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ABSTRACT. In this paper we derive a finite element formulation for geometrical nonlinear
shell structures. The formulation bases on a direct introduction of the isoparametric finite
element formulation into the shell equations. The element allows the occurence of finite
rotations which are described by a rotation tensor. A layerwise linear elastic material
model for composites is chosen. The consistent linearization of all equations leads to
quadratic convergence behaviour within the nonlinear solution procedure. Examples show
the applicability and effectivity of the developed element.

RESUME. Dans cet article nous proposons une formulation en éléments finis du
comportement géométriquement non linéaire des coques. La formulation est basée sur
lintroduction directe des interpolations isoparaméiriques dans les équations
gouvernantes. L'élément de coque peut étre utilisé en présence de grandes rotations, qui
sont représentées par le tenseur de rotation. La modélisation du comportement du matériau
composite se fait par couche comme élastique linéaire. La linéarisation cohérente des
équations gouvernantes conduit au taux de convergence quadratique de la résolution du
systeme d'équations non linéaires. Quelques exemples numériques montrent
l'applicabilité et l'efficacité de cet élément.
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1 Introduction

In this paper we discuss the geometrical nonlinear behaviour of composite shell
structures in the presence of finite rotations within the finite element method.

The application of composite materials became very popular in the last
decades, especially in aircraft industries. The advantages of these materials
are high strength and stiffness ratios coupled with a low specific weight. Thus,
composites are used in highly loaded light weight structures. Often the designed
constructions are thin shells which are very sensitive against loss of stability.
Therefore the discussion of the stability behaviour is crucial for composite shell
problems besides the description of material phenomena like matrix and fiber
cracking or delamination. Due to these problems we have high requirements on
the accuracy of the numerical calculations.

For this purpose we present a general shell element which includes the ge-
ometrical nonlinear effects, especially finite rotations in an exact manner. Up
to now a number of general finite shell elements including finite rotations are
known. We mention the formulations in [RAM77],[RAMT76], [HUL81}, [SIM90],
[SPH86], [GSW89], [WRGI3],[WRG90], [IBR94], [PARS1], [GEB90], [SCHS6],
[STM89], [BDM92], [DORI0] among others.

In this paper the derived element formulation is based on a Lagrangian de-
scription with Green-Lagrangian strains which are defined only by the deformed
and undeformed base vectors of the shell mid-surface. The displacements are
introduced with respect to the Cartesian base system. In this case a straight
forward isoparametric formulation of the displacement field is possible, see e.g.
[SIM90], [WAS93]. Hence, no shell specific formulations like e.g. Christoffel ten-
sors are necessary. The components of the deformed and undeformed director
are given with respect to the Cartesian coordinate system using an orthogonal
transformation. All necessary matrices and vectors are calculated by standard
linearization procedures acting on the base vectors and the directors. A simple
formulation comes out for the tangent stiffness matrix and the residual used in
the nonlinear finite element analysis.

The composite material description is given with respect to local material
axis and a transformation to global directions is performed on the element level.
Standard procedures are used to modify the general 3D-material law for the
two-dimensional case on the shell mid-surface.

Examples show the applicability of the proposed element for geometrical
highly nonlinear shell structures of composite material.

The contents of the paper may be outlined as follows: The second section
shows the basic kinematic assumptions whereas in the third section the material
law for a composite shell formulation is discussed. Based on the weak form in
the fourth section, the associated finite element formulation is given in section
5. Finally we show some illustrative examples in the last section.
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2 Kinematics

The mathematical description of a point P € B in shell space is based on
the introduction of the position vector p, which is a function of the convected
coordinates @' = £, 7, (, see Figure 1. We have to distinguish between quantities
in the reference configuration and the current configuration (marked by an
upper bar). Thus the position of the points P € B and P € B is given by
_ h h
p=x+(aj, p=x+(d, —yS(s+g. (1)
In (1) x is the position vector to the shell mid-surface ( = 0 and d a director
vector which is fundamental to characterize the rotational behaviour. d is in
general not perpendicular to the deformed mid-surface if we introduce a so
called Reissner-Mindlin theory. In the special case that d coincides with the
normal vector ag, this kinematic assumption leads to the Kirchoft-Love theory
where transverse shear deformations are neglected.

Figure 1: Kinematic of a thin shell

The following quantities are necessary to describe the geometry of the shell
in the reference configuration.

base vectors a; = {a,, a3} : a,

= X,o

asg = a1 X 82/”&1 x 82“
metric tensor: A = a,®a”
curvature tensor: B = -aj3,®a“
unit tensor: 1 = a,®a*+azQas
base vectors in B g = {8a,g3}: €« = A8, +(a3,q

g3 = &3

(2)
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The associated kinematic quantities of the current configuration are defined

in the same way. In addition to the convected basis g; the reciprocal basis g'

is given by the standard relation g; - g& = &*. For the relation between base

vectors in shell space B and on the shell inid—surface M we introduce the shifter
tensor Z

gi=7Za; g =2""1a', (3)

with the standard definition of the shifter tensor

Z=1-(B. (4)

For the calculation of strain measures we make use of the deformation gra-
dient F which is defined in convected coordinates by

8 ) .
F=6—9p;‘®gk=gk®gk=Fikg'®gk, (5)
with the components of F

Fie =gi 8- (6)

The strain measures for our shell problem can now be obtained from the
three—dimensional theory using the Green-Lagrangian strain tensor Eg =
3(FTF - 1). With eq. (5) Ep can be stated in terms of the base vectors

. 1 .
Es=E.'kg'®gk=§(gi-gk—gi-gk)g'®gk- M

With the relation Eg = ZT~'E Z~! the associated Green-Lagrangian strain
tensor on the shell mid-surface is given by

. 1 .
E=Eika’®ak=§(gs-gk—gi'gk)a'®ak- (8)

Up to now basic equations of a standard approach for a shell formulation
are derived. For a detailed discussion we refer to standard text books on shell
theories.

Analyzing eq. (8) shows that we have to specify the base vectors in the
reference and the current configuration which can be done using egs. (2). Fur-
thermore we introduce explicitly the base vectors in B from p = x + (d

Ba = a4 + Cd,a g3 = d. (9)

The next step in a classical approach for the derivation of a shell theory is the
representation of the convected basis go = a4+(d,q in terms of the base vectors
of the reference configuration and the displacement vector u = u®a, + u®ag
(this means a description of u with respect to the convected basis). It holds

Ea :5a+cdxa: (aa+uxa)+<(aa’a+w’a)’ (10)
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with the vector w = d — ag, see e.g. [PIE77]. For the further derivation of
a shell formulation the gradients u,, and w,, have to be specified. Here a
number of complicated terms occur due to the definitions of u and w with
respect to a;. Especially for the last term approximations are used due to
the degree of rotation which then restricts the applicability of the introduced
shell formulation. Again we refer to standard textbooks on shell theories for a
detailed discussion of this problem. Here we choose a different approach, where
we will approximate the deformed base vectors a, directly.

From (8) and (9) we obtain the components E;x of the Green-Lagrangian
strains on the shell mid—surface which leads to the following strain measures

Eap = 1/2(50,-55-—&0-85)
Ya3z = a4 -d (11)
Kag = 1/2(8y -d,g+as de—a, 835 — 85 834).

Here €,4 are the membrane strains, v,3 the shear strains and x4 the bend-
ing strains. Furthermore a,, ag and a,, d are the base vectors in the undeformed
and deformed configurations, respectively. The indices o and f range from 1
to 2. The director vector d of the current configuration is obtained by an or-
thogonal transformation of the basis vector t3

d = Rtj

R cos<p1+Sir;PQ+l_:§)s¢ 0®06 (12)

with the skew—symmetric tensor € defined by la =6 xa Va and ¢ = ||6]|.
This expression for R = t; ® t; is the so—called Rodriguez formula.

There are a variety of possibilities to describe a rotation tensor, as e.g.

Eulerian angles, Cardan angles, quaternions etc. A detailed survay may me
found in [BUR92).

To describe the curvatures we need to compute the derivatives of d with
respect to the coordinates O

d,a = R,a tz + Rts,a . (13)
Inserting t3 = R7d and t3 = Rge3 yields
d,e = R,oRTd+ RRy,RIRTd (14)
= 6,xd

where 8, = 84 + RO, and Rg,o RT a = 6y, x a Va. The derivative of R
follows from (12)

Ro = [-sinpl4 £O8€-SiNe g
+al;(sint,ogoz—?go(l—cosgo))G@O] ®sa (15)
+ =2, +1—_;19—S—£(9,a®9+9®9;a)
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R

Figure 2: Orthogonal transformation of the base systems

with ¢, = 0 -6,4 /¢ . After some algebra one obtains the axial vector 8, =
H8,,, see [SIMI0)

sin 1+(i_singo
2

H=
pr PP

1 -
)e®e+$n‘ (16)

Remark 1:

1. According to standard shell theories all terms associated with (? are
neglected. This assumption is valid for thin shells.

2. It occurs no shear flexure term which is consistent to the introduced
kinematic assumption. (d,, -d = 0).

3. The construction of a3 leads to an unit normal vector. The director vector
d is obtained by a rotation of as. Thus d is an unit vector and within
this theory no change of thickness A is described.

3 Stresses and Material Law

In this section we discuss the chosen material law. Here we use a layerwise
description of the material behaviour which is valid for composite materials.
We assume a purely elastic behaviour without damage or crack effects. Then the
material law for the composite material bases on a linear relation between the
2"4_Piola-Kirchoff stresses ¢, T and the components of the Green-Lagrangian
strain tensor, which is valid for small strains. A two dimensional material law
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in the tangent plane is then formulated for a layer k (1 < k < NLAY), where
NLAY is the total number of layers, from

ot =Ckle+¢*r], tF=Cgr. (17)

Here the main components of the stress and strain tensors are summarized
in vectors (¢ = [0',02%,62]T 7 = [13, 73T ¢ = [e11,692,2612)7 & =
[xu,fcn,an]T, y = [713,713]T). Stresses and strains are given in global
directions. ¢* describes the coordinate in thickness direction of the shell. The
matrices C% and Ck are calculated from the transformation of the locally
defined orthotropic material matrices for shell like structures with the elasticity
matrices

Cn Ci2 O ) é 0
Ci=|Cnn Cn 0|, c":[ 0 & ] (18)
0 0 Ca 2l

in the globally introduced coordinate system. The transformation in the tan-
gent plane from a local (z,r,z21) coordinate system to a global (zi¢, z2¢)
coordinate system is given by

Ty | | cosp sing | zi6 3
[:czz,]_[—singo Cossp] [1320] xr = Trxg (19)

with the rotation angle . Applying the chain rule we obtain the strains

Ouyp _ Owyr Oz Ouyr 06

€ = = . . . 20
T 82 Ozic Oxyp | Ozag Omip (20)
Introducing (19)
. . Ouyg
UL = cospuig +Sstnpuzg In
0z16
(21)
. . Onie
TG = Ccosprip —Stnpryr 1n
0z1L
leads to the result
€111 = cos’perig + sinpegc + sinp cosp €126 . (22)
Thus the following relation can be derived
e =T, e (23)
c? 52 sc — i
with  T,=1] s2 ¢ —sc s=amy (24)
2 9 c=cosyp

—2s¢ 2s¢ cc—s
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A comparison of the specific internal energy

1 1
dW:EU{E(‘:§U€EG (25)

yields the transformation for the stresses
o =T,06 with T, =TI}, (26)
and finally the relation for the material law
06=Cgec o, =Cre, with Cg=TIC,T,. (27)

This transformation is valid for the membrane strains € and the bending
strains K.

The transformation of the shear stresses and shear strains has to be carried
out in a similar way. With T, = T, it holds

Ce=TIC,T.. (28)

After introducing this relation the following global material parameter occur

Ciic = c*Cur+2s’c*(Ciar +2Ca31) + 5*Casr

Cuc = s'Cur+2s°c¢2(Ciar + 2Cs31) + ¢*Caar

Cizg = s%c¢%(CiiL + Caar — 4Csar) + (5% + ¢*)Ciar

Ciag = ¢*s(Crir — Crar — 2Cs31) + 5°c(Crar — Cazr + 2CaaL)

Cunc = §°c(Cir — Ciar — 2Cs31) + ¢35(Crar — Caar + 2C331)

Cisg = 5°c3(Cur+ Coar — 2C1aL = 2C331) + (5* + ¢*)Cast (29)
Cuc = ¢*Cur+s°Cor

Cng = s*°Cur+c*Ca

Cuc = SC(CuL —Caa).

Within the transformation the symmetry of the material matrix is preserved,
but the matrices are now fully populated.

A detailed derivation of these relations can be found in e.g. [TSA88].

The elements of the material matrices of a layer £ depend on the elastic
modules F; of a three-dimensional material law in the following way, see e.g.
[TSA88],

1
C = ————F
11L (1—1/2152/51) 1
- -V E7E (30)
Cor = ————=~ FEw

(1 -2 E2/E1)
Cssr = Cur =G
Cor = Gas.
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Axis 1 is parallel to the fibers of the considered layer, while axis 2 is normal
to the fiber direction.

The shell stress resultants and stress couples are introduced in a common
way. The components of the associated tensors

NeP = [ o°PdetZd(,
(»)

Maﬁ = f(a"’ﬁdetZdC, (31)
(h)

Q*® = [ kr°3detZd(

(k)

are summarized in the vectors N = [N11 N2 N'2]T M = (M M2 M12]T,
Q = [Q'3,Q%]7. Here, « is the shear correction factor usually chosen as 5/6.
Usually the determinant of the shifter tensor

detZ =det(1-¢(B) =1-((B] +B;)+(*(B{B; - B{B;)  (32)

is approximated by the first term which is valid for thin shells. Within the
material law for these averaged global siresses we have the well known coupling
effect between membrane and bending terms

N D™ D™ 0 £
M|=|D™ Db 0| |« (33)
Q 0 0 D¢ ¥
with
NLAY
pm — Z Ckhk
k=1
NLAY B3 )
Dt = 5ot
NLAY (34)
Dmb - Z Ckhka
NkLzAIY_
D! = E Ckhk
k=1

In (34) h* is the thickness of the k-th layer, (¥ is the distance from the
midpoint of the considered layer to the reference surface and NLAY is the
total number of layers.

4 Weak Form — Principle of Virtual Work

The numerical treatment within the finite element method is based on the
principle of virtual work. It i1s given with reference to the undeformed shell
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configuration in a Lagrangian description by

D7r-6v:/[N-65+M-6&+Q-67]dQ—~/’t\~6de =0. (39
Q

n’

In eq. (35) = is the potential energy calculated in the domain 2, the first
r.h.s. term describes the virtual work of the internal forces while the last term
describes the virtual work of the external forces, given in a simplified formula-
tion.

Thus we have to specify the variations of the shell strains
be = [5611,5522, 26612]T, b = [6&11, 6&22, 26K12]T, 67 = [6‘)’13, 5713]T. Using
(11) one obtains

beap = $(0a, -85+ a, - bap)
6743 = 0b8q-d+dq-6d (36)
bKkap = %—(550 -d,p+bag - d,n +a, - 6d,g+ag - 6d,o)

In (36) éd and éd,s are to be derived. The variation of d follows from (12)
6d = 6Rt3 =60d =66 x d (37)

where 66 denotes the axial vector of the skew-symmetric tensor 6§21 = SRRT.
The director vector d is orthogonal to t; and tz, thus d = t; x t;. Hence we
may rewrite (37) as

6d = W3 66 (38)
with W3 = ~W7 = t, ® t; — t; ® t;. Furthermore using (37) we obtain

6d,ﬁ=59,ﬁ Xd+59xd,p (39)

and
a, -6d,5 8, - (60,p Xd) +a, - (60 X d,g)

(d x 8g) 66,5 +(d,p Xég) - 66

i

(40)

i

The geometrical nonlinear load deflection behaviour is calculated with a
Newton-type iteration procedure. For this purpose we need to derive the lin-
earization of the principle of virtual work

D{Dr-év] Av /65-D"‘Aedﬂ+/ be -D™AKdQ

0
6n-D""’TAedQ+/ 6k -DPAKdQ

¢ (41)
57~D’A‘1d9+/ Abe -NdQ
Q

+

-+
=} \.D \.:3 \.D

A&fc-MdQ+/ Ab~y-QdQ2.
a
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Here the linearized shell strains are defined as Ag = [ A€y, Agaa, 2A512]T,
Ak = [AKH, AkKsyg, 2AK12]T and Ay = [A‘)‘13, Avis ]T. The operator § in (36)
simply has to be replaced by A.

The linearization of the virtual strains yields Aée = [Aébeyy, Abeaq, 2A6e12]7,
Abk = [AbK11, AbKgz, 206k15]T and ASy = [Abniz, Aby13]T with

A(S.Eap = %( ba, - Aag + Aa, - 65[3)
Abyaz = 68, -Ad+ Aa, -dd+a, - Abd (42)
A&K,aﬁ = % (550 . Ad,p +5ﬁg -Ad,, +Aa, - 6d,p +A5g -6d,,
+aq - Abd,s+ag - Abd,y).
The second variation Aéd follows from
Aéd = 60 x (A8 xd)
= A6(66-d)—d(é6-A8) (43)
a,-Add = (8, -A6)(66-d)— (a, -d)(68 - AB)

80 - A, A6

where Ay = $(d ® 84 + 8, ® d) — (&, - d)1.

The expression 8a, - Ad,s is given by
da, - Ad,g bds- [ABsxd+A0xds]

bay- [AG,p X(El X Ez) + A8 x (Gp X d)] (44)

b, [W3lAb,3+WgAb ]

with W5 = 85 ® d — d ® 65 . Inserting

Aéd,p 60,5 xAd + 66 x Ad,p
56,5 x(A8 x d) + 60 x (AB,5 xd) + 66 x (A8 x d5)
AB(68,5 -d) — d(68,5 -A8) + AB,5 (66 - d) — d(66 - A, )

+A6(60-d,z) - d(66 - AB)

into 8, - Aéd,s yields

Bg-Abdy = (8a - AB)(868,5-d) — (8q - d)(860,5 -A6)
+(8a - 28,5 )(86 - d) — (3 - d)(80 - AB,g ) (46)
+(8e - AB)(86 -d,5 ) — (3a - d,p )(56 - AB)
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Thus one can rewrite (42) as

Abeag = (68, 1A85 + Aa, - 16a5)
Abyas = b8q  W3A80+ Aad, - W30 + 60 - A, A6
Abkap = 3| 684 -(W3A0,5 +W;AH)
+6a5 - (W3A8,, +W,AH) (47)

+(80,0 W3 + 66W7) - Ad,

+(60,« WI + 66WT) . Aag

+60,5 -AsAG + 660 - AyAB,5+60 - AnpAB
+660,4 -ApAg +668 - A0, +66 - Ag, A6 ] .

Here we use the abbreviation Aqp = -;- (ds®8a+a,®dp)—(a,-dp) 1.

Remark 2:

1. The given formulation is completely nonlinear. Thus no discussion is nec-
essary which terms have to be used and which not as in classical geomet-
rical nonlinear shell theories, see e.g. [PIE77].

2. There is no simplification in the description of the director vector and its
derivations.

3. With the introduced director vector it is possible to describe rotations
without limitations.

4. The complete nonlinear formulation is essential in the deep nonlinear
range.

5 Finite Element Formulation

In this section we will discuss briefly the formulation of the associated finite
element. We introduce a general finite element discretization

Nelm

Bh = U Q. (48)

with ne,, elements. The formulation is based on the isoparametric concept.
Within an element Q. the position vector x of the initial configuration is ap-
proximated by

nel
Xh = Irje = ZN]X]. (49)
I=1

Here N and xr are the shape functions and the vector of nodal coordinates,
respectively. We use as shape functions N; Lagrange- or Serendipity shape
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functions. Furthermore nel defines the total number of nodes at the element.
For quadrilaterals it holds

Ni(€n)= - (1+&&)(L+nnr). (50)

] —

Using (49) the undeformed basis a¢, a, and a¢ at the integration points can

be expressed
nel

ag = ) Nrgxr,
I=1
nel 51
a; = ENI”;XI, ( )
I=1
ac = (ag xag)/|lag x a,}.

Next the initial rotation tensor Ry = t; ® e; with basis vectors t; can be
expressed as follows

tr = ag/llagll,
ts = a, (52)
t, = azxa.

Associated with this basis system are coordinates @,. The shape function
derivatives 8N;/00O, := Nj,q can be obtained applying the chain rule to x

Ox _ 0x 88,
aga - 66[3 afa

with§ =¢, & =1. (53)

With (51) and (52) we can introduce the base vectors a¢_ by

00
ag, = tg 6£ﬁ (54)
. . 00 . .
which leads with ag, -tg = ¢ to the components J,5 of the Jacobian matrix
a
_lag-ty ag-t
J_[an_tl a,,-tz]' (55)
Thus the derivatives —— are defined by
0x 0x
S = T = 56
8€. P50, (56)

This relation holds also for the shape functions Ny when considering (49). Thus
the derivatives of Ny with respect to @, are then expressed with the inverse

relation
N -1 Nm]
=17 . 57
[Nl,z] [Nm (57)
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The current configuration is obtained by interpolating the displacement
vector u and the rotation vector 8 within the element

nel

u' = ule; = Y Ny

e (58)
gh = 9f‘e,- = ZN[G[.

I=1

Note that the components of both the displacement vector and the axial vector
are introduced with respect to the Cartesian coordinate system.

With these preliminary interpolations at hand the deformed base vectors
a, and variations éa, can be computed within the element domain

nel

8, = X,a= Z N[,Q(X1+U[)

el I=1 (59)
550 = ZNI)aéul-

I=1

To avoid shear locking the transverse shear strains are independently inter-
polated within the element, see e.g. [BAD85],{DVB84]. This seems to be up to
now the best formulation for Reissner-Mindlin based plate and shell formula-
tions. A similar procedure for 8- and 9-node elements is proposed in [P1J87].
17

For this purpose the shear strains 4 = [, 7,3]" are interpolated using a

constant-linear interpolation, see [BADS85}, [DVB84]
[ 7e3 ] _1 [ (L =mreas + (L+mveap | (60)

Yoz | 2 (1 =& vmaa+ (1 +Emac
Here _ _
Yn3a = &4 -da mic = ayc-dc (61)
3B = a¢p - dp Yap = 4agp-dp

are the transverse shear strains computed from the displacement field at the
midside nodes M = A, B, C, D, as depicted in Figure 3.

The deformed tangential base vectors at the sampling points are given by

8ga = 3(Xa—X1) 8c = (X3 —Xp) (62)
agg = (X2-%1) app = 3(X3—X4)

and das = d(8u) is obtained using (12) with
64 = 3(6.+6)) 6c = 3(62+863) (63)
g = %(91 + 6,) 6p = %—(93-*-94)

The variation of the shear strains is given by

[ 6%e3 ] _1 [ (1 = méryeap + (1 + n)dvesp (64)
6¥n3 21 (1 =&bvpaa+ (1 +8Ebvpac |-
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@
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1

Figure 3: Isoparametric j—node element

with
61p3a = bapa-da+ay4-6da b1pac = bayc -dc +ayc-dde
873 = 5553 'd3+553 -4dp 5‘7531_) = dagp -dp +a¢p -6dp
(65)
and _ _ .
b8pa = 3(bug—obuy) ba,c = (6uz—Suy) (66)
6563 = %—(5112 - 6111) 65‘51) = %-(6[13 - 6114)
At the midside nodes one obtains with (63)
604 = %—(604 + 601) 68 = %(592 + 693) (67)
80 = L(66:+66;) d6p = L(665+664)
The finite element formulation of the membrane part yields
nel
seh =Y BT bv; (68)
I=1
with matrix B
5{ N 0
BI' = a; Ni, 0 (69)
al Nrp+al Niy O

and the virtual nodal displacement vector év; = [6uy,68;]T of node I. The
finite element formulation of the shear strains is expressed as

nel

87" =) Bj v, (70)
I=1
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with .
Ny d; ~MN g (dp x agg)T
L Nll')dA --Nl,n(d,q xa,,A)T

p: - | Maedp Mo (dp x aep)”
2 L N?:n dg —N2)n (dC X éfC)T

. Na’fdg Ns,f(dp X a,,p) ]
N3,,, dC N3,,, (dc X aec)T

N4,5 dD —N4,€ (dD X a,,D)
L N4’ﬂ d N4,n (dA X a,,A T

The variation of the bending part is given by (36)3. Based on these formulaes
the approximation of the bending part follows from

nel
6x" =Y B bvi (72)
I=1
with
N[,ld,’{ N1,1(dxa1) +N1( "1 Xﬁl)T
N],zd,%‘ N[,z(dxaz) +N1(d2xa2)T
N],gd,’lr N;,l(dxag) +N1(d1X82)T
+N[,1d,g N;,z(dxal) +N1(d2X&1)T

B} = (73)

Based on this element specific formulation we define the residual (on element
level) in a standard way for a nodal displacement vector

ne

Gi(ve,bve) = B F{ [ BFT(vN(ve) + BY (v)M(v. y
) B (v)Q(v.) o - fNTtdQ} s

The tangential stiffness matrix can be calculated from

DG (v.,év.)Av, =

i [\’]i

nel
z vT | f BT (v.)DBg(v.)d
+ f GrgdQ ]AVK (75)
= év [KTeM + KTea]Ave = 6VTKT¢ Av,,
with By = [BT, B}, B3|T
The second term in eq.(75) — the geometrical matrix K, follows from the
linearizations of the virtual strains. After multiplication with the work conju-

gate stress resultants, we obtain the terms for Gy in K, . The membrane part
is given by

nel nel
A
5T K (nyeAve = ZZ[su,,ae,]T/G,K dQ[Az:] . (T76)
I=1K=1
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with

S1a.s 03:3]
G = 77
IK(m) [ 0373 03:3 ( )
and
5 = N° Npa Nk
= NYMNpy N1 +N2Npy Nk +N2(Npy Niy2+Nrye Ngoi ).

(78)

For the geometric stiffness matrix of the shear part we need the second
variation of the shear strains. Based on the introduced shear strain field one

obtains
[A&’.)'fs} 1 [(1 — n)Abvesp + (14 7)Abveap (9)
Aba) — 2 [ (1 = E)Abymaa+ (1 +&)Abvgac |’
with
Aé‘)‘qu = 65,,,1 -Ady + AanA -6d 4 + t_lnA -Abdy
Abyesp = bagp - Adp + Adgp - 6dp + a¢p - Abdp (80)
Abygzac = ba,c-Ade + Aa,c -bde +a,c - Abdc
A67&'3D = 655D -Adp + Aagp -6dp + agp - Addp .

After some algebra we end up with the shear part of the geometric stiffness
matrix 1

03z3 8IK
Gix(s)= | | _ § (81)
ggm ggIK
with

gn = —(1-nQ¥Wszp—(1-£)Q"Wsy

g2 = (1-7)Q%®¥Wsp—(1+£)Q"™W;s¢

gz =  (1+7)Q%¥Wsp + (1+£)Q"™Wsc

g = —(1+0)QBWap + (1-£)Q"Way

giz = —(1-7)Q¥Wsp

g3 = o0 (82)

gia = —(1-6)Q"Wgy

gz = —(14+8QMPWsc

24 = O

gar = (1+7)Q¥Wsp

BKI = —BIK
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and
gnn = (1-n)QBApp +(1-6)Q"A, 4
gz = (1-1QPAp+(1+6)Q"A,c
gz = (1+17)Q%App +(1+6)Q™A,c
gaa = (14 1)Q%App +(1-6)Q A4
g2 = (1-17)Q%Ap
g13 = o (83)
Bie = (1-8)QMAca
g3 = (1+8QMA¢c
g4 = O
g« = (1+1)Q%A¢p
EKI = BIK
where
Wiy = tim®toy —tam @ tiy (84)
Ay = 5(dp @ agy + dgy ® dyr) — (Benmr - dpr)l

The bending part Gyg(b) is then definsd by

O3z3  Zus
Gri(b) = 85
1k (b) [g0u goo} (85)
with the submatrices
gu€ = %Maﬂ [ NIya W3NKlﬁ +Nl|0 WﬁNK
+N1,s WaNg,o +N1,3 Wo Nk |
Eou = %M“ﬁ | N[,pngK,a+NlWENK,a (86)
+N110ngK)ﬂ+NIWQNK7ﬁ ]
gog = %Maﬁ [ N],gAaNK+N[A0NK,B+NIAQENK

+Nr,a AgNkg + NfAgNk o +N1Apa Nk .

The complete representation of the geometrical matrix is an essential con-
dition for a quadratical convergence behaviour within the Newton iteration.
The residual and the tangent stifiness matrix are integrated numerically using
a 2 x 2 quadrature.

The shear strains are introduced with respect to £, = £, 7). A transformation
to Og is shown in eq. (57) and bases on the introduction of the Jacobian J,
defined in eq. (55). It holds

,Y:J—l;,, [713] :J-1[753] . (87)
Y23 Tn3
The internal virtual work, restricted to the shear terms is defined by
Dw,-&v:/é—y-QdQ:/é-yTD"de (88)
0 N
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and with eq.(87) the shear part is transformed to

Dr, bv = / 6573 TD*I7 1340 :/ §4TD*3dQ =/ §47QdQ. (89)
Q 0 0
Thus the formulation of the shear term can be performed in the local £, 7 -
coordinate systems with D* = J-TpsJ-1,

The components of the axial vector 8 have been introduced in (58); with
respect to the Cartesian basis system e;. Thus up to now we have three global
rotational parameters. Since there is no bending stiffness with respect to the
shell normal in differentiable surfaces we eliminate the drilling degree of free-
dom. The virtual axial vector 68; of node I can be decomposed as

691 = 601jej = 6ﬂ1a510 (90)

With (90) two local rotational parameters 603, are introduced. The drilling
degree of freedom 60r3 is assumed to be zero. Equation (90) can be written in
matrix notation

668n

86;=[tn tn ](3,:2) [ 66r2 ](2:1)

§6; = T;68; . (91)

This transformation and the associated one for node K Afg = TxABy are
inserted into the linearized virtual work principle given in (74) and (75)

DG (%,,6v.)Av, + Gt (v,,bv,) =

nel nel
Kuu K [ AuK Gul
1;;:‘:1 Kus Koo J(oe5) L BOK (601 Gor

which leads to
DG(v.,b6v.)Av, + Gl (v,,bv.) =

nel nel
K K.oTk Aug
(sur, 68,1 [ Tre T ] [ ]
Iz=:x Kz=:1 TiKus TrKeeTx (5z5) ABk (5z1)

+[ T?gol }} '
(93)

The submatrices and vectors associated with the rotational degrees of free-
dom have to be transformed using T; and Tx. The elimination of the drilling
degree of freedom is only performed at nodes in differentiable surfaces. Along
intersections of shellparts we use the original three global parameters Afy;.
With this method we are able to compute folded plate structures {see also
[SIM90], Part VII).
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Remark 3:

1. The formulation of the Bathe/Dvorkin approach used in this element is
similar to that described in [SIM90] and [IBR95]. Differences occur in all
terms, describing the rotational behaviour due to the different approach
of describing finite rotations. Furthermore this approach is described for
the degenerated shell element of Ramm [RAM77],[RAMT76] in [STM89].

2. The formulation of the Bathe/Dvorkin approach is given here with respect
to the local £4—system. Thus shear strains and shear forces have to be
transformed to the global directions @, using the transformation Q =
JTQ for an output of these values.

6 Examples

The developed element has been implemented in an extended version of the
finite element program FEAP. A description of this program can be found in
[ZIT89].

We show three types of examples. First of all we show the ability of our
element to describe finite rotations in standard linear elastic test problems,
then we give examples for composite shells with finite rotations and finally we
discuss the application of the element to a dynamic problem.

Clamped spherical rubber shell

The nonlinear behaviour of a clamped spherical shell of rubber like material
has been analyzed by Taber [TAB82] experimentally and analytically. This so-
lution does not take into account shear deformations. The system and material
data are

E=4000kPa v=05 R=263mm h=44mm

and the finite element mesh is shown in Figure 4.

The shell is analyzed using one quadrant with a 16x16 finite element mesh.
We increase the shear correction factor k by a factor of 100 to suppress the
shear deformations, see [SIM90]. A theoretical background for this technique
is that the shear term in the tangent stiffness matrix can be used as a penalty
term for a Kirchhoff-type theory, see e.g. [ZIT89].

Figure 5 shows different load—deflection curves for this problem. There is an
excellent agreement between experimental and computed results. The results
of the present formulation differ slightly from that published in [SIM90], which
may depend on the different membrane interpolation. In addition the results of
an axisymmetric shell element with finite rotations, see [WAG90], are depicted
in the Figure.
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clamped

Figure 4: Spherical rubber shell under point load
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Figure 5: Normalized load deflection curves for a rubber shell
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The calculations are performed in 10 displacement controled steps. Applying
this solution strategy the calculation of the entire load-displacement curve can
be done in an efficient way. The Newton-type convergence behaviour is shown
in table 1 for the norm ||Gl}; of the residual for some displacement increments.
The final deformed system at a deflection w=R is shown in Figure 6.

disp | w/R 0.1 0.4 0.7 1.0
norm 1 1.18E + 06 1.13E +06 1.08E+06 1.07E +06
Gl. | 2 3.57E+04 4.71E+04 582E+04 T7.81F + 04
in 3 755E+02 144E+03 1.38E+03 1.94E +03
iter- 4 | 265E+02 6.11E+01 4.40E+01 1.63E+02
ation 5 |3.74E-02 3.53E—02 3.53E—02 3.6TE — 02
no. 6 1.09E —07 897E—08 197E—08 1.21E-07
load | F/ER? 0.170 0.364 0.511 0.713

Table 1 ~ Convergence behaviour for spherical rubber shell

Figure 6:

Spherical rubber shell under point load, deformed mesh at w/R=1

Clamped cylindrical Composite shell

The nonlinear behaviour of a clamped cylindrical shell panel of composite
material subjected to a uniform load for a cross ply {0°,90°] has been analyzed
in [RCH85] using a displacement finite element model based on the von Karman

equations.

E
E,
v

The material and geometrical data are

= 25-10° psi Gz = 0.5-10° psi = 2540in
= 1-10° psi Gz = 0.5-10° psi a = 254in
= 0.25 Ggz = 0.2-10° psi h = 254in.

The system is depicted in Figure 7.
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Figure 8: Load deflection curves for a cylindrical shell segment under uniform

load
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Figure 7: Cylindrical composite shell panel
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We run this example to test the composite formulation of our element. In
this example finite rotations do not occur. The load deflection curves for the
uniform load versus the center deflection are depicted in Figure 8 for 4*¥4, 8*8
and a 16*16 finite element mesh for one quarter of the shell.

Due to the boundary conditions a certain number of elements is necessary to
produce accurate results, especially in the region where we have large changes
in the center displacement at nearly constant external loads. The results differ
slightly from that given in [RCH85]. A further discussion is not possible be-
cause in [RCHB85] no information is given on the element formulation and the
finite element meshes.

Hyperboloidal Shell under two pairs of opposite loads

There exist a number of benchmark problems for shell element formulations
in the geometrical linear and nonlinear case. One example is a hemispherical
shell under two opposite pairs of loads, see e.g. [MCH85]. Based on this example
Bagar et.al. [BDM92] define a similar problem for a hyperboloidal shell with and
without composite material behaviour. Here we want to discuss the composite
hyperboloidal shell. Due to the symmetry only one eighth of the shell has to
be discretized. The shell has been analyzed for two sets of laminate schemes.
Both are of cross ply type with [0°,90°,0°] and [90°, 0°,90°]. Here 90° means
a fiber orientation into the circumferential direction.

The geometrical and material parameters chosen in [BDM92] are

E, = 40-10° Gy = 0.6-10° h = 012 R = 15
E;, = 1-10% Gz = 06-1c6 h; = 0.04 Ry = 15.0
v = 0.25 Gys = 0.6-10° P =5 H = 200

The radius of the hyperboloidal shell is described by R(z3) = &t \/¢? + (z3)?

with ¢ = 2% . One eighth of the shell is depicted in Figure 9.

Results are shown for points A,B,C and D of the shell, see Figure 9 for both
types of layer sequences. Large displacements and finite rotations occur within
the nonlinear load deflection regime. A path following scheme, see e.g. [WAW88)
may.be used but is not necessary. Especially for the second layer sequence the
path following method is advantageous due to the extremely weak behaviour of
the shell for low values of the external loads. In the Figures 10 and 11 we show
the load deflection curves for the sequence [0°,90°, 0°] and a finite element mesh
with 16*16 elements. The results are in good agreement with those calculated
in [BDM92] based on a 28 * 28 finite element mesh.

In the Figures 12 and 13 the load deflection curves for the layer sequence
[90°,0°,90°] based on a 16*16 element mesh are depicted. Slightly differences
occur in the presence of large displacements for the curves A — ug, A —uc. If
we use a 28%28 mesh too the results nearly coincide with those in [BDM92].
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Figure 10: Hyperboloidal composite shell [0°,90°,0°]), A —up , A — uc
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Figure 11: Hyperboloidal composite shell [0°,90°,0°], A —ug,A —up
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Figure 13: Hyperboloidal composite shell [90°,0°,90°], A —u4q, A — up

In the following Figures we show the deformed meshes at a load level of
A = 30. Based on the undeformed system in Figure 9 the deformed meshes
are shown in the =1 — z3 plane and in z5 — z3 plane in the Figures 14 and
15. Furthermore the Figures 16 and 17 show perspective views of the deformed
hyperboloidal shells.

Figure 14: Hyperboloidal composite shell [0°,90°,0°) - deformed mesh in the
r1 —z3 plane and z3 — z3 plane
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Figure 15: Hyperboloidal composite shell [90°,0°,90°] - deformed mesh in the
z) — z3 plane and x5 — z3 plane

Figure 16: Hyperboloidal composite shell [0°,90°,0°] - deformed mesh, perspec-
tive view
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Figure 17: Hyperboloidal composite shell [90°,0°,90°] - deformed mesh, per-
spective view

Rotation of a propfan-blade

This example has been chosen to demonstrate the ability of our element
to describe finite rotations without difficulties. We discuss the rotation of a
propfan blade under a time dependent axial moment.

It is characterized by the large number (8-10) of low-aspect-ratio highly
swept blades which are twisted along the span and curved back about the axis
of rotation. A typical example is the Hamilton-Standard SR3-propfan with a
diameter of 2.70 m, shown in Figure 18.

Lammering [LAMY0] has analyzed the Hamilton-Standard SR3—propfan.
He discussed the behaviour of blades for different materials under centrifugal
forces and a constant rotational speed. Furthermore he investigated the influ-
ence of the fiber orientation on the tip displacement of the blade and on the
twisting at a certain point via optimization procedures.

Due to the symmetry of the system it is sufficient to analyze only one
blade. Figure 19 shows two views of the blade. The rotation of the blade occurs
around the 3-axis. For this purpose the blade is connected to the axis via rigid
elements. The finite element discretization is defined by 798 nodes, 740 shell
elements and 3990 degrees of freedom.
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Figure 18: Hamilton-Standard SR3-propfan

.

Figure 19: Two views of the FE-mesh of the SR8-prepfan
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The blade has a variable thickness. Within the finite element discretization

nel
the thickness h can be computed using h* = 5~ Nyhy with the shape functions

I=1
Ny and the nodal values of the thickness h;. The thickness distribution is shown
in Figure 20.

1.829€-83 min
7. 48BE-83
1. 395€-82
2. B41E-82
2. bBLE-82
3. 332E-02
3. 978E-82
4. b24E-22
5. 2TeE-e2
5. 91bE-82
b. 562E-82
7. 207E-82

7.853E-82

B. 499E-02
9. 145E-82 max

Figure 20: SR3-propfan: distribution of thickness in m

We choose 6 composite layers of constant thickness (0.8 mm), three at the
top and three at the bottom of the blade. Thus the distance (¥ between the
midpoint of the considered layer and the reference surface has to be modified,
see eq. (34). The fiber angle sequence [90°,45°,0°,0°,45°,90°] is symmetric.
The angles are defined with respect to axis 3, see Figure 19.

The material data are chosen as follows

Ey = 13500 kN/cm?® Gip = 540kN/cm? v=03
Eq = 1000 kN/cm? p = 1600kg/m3 .

In this example we discuss the motion of one rotor blade with initial con-
ditions X = X = 0. The motion is initialized through an axial moment M3z3 =
My t, with Mo = 1kN cm/sec and the process time t in seconds.

A standard Newmark algorithm without damping is used. Within the non-

linear shell element a simple row sum technique leads to a lumped mass matrix,
see e.g. [HUGST].

The results for the axis angle (angle around axis 3) versus time are depicted
in Figure 21 for different time steps. Within this time the blade rotates three
times.
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Figure 21: Motion of the SR3-propfan, azis angle versus time

Figure 22: Motion of the SRS-propfan, t = 0 - 2.2 sec, A 1 = 0.2 sec.
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Furthermore the deformed meshes are shown for t = 0-2.2 seconds in steps
of 0.2 secs in Figure 22 (0.2,0.4,....2.2) and for t = 2.2-2.9 seconds in steps of
0.2 secs in Figure 23 (2.3,2.5,2.7,2.9).

Figure 23: Motion of the SR3-propfan, t = 2.3 - 2.9 sec,A t = 0.2 sec.

It can be seen that the motion is nearly a rigid body motion. The example
demonstrates the ability of the element to describe finite rotations. Here we
have more than 3 rotations. Thus the rotation angles are up to 1150 degrees.

7 Conclusions

In this paper we have derived a finite element formulation for geometrical non-
linear shell structures. The formulation bases on a direct introduction of the
isoparametric finite element formulation into the shell equations. The element
allowes the occurence of finite rotations which are described by a rotation ten-
sor. A layerwise linear elastic material model for composites has been chosen.
The consistent linearization of all equations leads to quadratic convergence
behaviour within the nonlinear solution procedure. Examples show the appli-
cability and effectivity of the developed element.
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