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ABSTRACT. In order to take into account the large deformations of the material, the numerical 
simulation of forming problems invokes a great number of meshings. For effective treatment 
of meshing and remeshing, error estimators have been considered as a guiding tool. The 
present work especially concerns methods for the construction of adapted meshes when an 
optimal size criterion has been calculated from error estimators. The remeshing procedure is 
based on the Delaunay type mesh generator and on the uncoupling between geometric and 
adaptivity constraints of the remeshing problem. The procedure is tested for various 
elasticity and viscoplasticity problems. It is shown to be robust and reliable, then it is used to 
compare the efficiency of two error indicators which stem from the Z2 (Zienkiewicz and Zhu) 
error estimator and the .6. error estimators (a correction of the Z2 estimate in order to take 
into account the unbalancing of the smoothed stress tensor) which have been suggested in a 
previous paper. Singular problems are tackled: iterations of the adaptive remeshing method 
makes it possible to solve them. This method is then used to control the discretization error 
during several non-steady complex forming problems. 

REsUME. La simulation numerique des procedes de mise en forme necessite un Ires grand 
nombre de remaillages afin de prendre en compte les grandes deformations que subit le 
materiau. Les methodes d'estimation d'erreur ont ete proposees pour resoudre ce type de 
probleme. Ce travail concerne plus particulierement les methodes de construction de 
maillages adaptes, lorsque le critere de taille optimale est le result at de I' estimation d'erreur. 
La procedure de maillage utilisee repose sur un algorithme de type Delaunay et sur un 
traitement en deux temps des contraintes d'ordre geometrique et des contraintes d'ordre 
adaptatif. La procedure est testee sur plusieurs problemes d'elasticite et de viscoplasticite, 
pour lesquels elle s'avere robuste etfiable. Elle est utilisee pour comparer l'efficacite de deux 
estimateurs d'erreur prealablement proposees pour La mise en forme: un estimateur de type 
Zienkiewicz et Zhu et un estimateur .6., qui introduit une correction a l'estimateur precedent 
de maniere a prendre en compte le non-respect des equations d'equilibre par le tenseur des 
contraintes lisse. Les problemes avec singularites sont resolus par des iterations de Ia 
met hade de mail/age adaptatif. 
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Cette methode est enjin appliquee au controle de l'erreur de discretisation au cours de la 
simulation de plusieurs procedes de mise en forme instationnaires. 

KEY WORD~ : error estimator, adaptive meshing, remeshing, Delaunay tessellation, 
viscoplasiicity, non steady-state process, metal forming ,forging, machining. 
MOTS-cLF:s : estimateur d'erreur, maillage adaptatif, remaillage, triangulation de Delaunay, 
viscoplasticite, procede instationnaire, mise enforme,forgeage, usinage. 

1. Introduction 

The numerical simulation of non-steady forming processes such as forging 
requires a great number of remeshing steps. Indeed, the deformations of the material 
are so .important that they cannot be calculated with a single finite element mesh 
using a lagrangian formulation. For instance, the accurate simulation of forging 
processes usually requires about fifty remeshings [HAN92]. So it is obvious that the 
remeshing operations should be fully automatic, as well as robust and reliable. Error 
estimation and adaptive remeshing techniques have been developed to answer this 
question.The problem can be split into two parts : first, find an accurate estimation 
of the discretization error and then, build a mesh of a given accuracy. 

Although error estimators have been especially studied for linear problems, 
some recent works are dedicated to forming processes : Hetu and Pelletier [HET92] 
in the field of both linear and viscous incompressible flows, Baranger and EI Amri 
[BAR89] for quasi-newtonian flows, Zienkiewicz, Liu and Huang [ZIE88], 
Fourment and Chenot [FOU94] for viscoplastic materials, Ladeveze, Coffignal, 
Pelle [LAD86] for elastoplastic materials. The present work is based on the z2 error 
estimator which has been proposed by Zienkiewicz and Zhu [ZIE87] and which is 
based on averaging techniques. It was applied to forming processes [ZIE88]. From 
numerical tests, we have shown in reference [FOU94] that the Orkisz' smoothing 
method improves the reliability of the estimation with respect to the standard global 
least square method. A A estimator is also proposed, which enables us to take into 
account the fact that the smoothed stress tensor does not verify the equilibrium 
equations. For both estimators, the studied examples show that the error due to the 
estimation (the relative difference between the exact error and the estimated error) 'is 
less than 20%. 

At first, adaptive meshing techniques were based on the cutting up of elements 
into several pieces where the error indication is greater than a critical value. Refined 
and unrefined elements are then connected together [U)H85]. This technique is used 
for the adaptive h hierarchical refinement method [ADE89]. Meanwhile, the most 
current approach is based on the rebuilding of a new mesh which satisfies a given 
size criterion on the whole domain. For non-steady forming processes, the time 
domain evolution makes the rebuilding inevitable. The frontal mesh generators are 
well adapted to this kind of problem [PER87]. On the other hand, any mesh 
generator can be transformed into an adaptive mesh generator, using a virtual 
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mapping of the real space. Mavripilis [MA V88] applied it to a Delaunay type mesh 
generator. Another approach is to introduce a quadtree structure into a Delaunay 
mesh generator and to modify it in order to take into account the size criterion 
[CHE88]. In the present work, adaptlvity is introduced into the Delaunay remeshing 
procedure which have been suggested by Coupez and Chenot [COU92]. It is based 
on the two step following strategy : ftrst generate a simple geometric mesh and then 
improve it in order to satisfy the size criterion. 

In the second section, equations of the viscoplasticity problem are introduced 
and the z2 and Ll error estimators are described. The third section is dedicated to the 
adaptive remeshing algorithm itself along with its validations. In the fourth section, 
the efficiency of both error indicators are compared and the effect of a singularity in a 
viscoplasticity problem is studied. Finally, in the fifth section, the adaptive 
remeshing procedure is applied to error control for several forming processes. 

2. Basic equations 

2.1. Incompressible viscoplastic problem 

The material is assumed to be homogeneous, isotropic and incompressible [1] 
and to obey the Norton-Hoff constitutive law [2], 

with: 

div v = tr f. = 0 on Q 

s = 11C~) e = 2 K c-f3 ~)m-1 e 
1 

s=cr-3trcrll 

[1] 

[2] 

[3] 

[4] 

where vis the velocity fteld on Q, E is the strain rate tensor, s is the deviatoric part 
of cr, 11 is the unit tensor. 11 is the viscosity of the material, Kits consistency and m 
its strain rate sensitivity. 

The friction between the tools and the workpiece Q (see figure 1) is assumed to 
follow a power law which can be expressed in 2D as, 

with: 

't= - a K lflvtlq-1 Llvt 
't = (cr n) . t 
Llvt = (v- vd). t 

[5] 
[6] 
[7] 

where tis the tangent to the tool surface, Vd is the die velocity which is imposed, a 
and q are the friction coefficients. 
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Figure 1. Workpiece and tools. 

The equilibrium equations are given by [8-9], after neglecting inertia and gravity 
terms. The unilateral contact condition of the material with respect to the rigid dies 
is given by equation [10], 

div cr'"' 0 
T=crn=O 
( v- Vd). n :<::; 0 

[8] 
[9] 

[10] 

where an is the surface of Q, oTQ is the free surface of Q, octO. is the part of an in 
contact with a die. 

The integral equation of the problem [ZIE 84] along with a penalty method for 
the incompressibility constraint [1] is written [11], for any virtual velocity field v * 
which verifies [12], 

'* : £ dw-

v*. n = 0 

J 't . v* ds + p 
actn 

on octO. 

J div v div v* dw = 0 
Q 

[11] 

[12] 

where pis a large numerical coefficient. Six-noded quadratic isoparametric elements 
are used for the finite element space discretization [13] and a two points reduced 
integration rule is introduced for the evaluation of the penalty terms of [11]. A very 
simple one-level explicit Euler scheme [ 14] is used for the time discretization 
[BOH85], 

(13] 

, for any node k [14] 
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where t- and d< are the nodal parameters of the coordinates and velocities 

interpolations, Nk are the interpolation functions, ~ and ~ are the values of the 
parameters at time t. 

2.2. Error estimators 

The discretization error is defined for the energy norm, 

with: 

II V-Vb liE=( 
w1(s)=_1_ 

Jl(e) 

f Jl- 1(s)(S-Sh):(S-Sh)dw 
Q J

_21 
[15] 

[16] 

where sis the exact deviatoric stress tensor and Sh is the finite element stress tensor. 

The z2 estimator only requires the calculation of s h , a continuous deviatoric 
stress tensor close to Sh. According to results given in reference [FOU94], the 

Orkisz' smoothing method [LIS80] is used (see appendix for more details). The z2 
estimator is written, 

[17] 

As Sh does not verify the equilibrium equations [8-9], a correction ~Sh has been 
introduced into the z2 estimator and gives the following ~estimator, 

~Sh is defined according to equation [19], 

and verifies the integral form of the equilibrium equations [20-22], 

div ( s h + ~Sh ) = 0 

( Sh + ~Sh) n = 0 

on Q 

onarn 

[19] 

[20] 

[21] 
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[22] 

where 't( v) is defined by equation [5] and ~Vh is a kinetically admissible velocity 
correction which verifies [12]. 

Both estimators provide error indicators Se for each element e of the mesh, 
according to [23], 

( 

Nbelt J 1 
9 = ~ Se 2 2 [23] 

where Nbelt is the total number of elements of the mesh. Assuming that the finite 
element method has a uniform convergence rate p on the whole domain, the optimal 

size h o~t of each element is expressed by, 

[24] 

where e tol is the tolerated value of the error and he is the current size of the element. 

The optimal number of elements of the new mesh is then given by, 

opt Nbelt( he ]2 Nbelt = "L -
e hopt 

e 

[25] 

3. Adaptive remeshing technique 

Depending on the severity of the deformations which are undergone by the 
workpiece during the process, it turns out that it is difficult to evaluate the 
complexity of the meshes to be constructed, as well as the required number of 
elements for a given accuracy. Subsequently, the remeshing technique must be 
particularly robust. Due to this, we have chosen a two step strategy : first geometric 
remeshing and then adaptive remeshing. During the first step, the size criterion is 
not really taken into account, but a coarse mesh is built with a minimal number of 
nodes. This way the finite element calculation is made possible and the mesh 
verifies the geometrical constraints of the problem. Indeed, if there is not enough 
memory space available in order to built an adapted mesh, it is still possible to 
continue the calculations. During the second remeshing step, the mesh is refined by 
the addition of internal nodes until the size criterion is verified. 
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3.1. Geometric remeshing 

This remeshing algorithm is based on the Delaunay's tessellation method and 
on the creation of an initial outline of the mesh : 

il Creation of the outline of the mesh 

As the current boundary of the mesh is made of quadratic segments, it is first 
overdiscretized with linear segments, by addition of either a fixed or variable (for 
the adaptive strategy) number of nodes on each of the quadratic segments. Then 
the new boundary nodes which are located inside the tool surface are projected 
onto this surface (see figure 2.). These points give the outline of the domain to 
be meshed. 

domain 

0 node of the quadratic boundary 

overdiscretization node 
• and final node of the boundary 

discretization if not projected 

X projected and final node of 
the boundary discretization 

Figure 2. Creation of the outline of the mesh 

iii Construction of the discretized boundary 

From the outline of the mesh, we want to build a discretized boundary which 
has a minimal number of segments and which abides by the outline for a given 
accuracy. An iterative algorithm is used. Starting from the nodes of the outline, 
it eliminates all useless nodes which are not required to ensure the accuracy of 
the description of the domain and to ensure the validity of other criteria such as 
: maximal permited size of segments, maximal length ratio between two 
connected segments and maximal curvature of a quadratic segment. The 
curvature of a linear segment [26] is defined as follows : 

a 
Cgeo=h [26] 

where (a) is the chord (a) of the quadratic segment, based on the 
linear segment, which minimizes the difference of shape between the quadratic 
curve and the original outline (see figure 3.) ; (h) is the maximum distance 
between chord and arc of the quadratic segment. These first two steps are the 
most important ones in the geometric remeshing algorithm. 
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• 
0 

node of the initial outline 

node of the current optimized boundary 

node introduced for the warping 
of the segment 

Figure 3. Curvature of a segment. 

iii/ Tessellation without internal nodes 

Delaunay's algorithm is used to create an initial tessellation with linear 
triangles, starting from the set of points of the discretized boundary. The steps 
are classical : creation of an initial fictitious triangle which contains the set of 
points, adding the points one by one in the tessellation, elimination of the 
nodes of the fictitious triangle, elimination of the triangles which are external 
to the outline. 

iv/ Internal node addition 

Internal nodes are added in order to improve the quality of the triangles. A 
weight is assigned to each node of the tessellation. It represents an average size 
of lines connected to the node. For boundary nodes, the weight is equal to the 
average length of the segments which are connected to it. This makes it 

possible to assign a weight to each triangle of the mesh, have (the geometric 
average of the weights of its nodes) and to compare it with the actual 

characteristic length of the triangle, h act (the square root of its surface). A node 

is then added inside the element for which the ratio h act over have is worse and 
not satisfactory. This node is put in the weighted centroid of the triangle. This 
paradoxical weighting (the node is put next to large triangles) accelerates the 
saturation of the node addition criterion and gives a better distribution of the 
nodes. The weight of the new node is the arithmetic average of the weights of 
the triangle multiplied by a refinement factor which is greater than 1 (for the 
adaptive strategy, this coefficient is set to 1.3 ; it permits us to reduce the 
number of nodes of the initial geometric mesh). Finally, the Delaunay's 
algorithm is used to insert the node in the tessellation. 
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vi Mesh improvement 

The mesh quality is improved using two complementary iterative procedures : 
mesh regularization and topology improvement. During the regularization 
procedure, internal nodes are displaced to the weighted centroid of surrounding 
nodes (see figure 4.). The weights [27] depend on the quality of the triangles 
which is defined by the ratio between dins, the diameter of the inscribed circle 
and denc, the diameter of the encircling circle, 

1 
w=-~-

e l+Wgeo 

node, neighbours and weights 

where: 
dins 

Wgeo=- [27] woc 

displacement of the node 

Figure 4. Geometrical mesh regularization. 

Figure 5. Topological mesh improvement. 

vi/ Creation of six noded elements 

Without adaptive remeshing, geometric remeshing operations end with the 
transformation of linear triangles into quadratic triangles : a node is added in the 
middle of each side of the mesh. For boundary segments, the warping procedure 
described in figure 3 is used. 
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3.2 Adaptive remeshing 

First, h o~t, the size criterion which is calculated for each element of the initial 

mesh (father mesh) has to be enforced during the first two remeshing operations (i/ 
and iii) of the creation of the discrete boundary. The size of a quadratic triangle is 
defined by the length of the longest side of the linear triangle (see figure 6.), 

2 
h =Max d( M2i+l , M2i+3) 

i=O 

where d is the distance between points. 

h ---
Figure 6. Size of a triangle. 

[28] 

During step i/ which gives the initial discretization of the new boundary, 

overdiscretization nodes are added until the length of the sides is smaller than h opt. 
During step ii/ this condition has to be preserved. The definition of the curvature is 
then modified during the iterative algorithm, 

Cmod = Cgeo + Cfic 

( 

cur 
Cfic = Cmax Hs h __ -

h opt 

[29] 

[30] 

where h cur is the current length of the segment, Cmax is the maximal permited 
value of the curvature and Hs is a smoothed Hcavisidc function (which is equal to 0 
for negative values and equal to 1 for positive values). 
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node, neighbours and weights displacement of the node 

Figure 7. Adaptive mesh regularization. 

Steps iii/ to v/ are kept unchanged. From step vi/, a search procedure is 
frequently used to find the element of the father mesh which contains a current point 

of the domain ; the h opt value of this element is then assigned to the point. The 
algorithm is based on the inverse mapping of the shape functions of quadratic 
elements. It is speeded up by making a preliminary sorting out of applicant 
triangles. 

vii Adaptive internal node addition 

The procedure is like iv/ although the criterion of addition is based on the ratio 

h act (actual size of the triangle which is defined according to equation [28]) over 

h opt (which is interpolated at the centre of the triangle). Nodes are added until 
all triangles verify the adaptivity criterion. 

viii Adaptive mesh improvement 

The procedure is like v/, but the regularization operation takes into account the 
adaptivity criterion. Each internal node is then moved to the weighted centroid 
of the mid points of the sides which are connected to it (see figure 7). Weights 
are defined as follows, 

1 + Wada 
we 1 + Wgeo 

W da=! Hs(hcur-
a 2 hopt 

[30] 

[31] 
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where Hs is another smoothed Heaviside function, h cur is the length of the side, 

h opt is the optimal length of the side and W geo which is defined by equation 
[27] is always less than 0.5. 

viii/ Creation of six noded elements 

This step is quite similar to the vi/ step of the geometric mesh generator. 

3.3 Numerical tests 

At the end of remeshing operations, the optimal size criterion is verified for all 
the triangles. Therefore, the optimality of the mesh can be evaluated by the 
comparison between the number of created elements and the optimal number as 
given by equation [25]. The numerical results are summarized in figure 8 and the 
constructed meshes are shown in figure 9. Elasticity problems have been studied first 
(results a/, b/, cf). The results show a very good agreement between the optimal and 
the effective values, when the number of degrees of freedom is important, this is to 
say when the elements size is only defined by the adaptivity criterion and is no 
longer dependant on the geometry of the domain. For viscoplasticity problems 
(results d/, ef), the agreement is not so good. Two reasons can be invoked: first the 
geometries are more complex for forming processes and meshes are relatively coarser 

for non-linear problems; second the variations of the values of h opt are greater than 
the variations of elements size which are possible for a reasonable quality of the 
tessellation. So in . this case, equation [25] does not permit us to estimate the 
optimal number of elements. 

Optimal number of Number of elements 
elements created 

Plate with a hole in the a/ 51 70 
center b/ 820 828 
Loaded hook c/ 151 188 
Indentation of a beam d/ 58 105 

e/ 359 489 

Figure 8. Efficiency of the adaptive mesh generator. 
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a/ b/ 

c/ d/ 

Figure 9. Some meshes constructed by the adaptive mesh generator. 

4. Applications of the automatic remeshing procedure for steady 
state problems 

Although we use quadratic elements, numerical experiments show that the 
convergence rate, p of the finite element method in the energy norm is close to 1. It 
is partly due to the two point reduced integration rule for the penalty terms of the 
integral formulation [12], and it is essentially due to the non linearities of the 
material behavior. However, when p is taken equal to 1 for the calculation of the 
element size [24], numerical experiments show that the number of created triangles 
is too large with respect to the required accuracy. On the other hand and in agreement 
with [ZIE88], a value of p equal to 2 allows for more optimal meshes. We can 
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invoke the great variations of the h opt values for non linear flows, which are 
smoothed by taking p equal to 2. This is confirmed by he following examples for 
which p is equal to 2. 

4.1. Comparison of error indicators 

In reference [FOU94], we have shown that both z2 and t:. error estimators give 

comparable estimates, so we can compare the efficiency of the e~2 and e~ error 
indicators. The interrupted indentation of a beam using a rounded punch (see figure 
10) under the plane strain assumption is considered. 

~~ 
Figure 10. Interrupted indentation process. 

The material data are as follows: m = 0.15, q = 0.15, a= 0.3 sP-m mm-P. Both 

adaptive remeshing strategies are used (9~2 and e~ error indicators) for the two 
meshes of figure 11. The relative error is respectively evaluated to 10.6% and 6.1% 
from comparison with the finite element solution calculated on a much finer mesh. 
Adapted meshes are generated for respectively 10%, 6%, 3% and 5%, 4%, 3% of 
tolerated error. z2 and t:. error indicators are used successively along with the Orkisz' 
smoothing method. Results are summarized in figure 12. They show that the new 
meshes have the required estimated accuracy (the gap between the estimated error and 
the tolerated error is about 10%). Meshes which are obtained with the t:. indicator, 
are much finer (see figure 13 for example) and then the procedure is much more 
costly. So, although z2 and t:. estimators show nearly the same efficiency, the z2 
adaptive remeshing strategy seems more efficient. 
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a/ b/ 

Figure 11. Meshes with 10.6% (a) and 6.1% (b) of calculated error 
for the tests of error indicators. 

12 

11 

I. - AJZ2-0r11isz 
Q 10 
I. - A1 t.-Or11isz 
I. 
II - BIZ2-0r11isz , 8 

Bl t.-Or11isz II -... 
1':1 7 
.§ ... 
"' II 

II .:: ... 
1':1 

3 Qj 
I. 

50 100 150 200 250 300 350 

Nbelt 

Comparison of adaptive remeshing strategies 

Figure 12. Estimated errror versus the number of elements of the mesh 

for both z2 and ~ adaptive remeshing strategies. 
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a/ b/ 

Figure 13. Meshes of 3% of tolerated error obtained from the 6.1% mesh 
(Figure 11 b) along with the z2 (a) and the .1 (b) adaptive remeshing strategies. 

4.2. Singular problems 

During the calculation of the optimal mesh sizes [24], we have assumed that 
the finite element convergence rate, p is uniform. This hypothesis is not verified for 
a singular problem. Locally, the convergence rate is much less than p. Meanwhile, 
Szabo and Babuska [SZA9l] mentioned that, according to numerical experiments, 
the convergence rate of an adaptive finite element method is asymptotically equal to 
p, even for a singular problem. 

Figure 14. Singular backward extrusion problem. 
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Rivara [RIV86] has numerically shown this and has also shown that the efficiency 
of the error estimator is not decreased. Subsequently, Zienkiewicz and Huang 
[ZIE90] have suggested making several iterations of the adaptive remeshing 
procedure. According to this, we study a singular backward extrusion of a beam 
under the plane strain assumption (see figure 14). The punch angle is a singular 
point in the viscoplastic flow. The material data are similar for the indentation 
problem. 
With the z2 estimator, the error is estimated to 17.5% on the initial mesh (see 
figure 15). The tolerated error is set to 5%. Four iterations are enough to reach the 
prescribed accuracy (see meshes of figure 15) : 13.8% (8.8% required), 7.8% (6.9% 
required) and 4.7% (5% required). The convergence rate of the adaptive finite element 
method is shown in figure 16, both for this problem and for the interrupted 
indentation problem of the previous paragraph (initial mesh of 6.1% of error) : they 
are quite the same. 

a/ b/ 

c/ 

Figure 15. Singular backward extrusion problem : 
(a) initial mesh with 17.5% of error, (b) second mesh with 13.8% of error, 

(c) third mesh with 7.8% of error, (d) last mesh with 4.7% of error. 
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&:' 1,5 
0 ... 
~ 1,4 

~ 1,3 

~ 
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"' ~ 1,1 

~ 
~ 1,0 y = 4,9785. 0,74098x 

0,9 .._ __ 1"""'_""""1~-..... ---1 
4,6 4,8 5,0 5,2 5,4 

Log( Nb dof) 

Convergence rate for the interrupted indentalion problem 

a/ 
~3~--~~--------------~ ... 
0 ... ... .. 

y = 6,9222 · 0.69849x R'2 = 0,989 

6 7 8 
Log( Nb dof) 

Convergence rale for the backward extrusion problem 

b/ 
Figure 16. Convergence rate of the adaptive finite element method for : 
(a) the interrupted indentation problem starting from the 6.1% error mesh 

(b) the singular backward extrusion problem (in base 2logarithm). 

5. Error control for metal forming processes 

5.1. Error control 

The non-steady state process is solved incrementally in time according to [14]. 
Therefore, the spatial discretization error is estimated at each time step, t. On the 
other hand, the time discretization error due to [14] is neglected. If the estimated 
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I 
. to! 

va ue ts greater than the tolerated value, e a new mesh is generated which is 
adapted to the problem at time t. Notice that the remeshing operation can also be set 
off for reasons of a geometric type, such as : degeneracy of an element or of a 
boundary segment, penetration of the mesh in the tools because of a locally ill­
adapted discretization, on a large value of the curvature of a segment of the free 
boundary. The computational time for the generation of a new mesh is generally 
low. It is less than the computational time of one increment of the process. 
Actually, there is an additional cost from the error control, but it is caused for two 
reasons: first the Newton-Raphson algorithm (which is used to solve equation [I 1]) 
has a lower rate of convergence after a remeshing operation (because the initial guess 
of the velocity field is not as good after remeshing), second , and it is the most 
essential reason, the time stepping has to be reduced because of the reduction of the 
size of the elements on the boundary of the domain (the duration of an increment of 
time has to be limited in order that no element of the free boundary be updated, 
according to [14] inside the tools). 

The following examples have been studied in the framework of the plane strain 
assumption. We have used the z2 error estimator and the Orkisz' smoothing method. 
Moreover, we can define a measure of the error of the non-steady state process, 

( f 
Ttotal Jl 

•total" Q ~ ~- 1 (s)( s- Sh): ( s- Sh) dt dw 
2 

[32] 

where T total is the total duration of the process. etotal is estimated according to, 

1 

z2 ( ( z2 )2 )2 9total = ~ e (t) [33] 

z2 2 
etotal is the total estimated error and eZ (t) is the current estimated error. Relative 

error values are calculated, introducing the following denominators for 9\s\up5(Z2) 
z2 

and etotal respectively : 

1 

il'hiiE"( JQ Wl(sh)Sh Sh dwr 

1 

u,.uw"(~ ( ll'hllE(t))
2 

)
2 

[34] 

[35] 
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5.2. Indentation of a bar 

We study the hot indentation of a viscoplastic bar (see figure 17). In this case, 
the material data are as follows : m = 0.15 , q = 0.15, a = 1.3 sP-m m-P. 16 
remeshings are required in order to take into account the deformation of the bar and 
to maintain the estimated error under the tolerated value of 8% (see figure 18). 

I~ 
I 

Figure 17. Indentation of a viscoplastic beam under the plane strain hypothesis. 

The evolution of the relative estimated error during the process is depicted in figure 
19 and shows the error control procedure : when the current estimated error exceeds 
the prescribed value, a new mesh is generated for which the error is lower than the 
prescribed value. We can notice that the relative estimated total error can diminish 
during the simulation, because we use the current time of the process in equation 
[34] instead of the total time. At the end of the process, the estimated total error is 
equal to 6.5%. 
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a/ b/ 

c/ d/ 

Figure 18. Adapted meshes for the indentation problem, 
(for 0.5%, 31%, 50% and 66% of deformation) 

with a tolerated value of error equal to 8%. 
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Figure 19. Evolution of estimated error during the indentation process : 
instantaneous error, total error and prescribed error. 

5.3. Forging of a rib 

An aeronautic rib is hot forged from a bar (see figure 20). The material data are 
the following: m = 0.15, K = 9.7 105 Pa s-1 mm-1, q = 0.15, a= 0.2 sP-m mm-P. 

Figure 20. Forging of an aeronautical rib under the plane strain hypothesis. 
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The tolerated error is again set to 8%. 99 remeshing steps are required and the total 
error is estimated to be 6.2% at the end of the process. The evolution of the 
geometry of the domain being very important during the process, the refinement 
zones are much modified as can be seen in figure 21 (isovalues of optimal size maps 
at different times during the process). 

Figure 21. Isovalues of the optimal size of elements 
(for a/ 3.6%, b/ 10%, c/ 25% and d/ 35% of deformation) 

for the hot forging of a rib with 8% of tolerated error. 

The numerous adaptive meshings make it possible to take into account the 
evolution of the problem (see figure 22) and the error control procedure is shown in 
figure 23. Sudden increases of error can appear during the simulation, because of 
sudden changes of the contact conditions. 
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a/ 

c/ 

e/ f/ 

Figure 22. Adapted meshes for the hot forging of a rib 
for a/ 3.6%, b/ 10%, c/ 25%, d/ 30%, e/ 35% and f/ 36% of deformation. 
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Figure 23. Evolution of estimated error during the hot forging of a rib : 
instantaneous error, total error and tolerated error. 

5.4 Orthogonal metal cutting 

0.250 

Sekhon and Chenot [SEK93] have shown that a viscoplastic simulation code 
with thermo-mechanical coupling, can be used for the simulation of continuous chip 
formation during non-steady state orthogonal cutting (see figure 24). 

Figure 24. Non-steady statetorthogonal metal cutting 
under the plane strain hypothesis. 
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a/ 

b/ 

Figure 25. Adapted meshes for the modelling of the formation of the chip 
during the orthogonal metal cutting process ( a/ and b/) 
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c/ 

d/ 

Figure 25. Adapted meshes for the modelling of the formation of the chip 
dwing the orthogonal metal cutting process ( c/ and d/ ) 
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Figure 26. lsovalues of the equivalent strain rate 
at the end of formation of the chip. 
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The viscoplastic constitutive law includes strain hardening and temperature softening 
effects, 

[36] 

where £ is the effective strain, T is the temperature of the material, KQ, a and ~ are 
the parameters of the law. A description of the resolution of the thermal problem and 
of the thermo-mechanical coupling is given in reference [CES87]. The mechanical 
parameters of the material are the following: m = 0.1, K = 1.25 106 Pa s-1 mm-1, 
q = 0.1, a= 0.5 sP-m mm-P, a= 0.1, ~ = 200 K-1. 

The maximal tolerated error is set to 10%. 88 adaptive remeshings are required 
to study the formation of the chip and to reach a quasi-steady state. At this moment, 
the total error is estimated to 6.5%. Mesh yvolution is given in figure 25. Adaptive 
remeshing makes it possible to keep very small elements near the cutting edge and 
to refine the meshes in the shear zone (see figure 26). In figure 27, the relative 
estimated error along with time is plotted both for the standard simulation (26% of 
estimated error at the end of the simulation) and for the error control procedure. 
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.130E-03 .260E-03 .390E-Q3 .520E-03 .650E-03 

Temps 

Figure 27. Evolution of estimated error during metal cutting. Above curves : 
standard remeshing strategy. Below curves: adaptive remeshing strategy. 
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6. Conclusion 

The proposed adaptive remeshing procedure makes it possible to control the 
discretization error during the simulation of complex industrial forming problems 
which are non-linear and non-steady state in nature. It is based on a Delaunay type 
mesh generator. Robustness is established by the two step (geometric and adaptive) 
remeshing procedure and is confirmed by numerous automatic remeshing operations 
for complex geometries. Optimality of the tessellation is shown for smooth 
variations of the optimal size criterion, as is also found in elasticity problems. 
Reliability of the global remeshing procedure depends on many factors : the 
reliability of the z2 type error estimates for metal forming problems has been 
established in references [ZIE88,FOU94], and the reliability of the calculation of the 
mesh size criterion is shown by the good agreement between the tolerated value of 
error and the actual estimated error on the adapted mesh. Therefore, it makes it 
possible to control the discretization error for non-steady state processes. This is a 
first approach which should be improved on one hand by taking into account the 
other equations of the thermo-mechanical problem such as the thermal equations and 
the equations of the transfert of state variables after remeshing, and on the other 
hand, by defining error estimators for the global non-steady state problem which 
means taking into account the time discretization error. 
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Appendix : Orkisz' method 

The Orkisz' method is a local finite difference smoothing technique which is a 

second order method for calculation of e h . e h is interpolated with the same 
interpolation functions as the velocity field Vh : 
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where~ are the parameters of the interpolation. For any node k, ~ is computed 

from a second order Taylor series expansion of the velocity field at several 
neighbouring nodes, n of k : 

fori= 1, 2 

where: for j= 1, 2 

2 

Vi(n) = vi(k) + L 
j=1 

av· 
~).1xj(n) 

J 

• current node 
e first order neighbour 
o second order neighbour 

Neighbouring nodes of node k 

Therefore, the first and second order derivatives of the velocity field, ~Vi(k) and 
ox· 

2 J 

a:j;!l(k) minimize the following local least square functionals: 

fori= 1, 2 
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This problem is well defined for a sufficient number of neighbours. The calculation 
can be improved by introducing the incompressibility constraint, the free surface 
equation and the symmetry conditions : 

where (nt,n2) and (t}.t2) are the surface normal and tangent components. 
These equations are taken into account via a penalty formulation. In general, 10 

neighbours are be selected allowing for -the conditioning of the problem. Finally, s h 

is interpolated like Eh and its nodal parameters are calculated from~ according to 

the constitutive equation. 




