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ABSTRACT. A total lagrangian formulation is developed in terms of a general orthogonal 
curvilinear coordinate system. The formulation is used to develop an axisymmetric finite 
element in cylindrical coordinates to mode/large displacement nonlinerarities arising out of 
large non-axisymmetric displacements. An axisymmetric shell under asymmetric loads and 
an axisymmetric beam-column are modelled to demonstrate this capability. 

RESUME. On erablit une formulation lagrangienne totale en termes de systeme des 
coordonnies curvilineaires orthogonales. On utilise Ia formulation pour etablir un element 
fini axisymetrique dans des coordonnies cylindriques, en vue de modeliser des grandes non­
linearites de deplacement provenant de grands deplacements non-axisymetriques. On utilise 
pour demontrer cette capacite le modele d'une coque axisymetrique soumise a des pressions 
asymetriques et d'une traverse et d'un montant axisymetriques. 
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1. Introduction 

In recent years, applications involving axisymmetric bodies subject to large non­
axisymmetric deformation have assumed increasing importance. The performance 
demanded of Oil Country Tubular Goods (OCTG) is increasing as new recovery 
techniques are developed. Examples include horizontal well designs which require 
pipe and connections to withstand flexural loads. Large formation movements pro­
duced by subsidence or thermal recovery techniques produce high shear and bending 
loads on well tubulars through complex casing/formation interactions. Often, the 
products used in these applications were never designed with such loads in mind. In­
deed, the loading mechanism itself in the casing/ formation interaction problem is 
one requiring a great deal of study. However, proper inelastic large deformation 
three dimensional analysis of these problems has been difficult to achieve because of 
the enormous computational effort. 

A possible alternate approach is to use axisymmetric elements which utilize the 
initial geometric symmetry of these problems, and formulate the elements to allow 
for non-axisymmetric deformations. A cylindrical coordinate system in the context 
of a Total Lagrangian formulation seems appropriate for these elements. 

Formulations for solid finite elements have been largely based on Cartesion refer­
ence systems [BAT 82], [ZIE 77], [ADI 87]. Many programs use cylindrical, spheri­
cal, or local coordinate systems for input convenience, then transform the values to 
global Cartesian coordinates for the finite element formulation. While significant ef­
forts have been devoted to cylindrical formulations, most efforts have been restricted 
to small displacements [WIL 65], [WIN 79] or shell elements [SPI 81], [KLE 83], 
[CHA 70], [CHA 76], [CHA 77], [WUN 89]. 

This paper discusses a basic Lagrangian finite element formulation in general ort­
hogonal curvilinear coordinate systems. It includes the basic elements for describing 
Lagrangian strains and strain increments in orthogonal curvilinear coordinate sys­
tems, and the procedure for integrating these into the virtual work equation, which 
forms the basis of most structural finite element applications. This generalized for­
mulation is applied to a solid cylindrical finite element which is demonstrated at the 
end of the paper. Although developed to address structural problems in the oil in­
dustry, the formulation developed herein is general with much broader application 
potential. 

2. Lagrangian Strains In Curvilinear Coordinates 

Lagrangian formulations are able to model nonlinear behaviour arising out of 
large displacements, rotations, and strains. The Green-Lagrange strains on which 
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these fonuulations are based have the desirable characteristic of remaining invariant 
under rigid body rotation. In this section, the Green Lagrange strains, strain incre­
ments and strain increment variations are developed in tenus of general orthogonal 
curvilinear coordinate systems. 

2.1 Deformation Gradient Strain 

Many authors express Green-Lagrange strains in tenus of the defonuation gradi­
ent in general curvilinear or orthogonal curvilinear coordinate systems [BAT 82], 
[MAL 69], [FUN 65], [TRU 60]. The development which follows is based largely 
on Malvern's discussion[MAL 69]. 

The Lagrangian strain tensor is defmed to give the change in the squared length 
of the material vector in tenus of the material (or reference) coordinates: 

[1] 

where dS; is the original material vector, ds; is the defonued or strained material 
vector, X, are the material (original) coordinates, and Eu is the Green-Lagrange strain 
tensor. 

The defonued length is given using the defonuation tensor, Cij: 

[2] 

The Green-Lagrange strain tensor is thus: 

[3] 

The material vector components are functions of position: 

dSi = H'dXi, dsi = h'dxi (no sum) [4] 

where H are the material scale functions, H are the spatial scale functions, and x; are 
spatial coordinates. 

In orthogonal coordinate systems, the covariant and contravariant components 
are coincident, and only one component type need be considered. Therefore, the 
convention of summation for repeated subscript indices is introduced in [ 4]. 

The spatial components may be expressed in tenus of the material components 
through the defonuation gradient tensor, Fkm• and used in the defonuation tensor: 

[5] 

[6) 

When this is substituted into [2] and expanded, the expression for Green­
Lagrange strain becomes: 
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[7] 

2.2 Displacement Based Strain 

In finite element applications it is necessary that the strains be expressed in terms 
of the displacement field. This requires that appropriate displacement measures be 
defined. In Cartesian formulations the scale factors are unity and are independent of 
location, and of displacements. With other coordinate systems, however, location 
dependent scale functions add some complexity, and it is at this point that most au­
thors simplifY their discussions to infinitesimal strain formulations [MAL 69], 
[FUN 65]. Small displacement formulations in cylindrical coordinates [WIL 65], 
[WIN 79] typically use physical displacements as degrees of freedom. Assuming 
that the displacements are infinitesimally small relative to the dimensions of the body 
also suggests that the scale functions are independent of displacement, and a simple 
relationship between physical displacements and coordinate changes can be stated: 

[8] 

The superscript p on the displacement u denotes the physical displacement mea­
sure. Appropriate substitution of physical displacements into the small strain tensor 
gives the expressions used in most cylindrical finite element formulations. 

Defining physical displacements which include deformation dependent scale 
functions is more difficult, and unnecessary. Instead, coordinate displacements can 
be used as the field variables. This approach was used by Truesdell and Toupin 
[TRU 60] for Lagrangian strains in general curvilinear coordinate systems, however, 
it has not previously been used in incremental form for a finite element formulation. 
Coordinate displacements eliminate the ambiguities in the relationships between 
physical displacements, defmed displacements and displacement increments, and en­
ables sufficient simplification of the Green-Lagrange strains to develop a generalized 
incremental finite element formulation in orthogonal curvilinear coordinate systems. 
The displacements are defined simply as: 

u~ =X;- X, ' (i = r, e, z' in a cylindrical system) ' [9] 

in which the superscript c indicates the coordinate displacement measure. Since this 
paper focusses on a coordinate displacement based formulation, the superscript c 
will be dropped, and all displacements will refer to coordinate measures in the 
following. 

Differentiating [9] with respect to material coordinates, the unsealed deformation 
gradient tensor is obtained as 

[I 0] 
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Substituting this into [7] the Green-Lagrange strains can then be expressed strict­
ly in terms of the displacement field and scale functions: 

[II] 

The first three terms are displacement gradient components, similar to the usual 
expressions developed for Cartesian systems. The last two terms are less familiar 

pure scale factor components. In a cylindrical coordinate system, for example, the 8 
(hoop) strain arising from pure radial expansion is a scale factor component. 

2.3 Strain Increments 

In incremental nonlinear finite element solutions, the incremental strains are ex­
pressed in terms of the incremental displacement field. The strains, displacements, 
and scale functions after an increment are written in terms of the values before the 
increment and the incremental values: 

[12a] 

[12b] 

[12c] 

where 'Eij, 'u; and 'H are the strains, displacements and scale functions at time t, and 
the left superscript t+d t denotes a quantity after the increment. 

Substituting each of these into the Green-Lagrange strains after the increment, 
expanding and subtracting 'Eij, the strain increment tensor, MY, is recovered. For 
convenience, this is split into parts corresponding to the order of displacement 
increment: 

[13] 

in which 

[14a] 

[14b] 
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[14c] 

Note that 11£ is a first order strain component which does not depend on the dis­
placement gradient, and corresponds to the infinitesimal strain: The second term, 
11£', is also a first order strain increment component, but is nonlinear because it de­
pends on the displacement gradients at time t. The remainder of the terms are se­
cond, third and fourth order strain increment components. The first and second 
order terms are used in the finite element stiffness matrix formulation which follows. 
Higher order terms are not shown, as they are ignored in the linearization of the 
equations. While the stiffness matrix is therefore not exact, the error introduced by 
this assumption is eliminated by equilibrium iterations. 

3. The Principle Of Incremental Virtual Work 

The formulation for nonlinear structural fmite element programs is based on the 
principle of virtual work. Although integrated over the deformed volume and sur­
face of the body, the equation may be expressed in terms of the original configura­
tion, and expressed in incremental form [BAT 82] as: 

[ 15] 

where p 0 is the undeforrned mass density, 7; and F; are the surface traction 
components and specific body force components, SiJ is the Second Piola-Kirchhoff 
stress tensor, and CiJkl is the material constitutive tensor. The quantities 7;, F;, SiJ and 
Cykl are defined at the start of the increment. Here it is assumed that the incremental 
stress tensor, L1SiJ ,is a linear function of the frrst order strain increment only (~E + 
~E'). 

4. Finite Element Equations 

4.1 Linear Stiffness Matrix 

The first term in [ 15] represents what will be the incremental linear stiffness ma­
trix in the fmite element form. The frrst order strain increments can be expressed in 
terms of the displacement increments in matrix form: 
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{M:} = [b]{.1u}, {.1£1
} = [b 1]{.1u}, [ 16] 

where [ b] is the linear differential operator matrix ,[ b'] is the differential operator 
matrix for large rotations, {.1£} is the vector of infinitesimal strain components, 
{.1E'} is the vector of large rotation strain components, and {.1u} is a vector of 
displacement field component functions. 

The differential operator matrices [ b] and [ b'] each have a set of components 
based on the displacement gradient field increment which are simply scaled versions 
of those of Bathe[BAT 82]. These are the first terms in each of [14a] and [14b]. 
The last terms, however, are scale function increments which produce components 
not usually seen because they vanish in Cartesian formulations. The differential op­
erator matrices can be stated symbolically to show these components separately: 

[b] = [dJ + [h], [b'] = [d] + [h'] [17] 

where [dJ contains the small displacement gradient component of [b], [h] contains 
the corresponding scale function component, and [d1 and [h1 contain the equivalent 
large rotation components of[b1. 

Using [ 17], the first term on the left hand side of [ 15] can be written as: 

Details of the components of [ b] and [b 1are given in Appendix I. 

4.2 Geometric Stiffness Matrix 

[ 18] 

The second term on the left hand side of [15] represents the second order virtual 
work and leads to the geometric or nonlinear stiffness matrix. The second order 
component of the strain increment, [14c], can be decomposed further into subsets in 
the same manner that .1£ and .1£' were decomposed in the previous discussion. How­
ever, because second order terms are involved, three subsets can be defined: second 
order displacement gradient components, second order scale function components, 
and cross terms including products of first order displacement gradient and frrst or­
der scale function components. 

A similar approach to that used to obtain [18] is adopted here so that those com­
ponents similar to conventional polynomial based formulations can be illustrated dis­
tinctly. The usual approach is to express the second term on the left side of [15] in 
matrix form in terms of the displacement field: 

[19] 

In the general curvilinear formulation it is easier to separate [kg] into components 
corresponding to the three types of components in the second order strain increment 
variation: 
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[20] 

where [If] is the second order displacement gradient component, which uses a scaled 
version of the interpolation matrix used in conventional formulations, [k"] represents 
the second order scale function component, and [ .ffH] includes cross terms of first 
order displacement gradient and scale function components. 

Details of the second order virtual work components are given in Appendix I. 

4.3 Finite Element Form Of Incremental Virtual Work 

The virtual work equation is integrated on an element by element basis and 
summed to give the total virtual work on the body. The displacement field within an 
element is interpolated using displacement degrees of freedom at nodal locations on 
the body: 

{u} = [N]{u}N, [21] 

where [N] is a matrix of interpolation functions, and {u}N is a vector of nodal 
displacement components. 

Substituting [18] to [21] into [15], and noting that the variation in the nodal dis­
placement increments is arbitrary, the final system of incremental fmite element 
equations is recovered as 

~ (f v" (B + B1
] r(C](B + B1]dVo + fv" (N]r[kg](N]dVo ){~u}N [22] 

= L (J [N]r{T; +~T,}Ndr+ J (N]r{F; +M;}Np0 dV0 - J [B+B1]{S}dV0 ) 

lli r ~ ~ 

in which the differential operator matrix and the interpolation function matrix are 
combined for efficiency such that 

[B + Bj = [b + bj[N] . [23] 

The first term inside the summation on the left hand side of [22] represents the 
linear stiffness matrix, while the second term represents the geometric stiffuess ma­
trix. The first two terms on the right hand side represent the imposed loads, and the 
last term the internal equilibrating forces. 

5. Application: Cylindrical Formulation For A Quadrilateral Axisymmetric 
Element And Non-Axisymmetric Deformation 

The fmite element formulation for general orthogonal curvilinear coordinate sys­
tems described above was implemented for a cylindrical coordinate system, with 

coordinates r, z, and 8. The resulting element is axisymmetric in shape, quadrilateral 
in the axisymmetric plane and circular in cross-section (Figure I). Integration of the 
element volume is the same as for conventional axisymmetric elements. 
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Figure 1. Axisymmetric element for nonaxisymmetric deformation with coordinate 
based cylindrical displacement components 

The element displacement field is similar to that implemented by Zienkiewicz 
[ZIE 77], using a truncated Fourier decomposition in the circumferential direction 
and polynomial interpolation for the harmonic amplitute in the axisymmetric plane: 

[24] 

where P n(R, Z) are the usual polynomial interpolation functions, Nr is the number of 

nodes, N1 is the number of harmonics, and u;{cis) are nodal harmonic displacement 

component amplitudes, with n representing the node number, f representing the 
fourier number, while c or s denote cosine or sine terms. 

It is important to note that the displacement field is not identical to Zienkiewicz's, 
because the circumferential displacements are defmed differently. Moreover, be­
cause the element differential operator matrix, [B], contains higher order harmonic 
components, i.e. sin(8)cos(8), sin(8)sin(8), and sin(8)cos(8) terms, and because the 
constitutive matrix may be nonlinear, the harmonic stiffnesses are not decoupled as 
they are in the linear case. Furthermore, integration of the stiffness matrix in the cir­
cumferential direction must be performed numerically. A trapezoidal rule is 
employed for this purpose. Thus, the computational requirements increase much 
more quickly as the number of harmonics is increased. However, in most cases the 
CPU and storage requirements are still considerabley less than those for a model 
based on three dimensional elements. 
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6. Sample Problems 

The Fourier based displacement field in the circumferential direction has been 
well proven in linear analyses [WIL 65] and it can also be shown that the linear form 
of the Total Lagrangian formulation produces an identical formulation to those well 
established techniques. Our interest is to demonstrate the capability for modelling 
geometric nonlinearities. A program for Static Lagrangian Analysis of Tubular 
Structures (SLATS) was written to test the formulation. Two problems are presented 
to demonstrate the formulation. The first is an asymmetrically loaded spherical cap 
which has been considered by other authors [CHA 70], [CHA 76], [CHA 77]. While 
the element discussed here is a solid based element, it performs well when the ele­
ment aspect ratio is quite high. Secondly, a cylindrical tube was modelled as an elas­
tic beam column, with large axial and small bending loads applied. Analytical 
linearized buckling solutions are available for this problem [POP 78]. For compari­
son purposes, the same model was also analyzed using the conventional three dimen­
sional element in ADINA [ADI 87]. 

6.1 Asymmetrically Loaded Cap 

An axisymmetric cap under an asymmetric load is discussed by Chan and Firmin 
[CHA 70] and Chan and Trbojevic [CHA 76], [CHA 77] in the development of shell 
elements based on Fourier decomposition. Their models and results give a good 
basis for comparison, because the loads and results are given in terms of Fourier am­
plitudes, rather than the usual discrete values given by most analysts. These for­
mulations all include kinematic assumptions which limit their effectiveness for 
modelling geometric nonlinearities to relatively small displacements; in the order of 
the shell thickness. Details of the cap and boundary conditions are given with Figure 
2. The loading function given in the figure is the same as that used in [CHA 70], 
[CHA 76] and [CHA 77] to give a crude approximation of pressure loading over one 
half of the spherical cap. The pressure magnitude is equal to the analytical collapse 
pressure for a spherical shell, which is modified by a scale function which is in­
creased incrementally to collapse. 

A model of the same cap was prepared using SLATS. Chan's shell elements used 
a relatively high polynomial order in the axisymmetric interpolation of the harmonic 
amplitudes. Since the element discussed here was implemented with, at maximum, a 
quadratic order polynomial displacement field, more elements were used to analyze 
the cap - 20 elements versus only one in Chan's analyses, although Chan and Firmin 
commP-nt that models with up to five elements exhibited the same behaviour. Har­
monics up to and including 30 were used in both Chan's and the present analyses. 

Figure 2 compares total displacement results from the solid formulation with 
those from Chan and Firmin [CHA 70] at two locations on the shell: at the shell apex 
a~d at the point of maximum displacement (Point B). The shell solution is initially 
slightly softer at both locations, but the collapse load given by both solutions is near­
ly identical. 

Chan and Trbojevic [CHA 77] indicated that an error in the Chan and Firmin's 
formulation caused the finite element equations to be less stiffthan they should have 
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been and produced collapse loads which were artificially low. Figure 3 compares the 
hannonic displacement amplitudes at the maximum displacement location for the 
solid fonnulation with the shell mixed fonnulation of Chan and Trbojevic. While 
the initial stiffnesses compare better with this fonnulation, the collapse load given by 
this shell fonnulation is significantly higher. It is suspected that the stress distribu­
tion modelled through the shell thickness for this fonnulation and the coarse axisym­
metric mesh employed by Chan and Trbojevic contribute to this higher stiffness. 
Comparing results from [CHA 70] and [CHA 77] with the present solution, it would 
appear that the integration error in [CHA 70] compensated for the additional stif­
fness due to displacement field and kinematic assumptions in those two works. 

Figure 3 also illustrates the coupling between hannonics for nonlinear problems. 
Although there is no loading component in the 28 hannonic, there is a significant 
28 component in the displacement field. As the displacements increase, the nonlin­
ear tenns become large, and the coupled displacement becomes particularly pro­
nounced as the buckling load is approached. 

6.2 Beam - Column Buckling Analysis 

Figure 4 shows displacement results for a tube - column modelled with a slightly 
eccentric axial load. The displacements remain relatively small until the Euler buck­
ling load is approached, at which point the displacements increase drastically at the 
centre. Results from the cylindrical fonnulation are compared with the analytical 
solution in Figure 4. Several transverse displacements vs. axial load curves pro­
duced using the cylindrical fonnulation are plotted, each showing results for a differ­
ent number of hannonics. The results show excellent agreement with the analytical 
solution below the collapse load. However, as the collapse load is approached and 
the displacement becomes large, the number of hannonics must be increased for the 
solution to converge to the analytical solution. 

The results from the highest order cylindrical fonnulation analysis are also com­
pared with ADINA's conventional three dimensional fonnulation in Figure 5. Only 
the analysis with the largest number of hannonics is compared against the three di­
mensional model with an equivalent mesh density. The conventional fonnulation 
differs from the analytical solution at lower loads, but follows the analytical solution 
into the large displacement realm. The difference between the analytical and ADI­
NA results is due to the small displacement assumptions of the linearized buckling 
solution and the approximation of the tube geometry and displacements by eight 
brick elements around the half circumference. The cylindrical fonnulation more ac­
curately models the nonlinear response while the displacements are relatively small -
even with few hannonics. The hannonic model stiffens artificially as translation of 
the beam becomes large, and the accuracy of the result deteriorates. 

This implementation used the same element displacement field employed by 
similar elements with physical displacement field variables. Modifications are re­
quired to this displacement field description to account for the change in displace­
ment field basis to coordinate displacements. These improvements would eliminate 
the lateral displacement stiffening demonstrated here and fix a problem in the global 
bending behaviour of the element which develops when the element diameter to 
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thickness ratio is small. A more complete discussion of the lateral displacement 
locking problem can be found in [KAI 91] 

In the displacement range prior to lateral displacement locking, the results dem­
onstrate the ability of a cylindrical based Lagrangian formulation to accurately model 
geometrically nonlinear behaviour. 

The numerical tests demonstrate the cylindrical formulation to be more efficient 
in terms of execution time relative to conventional brick type solid elements. Figure 
6 shows the relative times required to execute one solution step for the conventional 
and cylindrical formulation. The conventional formulation requires many more de­
grees of freedom, thus, most of the time is spent in equation solving. The cylindrical 
formulation, on the other hand, spends the most time generating the system of equa­
tions. Thus, as the number of elements in the axisymmetric plane increases, the solu­
tion time for the conventional model will increase much more quickly than that for 
the cylindrical formulation. Clearly, if the interpolation functions can be refmed to 
model transverse rigid body motion, the cylindrical formulation can be from one to 
two orders of magnitude more effective for modelling the three dimensional response 
of axisymmetric structures. 
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7. Conclusions 

A new formulation for the finite element technique has been developed in terms 
of general orthogonal curvilinear coordinate systems. The formulation has been 
proven by application to a cylindrical element using cylindrical displacement compo­
nents. The cylindrical element exactly models the geometry of axisymmetric struc­
tures, permits specification of clean boundary conditions, and accurately models 
nonlinear, nonaxisymmtric deformation. The element formulation demonstrated 
gives good solutions where rigid body translation normal to the cylindrical axis is not 
significant, because the element displacement field used cannot exactly model trans­
verse rigid body displacments. It must be emphasized that the basic formulation is 
not at fault but it is the simple implementation of the element displacement field 
which causes modelling problems. Transverse motion can be approximated with 
reasonable accuracy by increasing the number of Fourier terms that are modelled, 
but translation in the order of the element radius is not possible. The deficiencies in 
the element displacement field have been identified for continued work to correct the 
element for the lateral displacement stiffening problem. 
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Appendix I 
Linear Strain - Displacement Matrices, Cylindrical Reference System 

Infinitessimal Strains: 

{M:}=[b]{~u},{~u}T =( ~Ur ~ua ~Uz ) 

{ ~£} T = ( ~Er ~£9 ~£z 2~£ra 2~£az 2~£rz ) 

a 0 0 ()R 

0 (R+u, r ~ 0 
0 0 0 

R ae R+Ur 
0 0 

0 0 a Rl 

[b] = az + 0 0 0 
1 a ( R+u, r _£_ 0 0 0 0 
li ae R ilR 

(R+u,) 2 () 
0 0 0 

0 1 a 
-R-ill nae 0 0 0 

a 0 a 
az riR 
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Deformation Gradient Strains: 

{d£1
} = [b1]{!lu} 

[b 1
] = [d'] + [h1] 

{D}T = ( au, I au, au, (R )aua (R+u,) aua 
aR Rae az +u, aR -R-ae 

(R ) au a au, I au, au, ) 
' +u, az aR Rae az 

a 
DllaR 

a 
D21(R+ UR)aR 

D12 a D (R+u,) a 
"'Rae 22 -R-ae 

a 
D13 az 

a 
D23(R+ u,)az 

[d'] = (D a D11 a ) 12 aR +Rae (R+u,)(DnaaR + D;l a~) 
( Dll a D a) Rae+ 12 az (R+ u,)( D;

3 a~+ D12 a~) 

( D11 :z + D13 a~) (R+ u,)( D21 :z + D23 a~) 

(D21) 2 
0 0 (R+u,) 

D ( 2 Dn ) 22 R + (R+u,) 0 0 

(D21) 2 
0 0 

[h'l = 
(R+u,) 

2 c Dn ) D2l R + (R+u,) 0 0 

c Dn ) 2D23 R + (R+u,) 0 0 

2 DnDn 
(R+u,) 0 0 

a 
D31 aR 
D32 a 
"'Rae 

a 
D33 az 

( D a D11 a ) 32aR +"'Rae 

( D11 a D a) Rae+ 32az 

(D31 :z +D33 a~) 
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Second Order Strain Increment Virtual Work Matrices 

[ ['] [0] [0] l [ s, sl2 Snl [S] = [0] [s] [0] ' [s] = sl2 s22 s23 
[0] [0] [s] sl3 s23 S33 

Displacement Gradient Part: 

r , " 
a 0 0 0 0 0 aR "Rae az 

[b 0 )T = 0 0 0 a (R+u,) a a 0 0 (R+ u,)aR -R-ae (R+ u,)az 

0 0 0 0 0 0 a 1 a 
aR "Rae 

Scale Function Part: 

[ "" 
0 0 

[bH) = ( D,:+: l) 0 0 ll+u, R 
.!?.11.. 0 0 R+ur 

Mixed Parts: 

r 2D, 
0 n [b'rol = [ ~ 

a 

~ l aR 
[bDH)= 2(R;u'+Dn) 0 1 a 

"Rae 
a 

2D23 0 az 

oue 
D21 = (R+ u,) oR, 

D _ (R+ u,) oue 
n- Rae' 

oue 
D23 =(R+u,) CJZ 

ll 




