 41) 

Matrix Y being of rank 2, it has a unique solution which may be computed 
by taking the More-Penrose inverse of the system matrix. Multiplying by the 
transposed system matrix yields 

( 42) 

Owing to (364) we have 

(43) 

and thus 

[ 
-T 

y == y Y] [ ~~~n:] == (ii sin cjJ +I cos cjJ )Y == [ii sin cjJ + (I - nnT) cos c/J]X 

(44) 
We finally get 

x == [I cos cjJ + ( 1 - cos cjJ )nnT + ii sin c/J]X (45) 

from which we extract the geometric expression of the rotation operator in 
terms of n and cjJ 

I R == I cos cjJ + (1 - cos cjJ )nnT + ii sin cjJ I (46) 

It has the linear invariants 

tr(R) == AI + A2 + A3 == 1 + 2 cos cjJ 

vect(R) == nsincjJ 
(47) 

The exponential map Let us start again from the linear transformation de­
scribing spherical motion 

x== RX (48) 

and let us derive it with respect to the rotation angle 

(49) 

with 

~~ == ii cos cjJ- (I- nnT) sin cjJ (50) 

It is easily verified that 

(51) 
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and therefore the spherical motion is governed by the differential equation 

dx _ 
0 --nx= 

d¢; 
with x(O) =X (52) 

Its solution is 
x = exp(ii¢) X (53) 

and yields the exponential representation of the rotation operator 

I R=exp(ii¢) I (54) 

2.3. General motion of a rigid body 

Figure 2: Screw description of rigid body general motion 

Let us now consider the case of a rigid body undergoing translation and rotation 
motion simultaneously. The spatial position of any point P on the body can 
be described by a frame transformation (figure 2) 

I xp = xo + RXp I (55) 

where 

0 is a reference point on the body, adopted as origin of the material frame 
[e1 e2 e3]. 

xo describes the spatial position of this origin. 
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Xp contains the material coordinates of point P on the body. 

R is the rotation operator from space frame (E1 E 2 E 3 ] to material frame 
(e1 e2 e3]. 

We can also express the displacement of point P from its reference position in 
the form 

up = xp - Xp = u 0 + DXp 

where u 0 = x 0 is the displacement of the origin, and where 

D=R-I 

(56) 

(57) 

is the rotation displacement matrix. It has not maximum rank since n is in its 
null space 

Dn = DTn = 0 (58) 

Therefore the system 
DXp +uo = 0 (59) 

has no solution in general, which means that there is generally no point on the 
body which remains fixed under the frame transformation (55). 
Let us thus look for a point C which would undergo minimum displacement 
uc. Its position can be determined by solving the least squares problem 

llucll =min IIDX + uall 2 

X 

Its solution verifies the following equation 

which shows that the displacement of point C is in the null space of DT 

uc = DXc + uo = kn 

where k is a constant. It is obtained by multiplying eqn (62) by nT 

and the position of point C is thus solution of 

DXc = (nnT - I)uo 

(60) 

(61) 

(62) 

(63) 

(64) 

Combining eqns (56) and (62) allows to rewrite the displacement of point P in 
the form 

I up = kn + D(Xp - Xc) I (65) 

It expresses that the displacement of any point P on the body can be decom­
posed into a finite rotation about the rotation axis n followed by a translation 
about the same axis. It is equivalent to the motion undergone by the nut of a 
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screw, and therefore a general rigid body motion as described by eqn (65) is 
often referred to as screw motion (figure 2). 
In order to remove the undeterminacy upon the choice of point C on the rota­
tion axis, let us choose on the screw axis the point M which is at the shortest 
distance from the origin 0. Its vector position M, which is defined as the pose 
of the screw axis, verifies the constraint 

(66) 

and is solution of the 4 x 3 system 

(67) 

D being of rank 2, the solution of (67) is unique and is obtained from 

(68) 

By making use of (57) and of the expression ( 46) of the rotation operator in 
terms of [n ¢], we obtain the pose vector of the screw 

DTuo 
XM = - ---,-----=-

2(1- cos¢) 
(69) 

It is also immediatly verified that the displacement of point M is a pure trans­
lation 

liM= kn+ D(XM- Xc) = kn 

The pitch of the screw is defined as the ratio 

27fk 
p=-

1> 

(70) 

(71) 

and corresponds to the amount of translation produced by a rotation of 1 
radian. 
The screw nature of a general rigid body motion as expressed by eqn (65) had 
already been observed by Chasles and formulated by the theorem 

Under the most general motion of a rigid body, a set of points 
of the body, namely a line parallel to the axis of rotation involved, 
undergo a displacement of minimum magnitude that is parallel to 
that axis. Moreover, the axis passes through a point whose position 
vector is given by eqn. (69). 
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3. Velocity analysis of rigid motion 

3 .1. Velocity analysis of spherical motion 

Let us again consider the case of finite motion about a fixed point where the 
motion af an arbitrary point P on the rigid body is governed by 

Xp = RXp with (72) 

The velocity vector of point P expressed in spatial coordinates is obtained by 
taking the time derivative of (72) 

Vp = Xp = RXp = RRT Xp 

since its material coordinates Xp remain invariant with respect to time. 
The matrix RRT is skew symmetric since 

and therefore let us define 

(73) 

(75) 

It can be regarded as the matrix of angular velocities expressed in spatial 
coordinates, since equation (73) may be rewritten in the form 

Vp = WXp (76) 

and is the matrix analog of the vector relationship 

Vp = W X Xp (77) 

The vector part of w provides the spatial expression of the angular velocity 
vector 

. T 
w = vect(RR ) (78) 

The velocity vector of point P may also be transformed to material coordinates 

T T' v p = R Vp = R RXp (79) 

and likewise we define 
(80) 

which may be interpreted as the matrix of material angular velocities. The 
vector of material angular velocities is thus obtained in the form 

(81) 
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3.2. Explicit expression of the angular velocities 

We are now looking for an explicit expression of the angular velocity vectors w 
and n in terms of the invariants of the rotation (n, ¢)and their time derivatives 
(D., ~). 

To this purpose, let us start from the invariance properties 

Rn=n (82) 

of the rotation operator. Their time derivative yields 

(R- I)n = -Rn T . . T 
(R -I)n = -R n (83) 

If we premultiply the first eqn (83) by RT and the second one by R, we get 

T T. -
(R - I)n = R Rn = On ( ) 

. . T -
I- R n = - RR n = wn (84) 

and thus 
(R- I)D. = iiw (85) 

In order to solve the equations (85) with respect to n, let us take into account 
the constraint 

~(nTn) = 2nTn = 0 (86) 

n is thus solution of either one of the ( 4 X 3) systems 

(87) 

They can be solved by taking the More-Penrose inverse of the left-hand side 

[21- (R + RT) + nnT]iJ. = (I- R)iiO 
[2I- (R + RT) + nnT]n = (RT- I)iiw 

Owing to (46), it is immediatly verified that 

and also 
(I - R)ii = (1 - cos¢ )ii- sin ¢iiii 
(RT- I)ii = -(1- cos ¢)ii- sin ¢iiii 

We thus get the relationships 

BO=n 

with the matrix 

B = [~ii + sin¢ (I - nnT)] 
2 2(1- cos¢) 

(88) 

(89) 

(90) 

(91) 

(92) 
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which has not maximal rank and thus cannot be inverted to compute 0 and 
w. 
Extra relationships which relate 0 and w respectively to cfi can be obtained by 
noticing that 

tr(R) = ;ft(tr(R)) = -2~sinc{i 
= tr(Rfl) = tr(wR) 

Let us decompose R into its symmetric and skew symmetric parts 

with a= nsinc{i 

it is easily verified that for any symmetric matrix S 

tr(Sii) = tr(iiS) = 0 

while eqn (364) yields 

tr(aii) = tr(iia) = -2aT u 

We thus get the results 

tr(Rn) = -2~ sin cfi = -2nTn sin cfi 
tr(wR) = -2c{isinc{i = -2nTwsinc{i 

fl and W are then obtained by solving the ( 4 X 3) systems 

and 

[~]n=[:J 

[=:]w= [:J 
They can be inverted in the form 

0=A-
1

(BT nJ[:J 
and 

w=A-
1

(B nJ[:J 
with the matrix A 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 

(101) 

A= BTB + nnT = [ 2 (l-~os4>)(I- nnT) + nnT] (102) 

and its inverse 
A -l = [ 2(1 -cos cfi)(I- nnT) + nnT] 

We finally get the expressions of the angular velocity vectors 

with the matrix 

n = Mn+n~ 
w = MTn+n~ 

I M = sin cfi I - ( 1 - cos cfi) ii I 

(103) 

(104) 

(105) 
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3.3. Velocity analysis of arbitrary motion. Instantaneous screw 
axts 

The arbitrary instantaneous motion of a rigid body is now studied in the same 
way as the displacement analysis was performed in section 2.3 .. 
Let us start from the description of general rigid body motion in spatial coor­
dinates 

xp = x 0 + RXp (106) 

P being an arbitrary point on the rigid body. 
The velocity vp of point Pis obtained by time differentiating eqn (106) 

v p = xp = x0 + RXp (107) 

By inverting eqn (107) in the form 

Xp = RT(xp- xo) (108) 

it may also be expressed in terms of the spatial coordinates 

vp=v0 +w(xp-xo) (109) 

where the first term vo = X.o represents the velocity of the reference point 0, 
and the second one expresses the relative velocity of point P with respect to 
0. 
It makes clear that the instantaneous motion of a rigid body is known if the 
position and velocity of one of is points, as well as its angular velocity, are 
known. 
The reference point 0 being not unique, the above description is not unique. 
We thus may aim at obtaining an invariant description of instantaneous mo­
tion instead. It is then described via its instantaneous screw parameters as 
established below. 
To this purpose, let us look for a point C on the body which undergoes mini­
mum velocity 

min { ~v~} =min { ~ llxo + w(xp - xo)ll 2
} = ~v~ 

Xp 2 Xp 2 2 
(110) 

Its coordinates xc verify the condition 

wT [w(xc- xo) + vo) = 0 (111) 

and its velocity vector being in the null space of matrix w, is thus parallel to 
the direction of angular velocity 

- ( w 
vc = w xc- xo) + vo = u llwll (112) 

The translation velocity u is obtained by projecting the velocity vector (112) 
on the direction w 

1 T 
u = llwllw vo (113) 
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The position xc of point C is obtained by attempting to solve 

_ _ wwT 

Wxc = wxa - (I- llwll2 )vo (114) 

It is however not unique since matrix w has not maximum rank. 
Let us assume that a particular solution XM to eqn (114) has been obtained: 
the points 

XC= XM + O:W (115) 

where o: is an arbitrary parameter, all have the same minimum velocity (112). 
Equation (115) represents a line within the body issued from XM and directed 
along the angular velocity direction w. It is the instantaneous screw axis of the 
rigid body. 
The origin is found by imposing to it to be at minimum distance from the 
reference point 

WTXM = 0 

It is then solution of the ( 4 x 3) system 

[ jr]xM ~ [ Wxo - (I ~ ~~~ )vo] 
Premultiplying by [ wT w] yields 

llwll
2
xM = WT Wxo + wv0 

and finally 
w wwT 

XM = llwll2 va +(I- llwll2 )xo 

One thus gets the following theorem 

The locus of points of a rigid body having same minimum ve­
locity is a line parallel to the angular velocity vector that passes 
through a point XM whose position vector is given by eqn (119). 

(116) 

(117) 

(118) 

(119) 

The quantities XM and w, which define the instantaneous screw axis in position 
and direction, are its Plucker coordinates. 
The velocity u given by eqn (113) is the sliding ofthe instantaneous screw, and 
the ratio 

(120) 

is the pitch of the screw. 
The velocity of an arbitrary point on the body takes the final form 

w -
vp = ullwll +w(xp- xM) (121) 

showing that the velocity field on the rigid body is composed of a translation 
component along the instantaneous rotation axis and a rotation component 
about the same axis. 
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4. Acceleration analysis of rigid motion 

4 .1. Acceleration analysis of spherical motion 

The acceleration vector of point P expressed in spatial coordinates is obtained 
by differentiating (72) twice with respect to time 

.. .. T 
ap = xp = RXp = RR xp (122) 

The matrix RR T of spatial angular accelerations can be computed from the 
matrix (75) of spatial angular velocities in the form 

.. T d . T .. T . 
a = RR = dt (RR ) - RR = w + ww (123) 

The first term, which is skew symmetric, represents the rate of change of an­
gular velocities. The second one is symmetric and collects the centrifugal ac­
celeration terms. 
The spatial expression of the angular acceleration vector ~s now defined as the 
vector part of matrix 0:' and is clearly the vector part of w alone 

w = vect(a) = vect(w) (124) 

The acceleration vector of point P may also be expressed in material coordinates 

T T .. 
Ap = R ap = R RXp (125) 

and likewise we define the matrix A of material angular accelerations which 
may be computed from the matrix of material angular velocities (80) in the 
form 

(126) 

The material expression of the angular acceleration vector is similarly defined 
as 

n = vect(A) = vect(O) (127) 

4. 2. Explicit expression of angular accelerations 

The explicit expressions of the angular acceleration vectors w and n in terms 
of the invariants of the rotation ( n, ¢;) and their time derivatives are directly 
obtained from the angular velocity vectors (104). 
The time differentiation of (104) provides 

w 

The computation may be further simplified by observing that 

fin.= o 

(128) 

(129) 
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and thus .. . 

w 
= Mii + n,P + N n + n,P 
= MT ii + nJ + NT n + nJ; (130) 

with the matrix 
N =¢(cos ,PI- sin ,Pii) (131) 

4.3. Time rate of change of instantaneous rotation axis 

In a spherical motion, the direction of the instantaneous rotation axis, which 
is defined by the unit vector 

does generally not remain constant in time. 
It obviously is in the null space of matrix w 

wf= o 
and its time derivative is such that 

(132) 

(133) 

(134) 

The solution to system (133) can be obtained by taking the More-Penrose 
inverse of the system matrix in the form 

[ -WW + fiT] f = WWf (135) 

If we now return to the definition (132) off and make use of (365), we get 

(136) 

and 

[ -- q']-1 1 q' q' 

-ww + ff = llwll2 (I-ff ) + ff (137) 

The time rate of change in the direction of the instantaneous rotation axis is 
thus obtained in the form 

. 1 - "' 1 -_:_ q' w w 
f= llwll 2 w(wf) = llwllfwf= (I-ff )llwll = Pr llwll (138) 

which shows that it remains orthogonal to the rotation axis w. 

5. Infinitesimal spherical motion and rotation increments 

The description of infinitesimal rotations and the concept of incremental motion 
are of primary importance in the formulation of kinematic and dynamic prob­
lems. Infinitesimal rotations are used to formulate virtual work expressions, 
while incremental relationships for rotations, angular velocities and accelera­
tions are implied in the linearization of kinematic and equilibrium equations. 
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5 .1. Spatial and material infinitesimal rotations 

Let us start again from the linear transformation describing spherical motion 

x=RX (139) 

The associated virtual displacement is obtained through variation of this ex-
pressiOn 

ox= oRX (140) 

and can be recast in either one of the forms 

ox= R(RT oR)X =RoB X (141) 

with the skew matrices 

(142) 

which have respectively the meaning of spatial and material matrices of in­
finitesimal rotations. They are related together by 

(143) 

and the associated axial vectors of infinitesimal angular displacements 

oO = vect( oO) and o0 = vect(oB) (144) 

are likewise related by 
(145) 

5.2. Variation of angular velocities 

Let us consider the expression of the variation of the angular velocity matrices 
(75) and (80) 

on = oRTR+ RTo:R 
ow = o:RRT + :RoRT (146) 

They can be related in different ways to the time derivatives of infinitesimal 
rotation angles 

oe =RToR+RToR 
o() = oRRT + oRRT 

If we combine (146.a) with (147.a) and (146.b) with (147.b), we get 

on = oe + oRTR- RT oR= o0- o0n + no0 

ow =oB+RoRT -o:R.RT = oB+oBw-woB 

If we then notice that according to (364) we have 

vect(uv- vii.)= vect(uvT- vuT) = (iiv) 

(147) 

(148) 

(149) 
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we get a first expression of the variations of angular velocities 

60 = 60 + 060 
6w = 60- wM) (150) 

A second set of results can be obtained by transforming both equations (147) 
by the rotation operator 

= 6RRT + RRT 6RRT 

= RT6R+ RT6RRT R 

By making use of (146.a) and (146.b), we get 

= 6w- R6RT + R:R.T 6RRT = ow 
= 60- 6RTR+ RT6RRT R = 60 

(151) 

(152) 

We have thus also the crossed relationships between material and spatial quan­
tities 

6w = R60 
60 = RT6{j 

(153) 

The variations of angular accelerations result from a direct time differentiation 
of eqns (150). They have for expressions 

60 = 60 + 060 + 060 
6w = 6B- w6e- i:J6o 

5.3. Angular velocities and accelerations in a moving frame 

(154) 

In various applications, one needs to compute inertial velocities and accelera­
tions from measures taken in a moving frame. It is generally the case when 
studying the dynamics of a space vehicle with moving components. It is also 
the case when applying some kind of component mode representation for the 
elastic deformation of a large body undergoing arbirarily large motion. The 
actual rotation results then from the composition of the rotation of a reference 
frame R 0 in which an additional rotation Rrel occurs 

R = RoRrel (155) 

The reference rotation Ro being time dependent, the computation involves 
terms arising from the variation of R 0 . 

Let us for example compute the material variation of angular displacements. 
By differentiating both sides of eqn (155) and multiplying by RT we get 

(156) 
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and the corresponding axial vector takes the form 

(157) 

The same procedure can be followed to compute the material angular velocity 
in terms of the velocity of the reference frame and of the relative velocity. 

(158) 

Similar formulas can be obtained for the corresponding spatial quantities. 

5.4. Incremental rotations as unknowns 

Nonlinear structural and multibody problems, either in statics or dynamics, are 
formulated in a step-by-step form : the final solution is obtained by solving a 
sequence of partial problems. For instance, step-by-step algorithms are used to 
time integrate the nonlinear differential equations that constitute the nonlinear 
dynamic problem. The problem is then solved in an incremental way : starting 
from a known configuration we want to determine the increment necessary to 
obtain a new equilibrium configuration. 

In this context, rotations are treated incrementally. At each stage of the 
solution process one determines the incremental rotation necessary to carry 
from the previously converged configuration (taken as reference) to the current 
one: 

(159) 

In that case, the reference configuration R 0 can be regarded as fixed. The 
differentiation or variation of eqn (159) yields 

and (160) 

which means that the use of an intermediate configuration has no influence on 
the computation of material angular velocities and and rotation increments. 
This result is of fundamental importance for the application of an updated 
Lagrangian description for the incremental procedure. 

6. Parametrization of rigid body spherical motion 

The parametrization of rigid body spherical motion is an important issue in 
practice since the efficiency of nonlinear computations involving large rotations 
depends largely on the adequacy of the set of parameters adopted. 

The choice of a given set of parameters may be governed by various criteria 
such as independence (3 parameters are sufficient), mathematical form (tran­
scendental versus purely algebraic), possible existence of singularities on the 
geometric domain of interest, computational efficiency, composition law, geo­
metric interpretation, adequacy to describe a given kinematic situation, etc. 
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The parametrization of spherical motion results most of the time from the 
choice of an independent set of three parameters aT = [o: 1 o: 2 o:3] such that the 
rotation operator can be expressed in the form 

R = R(a) (161) 

In some cases however, it is found more convenient to use a larger set of pa­
rameters which are then dependent but are linked by additional constraints. 

According to (104) the associated angular velocities will take the form of 
linear expressions of the time derivatives of the parameters and may thus be 
written in the general form 

jw=P(a)a n = Q(a)a I (162) 

Provided that the parameters adopted form an independent set, the matrices 
P and Q have maximal rank. Since the angular velocities are linked by the 
frame transformation w = Rn, they verify the important relationship 

(163) 

The most classical choices of rotation parameters are described in the next 
sections. In each case, the fundamental relationships are established and some 
hints are given to compare the advantages of the different representations. 

6.1. The Cartesian rotation vector 

Starting from the general expression of the rotation operator in terms of the 
direction n of the rotation and its amplitude ¢;, the parametrization of spherical 
motion in terms of the Cartesian rotation vector is certainly the most natural 
one. It has also several advantages such as the number of parameters which 
remains minimal, an easy geometric interpretation and the absence of kinematic 
singularities. 

The Cartesian rotation vector is defined as the vector which has the direc­
tion of the rotation axis and a length equal to the amplitude of the rotation 

(164) 

and therefore, the rotation operator can be expressed directly either in trigono­
metric form starting from the general expression ( 46) 

_I sin ilwll- 1- cos l!wll ~~ 
R- + llwll w + llwll 2 (165) 

or in exponential form by making use of the exponential map representation 
(54) 

(166) 
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It admits the series expansion 

( 167) 

The expressions of material and angular velocities are easily obtained in terms 
of the time derivatives of the Cartesian rotation vector. To that purpose, let 
us note that 

\II = n<f; + n<f; and (168) 

If we invert the linear system (168), we get 

¢; = ~nT"iit 
n = (I- nnT) '!' (169) 

and the substitution of eqns (169) into eqns (104) yields the parameterized 
expressions of the material and angular velocities 

(170) 

where T(\11) is the so-called tangent operator. By making use of (105) it is 
obtained in the form 

(
cosll\1111-1) ~ ( sinll\1111) ~~ 

T(\11) =I+ ll\1111 2 \II+ 1 - ll\1111 ll\1111 2 (171) 

The apparent singularity in ll\1111 = 0 which appears in both rotation matrix 
and tangent operator expressions (165) and (171) is easily removed by noticing 
that 

lim T(\11) = lim R(\11) =I 
IIWII=:-o IIWII=:-o 

(172) 

Whenever possible, the tangent operator can be replaced by its series expansion 

which considerably simplifies the computation of linearized expressions. 
The angular accelerations are obtained through further differentiation 

(173) 

(174) 

Let us finally note that the material and spatial rotation increments of rotation 
are likewise computed in terms of the tangent operator. By replacing the time 
derivative with the variation operator we get 

80 = T(\11)8\11 and (175) 
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6.2. Cayley form of rotation matrix - Rodrigues parameters 

Starting again from the general transformation describing spherical motion 

x=RX with 

Let us express explicitly that the length of the initial vector is preserved 

XT X- xTx = (x + x? (x- X) = 0 

let us next define the two vectors 

f = X - X = (R - I) X 
g = X + X = (R + I) X 

Expressing their orthogonality as implied by (177) yields the condition 

fT g = gTBg = 0 

where matrix B is necessarily skew-symmetric 

B=(R-I)(R+I)- 1 =h 

(176) 

(177) 

(178) 

(179) 

(180) 

since the necessary and sufficient condition under which any quadratic form of 
a given matrix vanishes is that this matrix is skew-symmmetric. 
The relationship (180) can be inverted in the form 

(181) 

It is easily verified that 

- -1 1 - T 
(I- b) = 1+llbii2(I+b+bb) (182) 

in which case we get the expression of the rotation operator 

(183) 

in terms of the three parameters bT = [b1 b2 b3] forming the skew-symmetric 
matrix b. 
From the comparison of (183) with ( 46) we deduce that the latter are related 
to the invariants (n, ¢;) of the rotation by 

2b . 
1 + llbll2 = nsm <P 

(184) 

and thus 

(185) 
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This set of three independent parameters is known as the Rodrigues Parame­
ters. They provide a very simple expression of the rotation operator for which 
the associated inversion procedure is obtained by computing the trace and the 
vector part. By making use of (364) we get 

and 

3-llbW 
tr(R) = 1 + llbll2 

b 
vect(R) = 1 + llbll2 

llbll2 = 3- tr(R) 
1 + tr(R) 

1 
b = -(1 + llbll2)vect(R) 

2 

The inversion procedure presents a singularity when ¢ = ±1r. 

(186) 

(187) 

The computation of angular velocities in terms of Rodrigues parameters 1s 
straightforward. Time differentiation of (185) yields 

h=ntan!+n!-
1

- (188) 
2 2 cos 2 '1 

2 

with the condition nTh = 0. We get thus the system of equations 

which is solved to yield 

and 
. 1 T . 

n = --[1- nn ]b 
tan'i. 

2 

(189) 

(190) 

The computation of the material and angular velocities from (104), (105), (185) 
and (190) yields then the final results 

In= T(b)h (191) 

with the expression of the tangent operator in terms of Rodrigues parameters 

(192) 

6.3. Finite rotations in terms of Euler parameters 

Euler parameters are naturally introduced by starting from Euler's representa­
tion of the rotation operator. They simply result from a change of variables in 
terms of half the rotation angle which gives equal roles to all 4 parameters. In 
contrast to all set of parameters that we have introduced sofar, they are purely 
algebraic quantities. 
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Definition Euler parameters are defined as a 4-dimensional vector 

pT = [eo eT] = [eo e1 e2 e3] 

with the components 

cP cos-
2 

e nsin ~ I 
which are thus such that 

- 1 :S:: e; :S:: 1 (i=0 ... 3) 

( 193) 

(194) 

(195) 

They are not independent quantities since they are linked by the constraint 

2 2 2 2 1 eo + el + e2 + e3 = 

They are obviouly related to the Rodrigues parameters by 

1 
b = -e 

eo 

(196) 

(1 97) 

Expression of the rotation operator In order to obtain the explicit form of the 
rotation operator in terms of Euler parameters, let us start from the general 
expression ( 46) with the trigonometric transformations 

cos cP 
1- cos¢ 
sin cf; 

= 2e6- 1 

The final form of the rotation operator is then the quadratic expression 

I R = (2e6- 1)1+ 2eeT + 2e 0e I 

(198) 

(199) 

It can also be expressed as a product of two ( 4 x 3) matrices which are linear 
expressions of the Euler parameters 

(200) 

with 
H = [ -e col+ e] G = [ -e col- e] (201) 

Inversion formulas The inversion procedure from the numerical value of the 
rotation operator to Euler parameters may be achieved by the formulas 

eo ~ )1 + tr(R) 
(202) 

~sign([vect(R)]kh/1 + 2rkk- tr(R) (k=l. .. 3) 

This procedure is however not optimal from a numerical point of view. 
The following formulas provide a means of performing this inversion with 

maximum numerical accuracy and efficiency [SPU78]. 
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step 1 : consists to construct the 4 x 4 symmetric matrix S obtained from R 

[

1 + r·n + rn + r33 

S = T32- T23 

T]3 - T3] 

T2] - T]2 

T32 - T23 

} + T]] - T22 - T33 

T2] + T]2 

T]3 + T3] 

TJ3 - T3] 

TJ2 + T2] 

1 - rn + r22 - r33 

T23 + T32 

T2] - T]2 l 
T]3 + T3] 

T23 + T32 

1 - TJJ - rn + r33 

(203) 

step 2 : consists to observe that S is a quadratic expression of Euler parameters 

[ ,, eoe1 eoe2 
eo~1 e2 e1e2 s = 4 1 
eoe2 ele2 e2 2 
eoe3 e1e3 e2e3 

(204) 

step 3 : one uses use the row of (204) with maximum diagonal term to compute 
the parameters 

S;; = max{Skk} 
k { k = 0 ... 3 

kj=i 

(205) 

Angular velocities In order to compute the spatial and material angular ve­
locities in terms of the time derivatives of Euler parameters, let us derive eqns 
(193) with respect to time. We get the system of equations 

[ ~] = [sin ~I 
eo 0 0 0 

(206) 

which can be inverted in the form 

[n.J 1 [ I 
~ = sin~ 0 0 0 

~n] [ e J SID 2 , 
-2 eo 

(207) 

and making use of (104) together with (105) yields the angular velocity rela­
tionships 

I~ = 2Gp I 
=2Hp (208) 

It is of interest noticing that compared to the other representation methods 
described so far, Euler parameters have the following attractive properties 

- no singularity occurs in their inversion procedure, 

- they are purely algebraic quantities (R quadratic), 

- as will be seen in section 7., they obey to the quaternion multiplication rule 
to form compound rotations. 

Their main drawback is that they form a set of 4 parameters linked by 1 
contraint. 
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7. Quaternion algebra and finite rotations 

Quaternion algebra [HAM99, WEH84) provides a very elegant way of describing 
finite rotations. It leads in a totally different manner to the same concept 
of Euler parameters which has been introduced in the previous section. At 
the same time, the fundamental rule of quaternion multiplication provides an 
efficient means to express the angular velocities and how to combine successive 
rotations. 

7.1. Quaternion algebra : definition and properties 

Arbitrary quaternion A quaternion is defined as 4-D complex number 

(209) 

where i, j and k are imaginary numbers such that 

i2 = j2 = k2 = -1 
jk = -kj = i 
ki = -ik =] 

(210) 

ij = -JZ = k 

One may also adopt the vector notation 

(211) 

where q0 is the scalar part of the quaternion and q its vector part. 

Multiplication rule The quaternion multiplication rule derives then from the 
property (210) of the imaginary numbers 

1 :r =prj= poqo- p. q + poq + qop + pq 1 (212) 

It is fundamental noticing that the multiplication rule is non commutative due 
to the presence of the cross product whose sign is changed by interverting the 
roles of p and q. 

Conjugate quaternion The conjugate quaternion to (209) is defined as 

q = qo - iq1 - jq2 - kq3 = qo - q 

Norm of a quaternion It is computed by 

Unit quaternion It is defined as a quaternion e = eo + e such that 

(213) 

(214) 

(215) 
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Vector quaternion A pure vector quaternion is a quaternion v such that 

(216) 

It verifies thus the property 
v + v* = o (217) 

7. 2. Representation of finite rotations in terms of quaternions 

Given 
e =eo+ e 

X =O+X 

unit quaternion 

vector quaternion 
(218) 

it is easy to verify that the finite rotation of X to a new position x is given by 

(219) 

The proof holds by verifying that 

1. the norm of X is preserved by the transformation 

llxll 2 = xx* = (ex?)(eXC*)* 
=ex? ex*? = eJiiW? (220) 

= IIXII 2 

2. the resulting quaternion xis also a vector quaternion 

x + x* =ex?+ (ex?)* =ex?+ ex*? 
=e(X+X*)C* =0 

(221) 

The inverse rotation operation may be put in the similar form 

X=C*xe (222) 

indicating that transposition reverses the sense of the rotation. 

Equivalence with Euler parameters It is observed by putting the unit quater­
nion in the form 

e = cos a + n sin a with llnll = 1 (223) 

It provides the expression 

x = 0 + (cos 2al + (1- cos 2a)nnT +sin 2aii)X (224) 

which is the same as ( 46) provided that we take a = ~. 
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Composition rule of quaternions Let us perform two successive rotations e1 

and ez 
x 1 = e;_x e;_ * 

xz = C2x1C2 * = (C2eJ.)X(C2eJ.)* 
They generate the resulting rotation 

x = ex.e- with 

It provides the important result that 

two successive rotations may be combined by multiplyzng the corre­
sponding quaternions in the appropriate order. 

(225) 

(226) 

Angular velocities Let us derive (219) with respect to time, X being assumed 
constant . . ......... _,...._. * x = ex.e- + e-xe- (227) 

Sustituting (222) into (227) and taking account of (215) yields 

;.... ~- _......_,.._;.._* 
x = ee x + xex (228) 

The time differentiation of (215) yields also 

. '* . . 
ee- + ee- = ee- + (ee")* = o (229) 

so that ~ is a vector quaternion which we may express in the form 

;...,--., ' 0 1 ee = w = + -w 
2 

(230) 

The susbstitution of (230) into (228) yields 

..:.. 1(,~ ~') 1(_ - ) 
X = - WX - XW = 0 + - WX - XW 

2 2 
(231) 

and thus 

(232) 

showing that the vector part of w is nothing else than the spatial angular 
velocity vector which, according to (212), has for expression 

lw=2(eoe-e0 e+ee) I (233) 

We may likewise obtain the material expression of angular velocities by pro­
jecting (227) into material coordinates 

(234) 
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We express then the quaternion vector e"e in the form 

. 1 ~ 1 
e'e = -n = o + -n 

2 2 
(235) 

and substituting (235) into (234) yields 

- 1 ~- -~ 1- -v = 2(nx- xn) = o + 2(nx- xn) (236) 

and thus 

(237) 

with the material angular velocity vector 

1 n = 2(eoe- eoe- ee) 1 (238) 

7.3. Matrix representation of quaternions 

In view of computer implementation of quaternion algebra, let us represent a 
quaternion in matrix form by the 4-dimensional column matrix 

A quaternion product 

may then be expressed in the form 

with the 4 x 4 matrices 

Ap = [Ppo -pT ] 
pol+ p 

(239) 

a= pq (240) 

(241) 

and Bq = [ ~ (242) 

and where q is the antisymmetric matrix obtained from the vector part of q 

q = spin(q) (243) 

In matrix form, the rotation operation (219) on a vector quaternion becomes 

(244) 

with the matrix product 

(245) 

from which one extracts then the 3 x 3 matrix 

R = (2e6- 1)1 + 2(eeT + eoe) (246) 
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According to (245) it can also be put in the simplified form 

(247) 

where the matrices H and G, which were already introduced at section 6.3., 
are 3 x 4 matrices extracted from A and B 

H = [ -e eo I+ e] 
G = [ -e eo I - e] (248) 

Likewise, the angular velocity quaternions (230) and (235) can be written in 
the matrix form 

!1 = 2AT~ 
W = 2BT~ (249) 

Their vector parts provide the matrix forms of the angular velocity vectors 
(238) and (233) 

(250) 

It is easy to show that H and G verify the useful relationships 

HHT =GGT =I 
HTH =GTG =I- eeT (251) 
He = Ge =0 

8. The conformal rotation vector ( CRV) 

The conformal rotation vector (CRV) is obtained through a conformal rotation 
applied to Euler parameters [MIL82] 

4e; 
c;=--

1 +eo 
(i=0,1,2,3) (252) 

It produces a set of three independent parameters involving the fourth of the 
rotation angle 

if; 
c = 4ntan 4 (253) 

with the additional quantity 

(254) 

By opposition with Rodrigues parameters, they produce no singularity in the 
rotation interval if; E [ -7r, +1r] since 

{ 
0 :::; 

-4 < 
co :::; 2 
c; :::; +4 (i=1,2,3) 

(255) 
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The explicit expression of the rotation operator can directly be computed from 
the general formula ( 46). After some algebra and making use of (254) we get 
the expression 

(256) 

However, the most remarkable property of th CRV is the fact that the total 
rotation ( 46) can be split into two equal rotations F of amplitude ~<P which 
can then be computed in terms of Rodrigues parameters of the half rotation : 

(257) 

F being computed from (192) by making the substitution b = ic : 

(258) 

By making use of (254) and (364) we get the final expression 

F 1 [ 1 T -] = -
4
-- col+-cc +c 
-co 4 

(259) 

The expression of material and angular velocities is obtained by time differen­
tiation of (253) 

. . <P n . 
c = 4ntan - + --,~, <P 

4 cos2 ~ 

By making also use of n T n = 0 we get the linear system 

which has for solution 

and n = ~ [1- nnTJ c 
4tan 4 

(260) 

(261) 

(262) 

In order to compute the material and spatial angular velocities from (104), we 
still make use of the relationships 

and 

2 <P 2 
cos - = --

4 4 - co 

sin <P = 4sin ~cos ~(2 cos2 ~- 1) 

. 2 <P 2- co 
Sln - = --

4 4- co 
(263) 

1 - cos <P = 8 sin2 ~ cos 2 ~ (264) 



532 Revue europeenne des elements finis. Vol. 4- no 5-6/1995 

We finally get the results 

ln=T(c)c (265) 

with the expression of the tangent operator 

2 [ 1 T -] T = ( )2 c01 + -cc - c 4- c0 4 
(266) 

The CRV parameters are undubitably a good choice to computational repre­
sent finite rotations : they form a rather simple set of algebraic quantities 
which presents no singularity over one full rotation and they have a very linear 
behavior in terms of the rotation angle. Moreover, their property to allow a 
separation of the full rotation into two half rotations is specially of interest 
when performing a time integration with the so-called mid-point rule. 

9. The linear parameters 

The linear parameters obey to a definition very similar to that of Euler param­
eters 

so = cos¢; s = nsin ¢; (267) 

and they satisfy the normality constraint 

(268) 

By direct substitution of (267) into ( 46) the resulting form of the rotation 
operator is 

1 T -R=sol+--ss +s 
1 +so 

(269) 

It is obvious that they exhibit a singularity at ¢; = ±1r. 
In order to obtain the explicit expression of angular velocities, let us time 

differentiate (267) and make use of nT ri. = 0 to get 

We then get 
j, 1 T· 
'+'= --n s 

cos <P 

. 1 ( T). n= -.- 1-nn s 
sm ¢; 

The substitution of (271) into (104) yields 

n = T(s)s w = TT (s)s 

with the expression of the tangent operator 

T=I+-- -+s 1 (SST ) 
1 +so so 

(270) 

(271) 

(272) 

(273) 
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The main interest of the linear parameters is their ability to provide a decom­
position of the rotation operator into two half rotations, this time expressed in 
terms of Euler parameters. By setting so = e0 and s = e into (269) we get 

(274) 

with 
1 T -F = eol+ ---ee +e 

1 +eo 
(275) 

10. Geometric description of finite rotations 

The geometric representation of spherical motion in terms of successive ele­
mentary rotations about coordinate axes is probably the most popular one to 
mechanical engineers. All textbooks of classical mechanics provide a descrip­
tion of finite rotation transformations in terms of Euler angles, because Euler 
angles provide the most intuitive kinematic description ofrotating systems such 
as a spinning top in a gravity field. The same is true with Bryant angles when 
studying flying systems such as an airplane in relative motion with respect 
to the earth or the the end effector of an industrial robot with respect to its 
working environment. 

10.1. Euler angles 

Euler angles provide a system of three independent parameters which consists 
of expressing the transformation from spatial frame E 1 E 2 E 3 to material frame 
e1 e2 e3 as a sequence of three elementary rotations about successive material 
axes (figure 3). 

Figure 3: Finite rotation in terms of Euler angles 

- a 1/J rotation about Ox3: 
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- a e rotation about Ox~: R(X1 , B) 

-a¢ rotation about Ox~: R(X3, ¢) 

The resulting frame transformation is 

(276) 

The rotation operator is thus obtained as the result of three elementary rota­
tions 

It has for explicit expression 

[ 

cos rjJ cos 1/J - sin rjJ cos (} sin 1/J 

R = sin 1/J cos rjJ + cos 1/J cos (} sin rjJ 
sin 8 sin rjJ 

- cos 1/J sin rjJ - sin 1/J cos 8 cos rjJ 
- sin rjJ sin 1/J + cos rjJ cos (} cos 1/J 

sin(} cos rjJ 

(277) 

sin 1/J sin(} l 
-cos 1/J sin(} 

cos(} 
(278) 

Singularities may occur in the transformation since colinearity of rotation axes 
arises when 

e = 0 or 1r 

A satisfactory solution to the kinematic inversion is obtained when using 
the function tan - 1 

¢ = tan- 1 (!:..ll.) ---> 2 solutions 1/J1, 1/J2 
r32 

{ sine T'31 sin¢ + 7'32 cos¢ 
cos e 7'33 (279) 

{ cos 1/J ru cos¢ - r12 sin¢ 
sin¢ = r21 cos¢ - r22 sin¢ 

The computation of angular velocities may also result from geometric reasoning,. 
They are obtained from the sum of three elementary contributions : a spin 1/J 

about Ox3, a spin iJ about Ox! and a spin~ about Ox~. 
The resulting spatial angular velocity vector can thus be expressed in the 

form 

hence the result 

cos'lj; 
sin 1/J 

0 

sin 1/J sine l 
-cos 1/J sine 

cos e 

(280) 

(281) 
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The material angular velocity can be put in a similar form 

and has for expression 

10.2. 

[

sin¢ sin() 

n = cos ¢sin() 
cos() 

Bryant angles 

(283) 

Likewise, Bryant angles provide a system of three independent parameters 
which consists of expressing the transformation from spatial frame E 1 E 2 E 3 

to material frame e 1 e 2 e 3 as a sequence of three elementary rotations about 
successive material axes (figure 4). The choice is now 

Figure 4: Finite rotation in terms of Bryant angles 

- a() rotation about Ox3 : R(X3 , ()) 

- a 7/J rotation about Ox~: R(X2, 7/J) 

-a¢ rotation about Ox~: R(X1 , ¢) 

The resulting frame transformation is 

x = R(X3, ()) R(X2, 7/J) R(X1, ¢)X = R X (284) 

The rotation operator is thus obtained as the result of three elementary rota­
tions 

R(X3, ()) R(X2, 7/J) R(Xl, ¢)I (285) 



536 Revue europeenne des elements finis. Vol. 4- n° 5-6/1995 

It has for explicit expression 

[

cos 8 cos 1/! 
R = sin 8cos1/! 

-sin 1/J 

- sin 8 cos ¢; + cos 8 sin 1/! sin ¢; sin 8 sin ¢; + cos 8 sin 1/! cos ¢; l 
=8=¢+~8~1/!~¢; -=8~¢+~8~1/!=</J 

cos 1/J sin ¢; cos 1/J cos ¢; 
(286) 

Singularities may also occur in the transformation since colinearity of rotation 
axes arises when 

1j; = ±7r 

A satisfactory solution to the kinematic inversion is obtained when usmg 
the function tan -l 

() tan- 1 (!.ll) ---+ 2 solutions B1, Bz ru 

{ cos 1j; rz1 sin B + r11 cos() 
sin 1j; -r31 (287) 

{ cos¢ -r12 sin B + rn cos() 

sin ¢ r13 sin() - r23 cos() 

The computation of angular velocities is obtained as the sum of three elemen­
tary contributions : a spin B about Ox3 , a spin ~ about Ox; and a spin ¢ 
about Ox{. 

The resulting spatial angular velocity vector can takes the form 

w ~ [!] + R(X,, 0) m + R(X,, O)R(Xd) [:] 

hence the result 
-sin() 
cos() 

0 

cos 1j; cos()] 
cos 1j; sin() 

-sin'lj; 

The material angular velocity can be put in similar form 

and has for expression 

[ 

-sin 1j; 
n = cos 1/;sin ¢ 

cos 1j; cos¢ 

0 
cos¢ 

-sin¢ 

(288) 

(289) 

(290) 

(291) 
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11. Application to rigid body dynamics 
integration of top motion 

energy preserving time 

An interesting application to parametrization of finite rotations in the context 
of computational dynamics is the time integration of the motion equations of 
a top in a gravity field. The top is a conservative system for which it is highly 
desirable to compute a long term response which exhibits the property of energy 
conservation. For sake of generality, it will be modelled here a general rigid 
body (6 generalized DOF) submitted to 3 kinematic constraints. 

Following the work of J. Simo [SIM91] and 0. Bauchau [BAU95], we apply 
to this constrained system the mid-point rule which consists to express dynamic 
equilibrium at mid-interval between sampling instants. This raises the problem 
of defining the rotation at half-time: it is observed in this case that describing 
the relative rotation from tn to tn+l in terms of Euler Parameters [GER94] 
provides the most efficient parametrization of the rotation at tn+* 

Attention is also paid to the expression of the attachment co-nstraints: it 
is shown that in order to preserve energy, we have to inforce the first time 
derivative of the constraints rather than the position constraints themselves. 
Thanks to energy conservation, this weak inforcement of constraints does not 
produce significant drift in the displacement response of the system and thus, 
does not require any special stabilization procedure. 

11.1. Motion equations of a top in descriptor form 

Let us adopt the center of mass of the top as the origin of the material frame, 
and its attachment point as the origin of the spatial frame. The kinetic energy 

Figure 5: Analysis of top motion 

of the top may then be split into translation and rotation contributions 

(292) 
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where m is the mass of the top, X. is the velocity vector of the center of mass 
expressed in the spatial frame, J is the inertia tensor of the top measured in 
material axes and n is the material expression of the angular velocity vector 
(81). 
Assuming that the reference for the potential energy is the origin of the spatial 
frame, the potential energy may be expressed in the form 

V = -mgTx (293) 

where g is the acceleration vector. For example, if the gravity is acting along 
the negative X3 direction, g = [ 0 0 g f and V = +mgx3. 
Finally, let us denote by vector - Xg the location of the top attachment point 
in material coordinates. The center of mass is then constrained to verify at any 
time instant t the geometric relationship 

if> = X - RXg = 0 (294) 

The Lagrangian of the constrained system can be constructed in the form 

(295) 

where ). is a vector of Lagrangian multipliers associated to the constraint. Its 
components may be interpreted as the reaction forces at the attachment point. 
The motion equations result from the application of Hamilton's principle 

(296) 

Substituting the explicit expression of the Lagrangian and performing the vari­
ation yields 

j
t2 

t, 
[6nTJf! + 6X.T mx + 6xT(). + mg) + 8AT (x- RXg)- AT 6RXg l dt = 0 

(297) 
where the variations of rotation operator and material angular velocities may 
be related to the material expression of angular virtual displacements by (142) 
and (150). Substituting them into (297) and performing an integration by parts 
yields 

[8xT mx + 80T JnJ:: + J/,2 [8eT( -Jn- {un- XgRT A) 

+8xT ( -mx +). + mg) + 8A T (x- RXg)] dt = 0 

We get thus the motion equations in the differential-algebraic form 

mx-). = mg 
Jn + {un + XgRT >. = o 
-x+ RXg = 0 

(298) 

(299) 
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It is of interest to note that by defining the spatial and linear expressions of 
linear and angular momenta 

p =mx h=RJn 

the first two equations (299) may still be rewritten in the simpler form 

p- ,\ = mg 

11.2. Time discretization 

11.2.1. The mid-point rule 

(300) 

(301) 

The mid-point integration rule is based on the application of the mean value 
theorem which states that any continuous and derivable function f(t) can be 
expressed at a time t + h in the form 

f(t +h) = f(t) + h df 1 
dt (t+ah) 

a E [0, 1] (302) 

When applied to the solution of a first order nonlinear differential system 

y = f(y,t) (303) 

it yields the second-order accurate difference formula 

with tn+a = (1 - Q' )tn + atn+l 
(304) 

The mid-point rule is a particular case of (304) 

with 

which is equivalent to the trapezoidal rule in the linear case. 

11.2.2. Application to the top equations 
Both equilibrium equations (301) are discretized using the mid-point rule 

(306) 

The special treatment to be applied to the constraint equation (299 .c) will 
appear naturally later on from energy conservation considerations. 

Discretization of linear momentum The linear momentum equation is next 
expressed at mid-point 

(307) 
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gtvmg 
2m 

Pn+l = h(Xn+l- Xn)- Pn (308) 

and through sustitution of (308) the discretized translation equilibrium equa­
tion (306.a) may be put in the final form 

2m 2 
h2(Xn+l- Xn)- J;,Pn- An+~ = mg (309) 

Discretization of angular momentum The angular momentum equation is ex­
pressed likewise 

(310) 

with 

and nn+l = vect( nn+l) 
2 2 

(311) 
and through substitution of (310) and (311) the discretized rotation equilibrium 
equation (306.b) takes the final form 

11.3. Rotation parametrization 

In order to define the configuration which is half-way between Rn and Rn+l, 
let us decompose the rotation increment from Rn to Rn+l in the form of two 
successive equal rotations 

R;Rn+l = F 2 

The resulting operator F is such that 

and verifies the orthonormality properties 

The matrix of angular velocities (311) may be put in the form 

(313) 

(314) 

(315) 

(316) 

so that the discretized angular velocities at mid-point are approximated by 

1 T 2 
!ln+~ = hvect(F- F ) = hvect(F) (317) 
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Since F is a rotation operator, vect(F) has the property 

Fvect(F) = FT vect(F) = vect(F) 

which expresses the fact that the rotation direction 

vect(F) 
n= 

llvect(F)II 

remains invariant under the rotation. 

(318) 

(319) 

By making use of the above property, the discretized equation of equilibrium 
can be rewritten in the form 

(320) 

The matrix F describing the half rotation may be constructed in two alternative 
ways. 

In terms of Euler parameters: Let us describe the relative rotation from Rn 
to Rn+l in terms of its invariants nand ¢i (n being the direction of the rotation 
axis in frame Rn, and ¢ being the amplitude of the rotation) : 

R~Rn+l = R(n, ¢) (321) 

with the general expression ( 46) of the rotation operator. 
Supposing that the direction of the rotation is kept constant, (321) may 

then be split in two equal rotations of the form 

1 
F = R(n, 2,¢) (322) 

From eqn ( 46) expressed for (n, ~¢)we note that the vector part ofF is nothing 
else than the vector part of Euler parameters 

vect(F) = n sin~ = e (323) 

Euler parameters may thus be used to parametrize matrix F. Substituting eqn 
(323) in the explicit expression of R(n, ~¢)yields 

F = R(n)¢) = eol + - 1
-eeT + e (324) 

2 1 +eo 

This representation involves only the three components e1 , e2 and e3 , e0 being 
computed by (196) 
The property that the direction of the rotation remains unaffected by the half 
rotation can be written in the form 

Fe= FT e = e (325) 

Owing to (317) the angular velocities at mid point are very simply computed 
by 

(326) 
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In terms of the conformal rotation vector An alternative and also quite ele­
gant way to perform the decomposition of the relative rotation in two equal 
parts is to describe the rotation in terms of the CRV defined in terms of Euler 
parameters by (252) and in terms of the rotation invariants nand c/J by (253). 
The scalar part c0 is also expressed in terms of the modulus of the vector part 
c by (254). Equation (256) gives the corresponding expression of the rotation 
matrix. 

It has already been demonstrated that the rotation matrix (321) can be 
split into two successive half rotations 

R(c) = F 2 (327) 

given by (258). The half rotation maintains the invariance of the rotation 
direction 

Fe= FTc= c (328) 

and the computation of its vector part yields 

2 
2vect(F) = vect(F - FT) = ( ) c 

4- co 
(329) 

Owing to (317) the velocities at mid-point are computed by 

1 2c 
On+~ = 2(0n + On+I) = h(4 _co) (330) 

Parametrized form of equilibrium equations The use of both Euler and con­
formal rotation parameters yields very similar expressions of the discretized 
equations of rotational equilibrium. Substituting (326) and (330) successively 
into (312) yields 

4 T 2h - ' 
h2 R,FJF e- h n + Xn+~"'n+~ = 0 (331) 

in terms of Euler parameters and 

(332) 

in terms of CRV. 
Because of their even greater simplicity to represent the mid-point rotation, 

the Euler parameters of the relative rotation have been prefered to the confor­
mal rotation vector for the numerical implementation of the method which is 
presented hereafter. 

11.4. Energy conservation 

In order to express the balance of energy on one time step, let us multiply the 
translation equilibrium equation by hv~+l, the rotational equilibrium equation 

2 
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by hO~+~R'!, 
quantity 

2vect(FfR?: and add both terms to compute the scalar 

A= hv~+~ [ h22 m(xn+l- Xn)- ~Pn- An+~ - mg] + 

hO~+~R'!, [-,t,-RnFJFT vect(F)- thn + Xn+~.An+~l = 0 

Let us compute successively 

A1 = hv~+~ (h22 m(xn+l - Xn)- iPn- mg) 

(333) 

= %(vn + Vn+lf (f,m(vn+l + Vn)- imvn)- (xn+l- Xn)mg 
= (Kn+l- Kn)tr + (Vn+l- Vn) 

A2 = hO~+~R?; ( .,(,-RnFJFT vect(F)- ihn) 
= 20~+~ (FJFTOnH- R~hn) 
= ~(On + On+lf J(On+l +On) - (On+l + On)T JOn 
= (Kn+l - Kn)rot 

and therefore 
(334) 

(335) 

Equation (335) expresses the conservation of energy over one time step provided 
that we have 

Since 
(337) 

we get the condition 

(338) 

which is fulfilled if 

(339) 

The condition (339) corresponds to the time derivative of the initial constraint 
expressed at mid-point. Owing to (317), it can still be rewritten 

- T 
- Xn+l + Xn - 2RnFXgF e = 0 (340) 

11.5. Nonlinear solution 

In view of their numerical solution, the motion equations at tn+~ are written 
in residual form 

(341) 
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with 
(342) 

The tangent iteration matrix is the jacobian matrix of (341) 

(343) 

It is not symmetric, its different terms being given by 

==-~==~';'I 
== --;r == -1 

--~-R {...!..FJ '\' [...!..aFJ (aFx- pT FX- aFT)RT']kT} - ae - n h2 + 0i h2 ae, + ae, g + g ae, n /\ ' 

ar -
== -;;; == Xn+~ 

==-~==-1 

ar [ - aF - T] == -~ == -2Rn FX9 + L; ae, X 9ek, 

and k; being the unit vector along direction i. 
The time integration procedure is then as follows : 

1. Initialization 

Given: 
Compute: 

to == 0, Ro, flo 
Xo == RoX, 
Po== mvo, 

vo == Rof!oX 
ho == RoJf!o 

2. Time integration : while tn < h do 

(i) increment time : 

(ii) predict new solution : 

(iii) iterate : 

while (llrxll > [x .or. llrell > (e .or. llr>. II> (>.) do 

- Displacement and rotation co1-rection at tn+ ~ : 

- residual evaluation : r x, r e, r >. 

- linear solution : Sdq == r ::} dx, de, dA. 

- incrementation : 

Xn+l == Xn+l + dx , 

end 

(344) 

,\ == ,\ + dA 
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(iv) solution updating at tn+! : 

end. 

11.6. Numerical application 

In order to demonstrate the numerical properties of the energy conserving 
methodology and algorithm, let us consider the problem of determining the 
trajectory of a symmetrical top in a gravity field. 
It is classical to describe the instantaneous motion of the top in terms of Euler 
angles (figure 5) as described in sectionlO.l.. 
Angle ¢> corresponds to the spin of the top about its rotation axis; () gives 
the inclination of the top axis with respect to the vertical, and '1/J gives the 
azimutal position of the top axis in the horizontal plane Ox1x2, describing 
thus the precession motion. 
The rotation operator in terms of Euler angles and its inverse transformation 
(becoming singular when()= 0 or 1r) are respectively given by (278) and (279). 

The time derivatives of Euler angles are related to the material angular 
velocities by the inverse relationship to (282) 

[ 
1/: l 1 [ sin¢> 
~ = sin () co_s ¢> sin () 
rP - Sln rj> COS () 

cos ¢> o l [ n1 l - sin¢> sin() 0 n2 
- cos ¢> cos () sin () n3 

(345) 

Let us consider a symmetrical top with the following properties. Mass m : 
5 kg, moments of inertia: J 11 =In= 0.8 Kgm2 , }s3 = 1.8 kgm2

, distance 
from CG to origin (attachment point) : L = 1.3m, gravity : g = 9.8lm/ s2 

(along negative X3 axis). The initial position of the top is described in terms 
of Euler angles : cPa= 0, Bo = %rad, '1/Jo = 0. 
Two response cases have been considered. In case 1, the top is simply dropped 
from its initial position with a spin velocity ~o = 50rad/ s. Both other angular 
velocities are zero (~0 = 00 = 0). In case 2, the top is thrown from its initial 
position with a spin velocity ~ 0 = 50rad/ s, a precession angular velocity of 
~o = -10rad/s and a zero nutation angular velocity (00 = 0). 
Figures (6) and (7) display both computed responses in various forms and 
in terms of different kinematic and kinetic quantities, namely : (a) vertical 
displacement versus time, (b) three-dimensional trajectory of the CG, (c) Euler 
angle() versus time, (d) Euler angle¢> versus time, (e) time evolution of the 
kinematic constraints, (f) phase diagram of the non cyclic variable(), (g) relative 
energy variation E / E0 -1 versus time, (h) transverse angular velocity S1 1 versus 
time. The total energy of the system is obviously conserved during the period 
of observation of the motion as it could be expected from the very design of 
the integration algorithm. All the time evolutions demonstrate also that the 
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periodic character of the motion is perfectly preserved, which can be regarded 
as a direct consequence of the energy conservation property. Of interest also is 
the time evolution of the kinematic constraints : despite of the fact that they 
are satisfied only in weak form, their drift remains extremely small ( ::; 2.E -7), 
observation which is a further consequence of energy conservation. 

Conclusion 

The present review of finite motion kinematics is far from being complete. It 
has voluntarily been limited to concepts and parametrization choices which are 
useful in the context of computational dynamics. 

For sake of clarity, a purely algebraic point of view has been adopted rather 
than the more abstract and more general point of view where finite rotations 
are regarded as nonlinear objects belonging to the special orthogonal Lie group. 

The application has been restricted to rigid body dynamics: the topic of 
finite motion parametrization in the context of continuum mechanics for mod­
elling flexible bodies such as beams and shells can be found in other contribu­
tions to this special issue. 

Acknowledgements 

The authors express their thanks to A. Cardona (Intec, Santa fe), C. Farhat 
(University of Colorado, US), and C. Thonon (LTAS, University of Liege) and 
D. Poelaert (Estec, Noordwijck) for their stimulating comments during the 
elaboration of this review work, and to Celia Queiros (IST, Portugal) for her 
careful reading of the manuscript. The second author is also indebted to the 
Belgian National Science Foundation (FNRS) for its sponsorship. 

A Matrix representation of vector operations 

Vector 
A vector u of the Euclidian space £ 3 is represented by a column matrix col­
lecting its Cartesian components, and its transpose is a row matrix 

(346) 

Dot product 
Let u and v be two vectors of the Euclidian space [ 3 . In matrix form, the dot 
product u · v will be achieved by performing the inner product between the 
column vectors u and v, and therefore 

(347) 

where (-f denotes the transposition operation. 
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Lmear transformation and second-order Cartesian tensor 
A second-order Cartesian tensor a;j is represented by a (3 x 3) transformation 
matrix A, and a linear transformation in £ 3 is represented by the associated 
matrix-vector product. The image of vector u under transformation A is 

v= Au 

If A is a one-to-one transformation, A - 1 exists and 

u =A - 1v 

The identity transformation is represented by I : 

u = Iu 

Eigenvalue properties of a linear transformation 

(348) 

(349) 

(350) 

Provided that they are distinct, the eigensolutions of the homogeneous problem 

Ax= AX (351) 

associated to the (3 x 3) linear transformation may be collected in 

(352) 

They are such that 
A= XAX- 1 (353) 

In particular, we have 

xx· = x·x =I (X unitary) (354) 

under the condition of A being normal (AA* = A* A). The superscript • 
denotes the conjugate transposition operation. 

Invariance properties of a linear transformation 
Among the possible invariants of a linear transformation A, let us mention 

- the determinant of the transformation 

- the traces of the powers of A 

- the vector part vect(A), defined in index notation as 

1 
(vect(A)]; = ?,fijkakj 

where Eijk is the alternating tensor. 

(355) 

(356) 

(357) 
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Symmetric and skew-symmetric transformations 
A transformation matrix A is symmetric if A = AT and skew-symmetric if 
A= -AT. 
A general transformation A may thus be decomposed into its symmetric and 
skew-symmetric parts 

and (358) 

Clearly, 
tr(A) = tr(A,) , vect(A) = vect(Ass) (359) 

and thus, the trace of a skew-symmetric matrix and the vector part of a sym­
metric one both vanish. 

Cross product and orthogonal projection 
Let us define a (3 x 3) linear transformation u associated to a vector u such as 

u = vect(u) (360) 

It has only rank 2 since the property uu = 0 implies that it has one zero 
eigenvalue associated to the eigenvector u. The cross product u x v may be 
achieved in matrix form by premultiplying vector v by the linear transformation 
u 

U XV= UV (361) 

The expression of the double vector product in terms of dot products 

~ (- -) (- -)- (- -)-ux VXW = U·WV- U·VW (362) 

may be written in matrix form 

uvw = v (uT w)- (uT v) w (363) 

Since it is valid for arbitrary vector w, we have the following matrix identity 

(364) 

which, for a unit vector n, yields 

iiii = nnT- I (365) 

The linear transformation 

(366) 

can be regarded as an orthogonal projection operator which projects an arbi­
trary vector onto the plane orthogonal to the direction n. 
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Solution of a linear system 
Let us consider a linear problem of the form 

such that 

Ax=b 

{ 
A E nmxn with m > n 

rank(A) = r ~ m 

(367) 

(368) 

The compatibility condition AA +b = b between A and its pseudo-inverse A+ 
is not necessarily satisfied. The problem has thus generally no solution. This 
is why we transform it into a minimum norm problem like 

min \lAx- bff 2 

X 
(369) 

The resulting advantage is that the transformed problem always has a solution 

(370) 

This solution is unique in two cases : 

1. matrix A has full rank (rank(A) = n) the pseudo-inverse in then the 
Moore-Penrose inverse 

(371) 

2. matrix A is also square (m = n = rank(A)) : 

A+= A -l (372) 
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