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ABSTRACT. The solution of large systems of linear equations is a problem frequently met in 
numerical calculations, for example, from finite difference or finite element approximations 
to partial differential equations. The use of direct methods for solving linear systems of 
equations is limited by both storage requirement and computing time, and in practice, the 
only alternative is to use iterative algorithms. This paper presents some basic iterative 
methods, and also a short survey of recent research on this subject, with emphasis on linear 
systems whose coefficient matrix is non-Hermitian. We briefly discuss the notion of 
preconditioning, and we give some practical choices for the preconditioning matrix. 

REsUME. La resolution de systemes d'equations lineaires de grande taille est un probleme 
frequemment rencontre dans le calcul numerique, par exemple, lors de /'approximation 
d'equations aux derivees partielles par des methodes d'elements finis ou de differences finies. 
Les couts en temps CPU et en place memoire des methodes directes de resolution limitent 
sensiblement leur utilisation en pratique et imposent l'emploi des methodes iteratives comme 
seule alternative. Le but de 'cet article est de presenter quelques methodes iteratives bien 
connues, ainsi que les progres recents accomplis dans ce domaine . .En particulier, nous 
concentrons notre attention sur la resolution de systemes lineaires dont Ia matrice associee 
est non hermitienne. Nous esquissons Ia notion de preconditionnement et donnons quelques 
exemples. 
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1. Introduction 

One of the fundamental building blocks in the numerical approximation of 
partial differential equation is the ability to solve linear systems 

Ax=b. [1] 

We can solve them by direct methods, such as Gaussian elimination. These 
algorithms give the solution of [1] on the basis of a factorization of the co­
efficient matrix A. If the order of A is N, the LU factorization of A needs, 
asymptotically, O(N3 /3) multiplications, and the solution step, O(N2 ) multi­
plications. Concerning the storage requirements, if we stored A like a dense 
matrix, we need the same amount of memory to store a copy of this one and of 
the initial right hand side, i.e. to store N(N + 1) coefficients. These estimates 
are good when all the coefficients of the matrix are supposed nonzero; they can 
be improved for a sparse matrix with a large number of zero entries (see Duff 
et a/. (1986)). 

In practice, the number of equations can be arbitrarily large; this is partic­
ularly true when solving partial differential equations. Fortunately, the result­
ing systems usually have some special structure, for example, sparsity, i.e. only 
few nonzero coefficients. Often, direct methods can be adapted to exploit the 
special structure of the matrix and then remain useful for large linear systems. 
However, in many cases, especially in three-dimensional calculations, direct ap­
proaches are prohibitive both in terms of storage requirements and computing 
time, and then the only alternative is to use iterative algorithms. 

One of the big challenges of the last two decades is to develop robust iterative 
methods providing the solution for a great number of problems, with a minimal 
risk of break down. Users of these methods want to know which ofthem perform 
best. Unfortunately! this is not yet possible in the general case. A given method 
will perform better than the others on a particular problem, sometimes by a 
wide margin, but when applied to other problems, it can be disappointingly 
slow or may diverge. So, it is very important to know a large range of iterative 
methods in order to choose the best one for the particular problem we want to 
solve. 

The outline of this paper is as follows. We review in Section 2 some basic 
iterative methods (see Young (1989)). In Section 3, we present the abstract 
framework which includes a number of more recently iterative methods, i.e. the 
Petrov-Galerkin methods (see Saad and Schultz (1985)). We consider Krylov 
subspace methods (see Saad (1989)), a particular case from the previous class. 
We recall the oustanding properties of conjugate gradient algorithm (CG) and 
discuss the issue of optimal extensions of CG to non-Hermitian matrices (see 
Freund, Golub and Nachtigal (1992)). Some well known algorithms developped 
to solve non-Hermitian linear systems are compared in Section 4. Finally, in 
Section 5, we briefly discuss the basic idea of preconditioning, and we present 
some particular choices for the preconditioning matrix (see Axelsson (1985) 
and Saad (1989)). 
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Today, the field of iterative methods is a rich and extremely active research 
area, and it becomes impossible to cover in a paper all recent advances. In 
addition to the survey papers mentioned above, we would like to point the 
reader to the following papers. Stoer (1983) reviews the state of CG-like algo­
rithms up to the early eighties. An annoted bibliography on CG and CG-like 
methods covering the period up to 1976 was compiled by Golub and O'Leary 
(1989). Einsenstat et al. (1983) and Young and Jea (1980) present CG-like 
methods, describing some generalizations to nonsymmetrizable basic iterative 
methods. For numerical comparisons between CG-like methods, see Nachtigal 
et al. (1992). The survey paper of Ortega and Voigt (1985) gives an exhaustive 
bibliography for research done before 1985 in the general area of solution of 
partial differential equations on supercomputers. Finally, readers interested in 
direct methods for sparse linear systems are referred to the book by Duff et 
al. (1986) and, for the efficient use of these techniques on parallel machines, to 
Heath et al. (1991). 

2. Some basic iterative methods 

2.1. General study 

Let us represent the matrix A in the form 

A=M-N, [2] 

where M is a nonsingular, easily inverted matrix. The system [1] can be written: 

Mx=Nx+b. 

The basic iterative method is defined by: 
1. Initialization:' Let x0 be the initial solution of [1]. 
2. Fork= 0, 1, ... until convergence, do: 

[3] 

We can write [3] in some equivalent forms. If we define G = M- 1 N and 
c = M- 1 b, the (k + 1)th approximation of the solution defined by [3] could be 
written: 

Xk+1 = Gxk +c. [4] 

If we denote by rk the residual vector at the kth step 

[5] 

we have: 
[6] 

Let ek be the error in the approximation of the solution at the kth step: 
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with :X= A- 1b E(CN solution of [1]. [7] 

By definition of the iterative method [4], :X is a fixed point of it (:X= Gx +c), 
so we have: 

.[8] 

G is known as the iteration matrix. 
Let II ·II be a given norm in (CN. It is common to consider that the iterative 

method in use has converged at the kth step if 

[9] 

or if 
[10] 

where f is a small given parameter. The quantities involving the solution vector 
:X are not easy to handle, so in practice, the condition [10] is usually replaced 
by 

[11] 

Nevertheless, it is necessary to be careful with the inequality [11], because it 
could be satisfied without the iterate Xk being a good approximation of the 
solution :X. 

Let us note p(G) the spectral radius of G: 

p(G) =max{ l-Ad : Ai is an eigenvalue of G}. 

We can caracterize the converging basic iterative methods by the following 
result (see Lascaux and Theodor (1987) §7.2.1, thm. 8). 

Theorem 2.1. Tht; iterative method defined by {4} converges to :X= Gx + c 
for each xo E (C if and only if p( G) < 1. 

The rate of convergence of a basic iterative method depends on the spectral 
radius p(G) of the iteration matrix G. Roughly speaking, from [8], the error 
is reduced after each iteration by a factor of p(G). To reduce the error by a 
factor of f we must use n* iterations, where 

-lnf 
n * 2:: ---:--:-

-lnp(G) · 

The quantity -lnp(G) is referred to as the rate of convergence of the iteration 
matrix G. If we have two iterative methods for the same problem with a 
similar computation cost per iteration, we will prefer the one with a largest 
rate of convergence. 

2.2. Some exaiilples 

In this section, we review some well known basic iterative methods, out­
coming from the above formulation. Let us represent A in the following forms: 
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Case (a): A== D- CL- Cu, where D == (d;j) == (a;;c5;j) is a diagonal matrix 
and CL and Cu are strictly lower and upper triangular matrices, respectively. 
Case (b): A == H + V, with H and V two easily invertible matrices. 

Case (a): A== D- CL- Cu, where D == (d;j) == (a;;c5;j) is a diagonal matrix 
and CL and Cu are strictly lower and upper triangular matrices, respectively. 

(i) Jacobi method or method of simultaneous displacements (Jacobi (1845)) 
The method is defined by [3], with the splitting: 

M=D, N=CL+Cu. 

It is common to denote by B the iteration matrix of the Jacobi method, B = 
D- 1 (CL + Cu). 

(ii) Gauss-Seidel method or method of successive displacements (Gauss (1823), 
Seidel (1874)) 

This method is the same as the Jacobi method, except that one uses new 
values as soon as available. Thus, we have: 

N=Cu. 

Remark 2.1. If we reorder the equations and the unknowns by performing 
the same permutation of indices, the iterates given by the Jacobi method will 
be the same. For the Gauss-Seidel method, this result is no more true, i.e., 
some orderings will perform better than others. 

(iii) Successive overrelaxation method (SOR) (Southwell (1946)) 
We relax the above methods using a real parameter w (Southwell (1946)). 

If Xk+l is the (k + 1)-th iterate obtained by one of the previous methods, we 
define the (k + 1)-th iterate of the respective relaxation method by: 

[12] 

The relaxed Jacobi method is not really used because it does not improve the 
Jacobi method itself. On the other hand, the relaxed Gauss-Seidel method is 
well known as the successive overrelaxation method (SOR). The splitting [2] of 
the matrix A for the SOR method is given by: 

1 
M=-D-CL, 

w 

1-w 
N= --D+Cu. 

w 

The parameter w is called a relaxation factor. It is current to denote by .Cw 
the iteration matrix of the SOR method, .Cw == M- 1 N. If w == 1 we obtain the 
iteration matrix of the Gauss-Seidel method, £ 1 . 

Arms, Gates and Zondek (1956) developed block SOR methods. For block 
methods, the unknowns are grouped into blocks and all values within a block 
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are modified simultaneously using direct methods. Usually, the diagonal blocks 
are easily invertible. The SOR theory applies for the block SOR method, and 
faster convergence is obtained than for the point SOR method. Cuthill and 
Varga (1959) showed how the extra work per iteration for line SOR can be 
essentially eliminated. 

(iv) Symmetric successive overrelaxation method (SSOR) (Sheldon (1955)) 
This method is defined as follows. Given the kth iterate Xk, compute xk+l/2 

using the SOR method, and then, compute Xk+l based on xk+l/2 using SOR 
again, taking the equations in reverse order (a backward sweep). The splitting 
of A is given by: 

1 
M = w(2 -w) (D- wCL)D- 1(D -wCu) 

N = w(2 ~ w) (w(w- 1)(D- CL- Cu) + (1- w)D + w2CLD- 1Cu). 

The above matrix M is commonly used as a preconditioner. 
The convergence properties of the SSOR method have been studied bynum­

ber of researchers. Habetler and Wachspress (1961) showed that the key quan­
tities for the SSOR method are the largest eigenvalue of the iteration matrix B 
for the Jacobi method, and the spectral radius p(LU) of the matrix LU, where 
L is a strictly lower triangular matrix and U is an upper triangular matrix, 
such that B = L + U. If p(LU) ~ ~+ f, where f is "small", then the SSOR 
method is effective. For further discussion of the SSOR method, including the 
use of variable values of w between the blocks of points see Axelsson and Barker 
(1984). 

Before starting a summary of some known results, we recall some useful 
definitions: ' 

- The matrix A is Hermitian if and only if A = A*, where A* = AT is the 
complex conjugate of the transpose of A, i.e., (A*)ij = aij· This property 
implies that (Ax, x) E IR Vx E (J}N. In particular, each Hermitian matrix 
is diagonalizable. Its eigenvalues are real and its eigenvectors are orthogonal. 
The Hermitian matrix A is positive definite if and only if (Ax, x) > 0, Vx =/= 
0. This is equivalent to say that all the eigenvalues of A are strictly positive. 
The matrix A = (a;;) is diagonally dominant (DD) if la;;l 2: Lj:f.i Ia;; I Vi; 
A is strictly DD if Ia;; I > Li:f.i Ia;; I Vi; A is strongly DD if 1t is DD and 
if the previous inequality is verified at least for one row i. 

Subsequently, the matrix A is always assumed to be nonsingular. For the 
mentioned basic iterative methods, we can prove the following results (see Las­
caux and Theodor (1987)): 

- Let A be an Hermitian matrix splitted in the form (2]. Let M + M* -A be 
positive definite. Then p(M- 1 N) < 1 <:}A is positive definite. 

- Let A be a strictly DD matrix or an irreductible and strongly DD rna-
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trix. Then the Jacobi method converges. If 0 < w ~ 1, the SOR method 
converges (in particular, the Gauss-Seidel method converges). 

- Let A be an Hermitian matrix, and let 2D - A be positive definite. Then, 
the point and the block Jacobi methods converge ¢:> A is positive definite. 

- For each matrix A, we have p(.Cw) ~ lw - 11, where p(.Cw) is the spectral 
radius of the iteration matrix of the SOR method. In particular a necessary 
condition of convergence for the SOR method is 0 < w < 2. 

- Let A be a positive definite Hermitian matrix. Then the SOR method 
converges ¢:> 0 < w < 2. 

- Let A be an Hermitian matrix split ted in the form A = D- CL - Cu (case 
(a)), with D positive definite. Then, the point and the block SOR methods 
converge '(with 0 < w < 2) ¢:>A is positive definite. 

- Let A be a block tridiagonal matrix, with invertible diagonal blocks. Then 
the block Jacobi and Gauss-Seidel methods converge or diverge simultane­
ously. If they converge, the block Gauss-Seidel method converge asymptot­
ically two times faster. than the block Jacobi method. 

- Let A be a block tridiagonal matrix, with invertible diagonal blocks. If 
each eigenvalue of the iteration matrix B of the Jacobi method is real, 
then the block Jacobi and SOR methods (0 < w < 2) converge or diverge 
simultaneously. If they converge, the optimum value of w is given by 

2 
w*=----;::::=== 

1 + .j1- p2 (B) 

Moreover, the spectral radius of Lw• is given by p(.Cw•) = w* - 1. 
Remark 2.2. Considerable work has been done on the choice of the optimum 
w in the SOR method for the case where A is not symmetric positive definite, 
and where the eigenvalues of the matrix B for the Jacobi method are complex. 
Ehrlich (1981) and others have considered the use of an "ad hoc SOR" pro­
cedure for solving linear systems corresponding to partial difference equations. 
Here w is allowed to vary from point to point. The method works well in many 
cases, in spite of the lack of any rigorous theory. 

Case (b): A = H + V, with H and V two easily invertible matrices. 
Alternating Direction Implicit (ADI) methods were introduced in two com­

panion papers which appeared in the mid 1950s. One paper by Peaceman and 
Rachford (1955) was concerned with an alternating direction implicit method 
for solving linear systems arising from the finite difference solution of elliptic 
partial differential equations. The other paper by Douglas (1955) was con­
cerned with the solution of parabolic partial differential equations. 

Let xo be an initial guess for the solution of [1], and let Xk be the approxi­
mation of the solution at the kth step. The ( k + 1 )th iterates given by the ADI 
method is defined by: 

(H + pl)xk+l/2 = b- (V- pl)xk [13] 

(V + pl)xk+l = b- (H- pl)xk+l/2· 
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Here p E 1R is a parameter to define. Usually, the parameter p is allowed to 
vary from iteration to iteration. 

We can write this method in the form [4] defining: 

G = (V + pi)- 1(H- pi)(H + pl)- 1(V- pi), 
c =[I- (H- pl)(H + pi)- 1]b. 

If p > 0, we can also write it in the form [3], with 

1 
M = 

2
p (H + pi)(V +pi), 

1 
N = ;;:(H- pl)(V -pi), 

P. 
with p > 0. 

It is possible to prove the following general result (see Lascaux and Theodor 
(1987) §7.8.3, thm. 48): 

Theorem 2.2. Let A be given by A = H + V, where H and V are symmetric 
positive definite matrices. Then, the alternating direction implicit method 
defined by {13} converges for all p > 0. This method still converges if one of 
the two symmetric matrices H or V is only semi-positive definite. 

It was proved that the key condition is the commutativity condition HV = 
V H. Procedures for choosing the parameters, given the commutativity condi­
tion, and also bounds for the eigenvalues of H and V are given by Peaceman 
and Rachford (1955) and by other authors (see Young· (1971)). 

Unfortunately, attemps to extend the theory beyond the commutative case 
have been largely futile. The ADI method can also fail in some cases, when 
this condition is not verified. 

3. Petrov-Galerkin methods 

In this section, we present the framework of Petrov-Galerkin methods (see 
Saad and Schultz (1985)), also known as oblique projection methods (see Saad 
(1982)). We use them on Krylov subspaces, and we specify some common 
choices for them. We present also the conjugate gradient algorithm, because it 
is in the core of a number of recently developped iterative methods for solving 
non-Hermitian linear systems of equations. 

3.1. Framework of the Petrov-Galerkin methods 

Let (·,·)be the euclidean inner-product in a;N and 11·11 the corresponding 
norm. If A is Hermitian positive definite of order N, let (·,·)A be the inner­
product induced by A: (·,·)A = (A·,·) and let II· IIA be the corresponding 
norm. 

Let x 0 be any initial approximate solution of problem [1) and Km and Lm 
two subspaces of dimension m of a;N, m ~ 1. The Petrov-Galerkin method 
seeks an approximationof[1) of the formxm = xo+zm, where Zm belongs to the 
subspace Km by imposing the condition that the residual vector rm = b- Axm 
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satisfies the Petrov-Galerkin condition, i.e., rm is orthogonal to the subspace 
Lm: 

Find Xm = Xo + Zm with Zm E Km : (b- Axm, v) = 0, Vv ELm. [14] 

Clearly, if r 0 = b - Ax0 is the initial residual vector, the problem [14] is 
equivalent to: 

Find Zm E Km : (ro- Azm, v) = (rm, v) = 0, Vv ELm. [15] 

Suppose now that we have a basis { v1, ... , v m} of Km and a basis { w1, ... , w m} 
of Lm. We denote by Vm = [v1, ... , vm] and Wm = [w1, ... , wm] the matrices 
whose columns are the vectors of the respective bases. Then, in order to realize 
the Petrov-Galerkin approximation [15], we may write the unknown Zm E Km 
in the form: 

Ym E (]}"' · 

The problem [15] is then equivalent to: 

Find Ym Ea:m : WJ:(ro- AVmYm) = 0. 

Assuming WJ:AVm is nonsingular, this leads to the solution 

Ym = [WJ:AVm]- 1WJ:ro and [16] 

Xm = Xo + VmYm = Xo + [WJ:AVm]- 1W!ro. 

The above Petrov-Galerkin approximation is well defined if and only if WJ: A Vm 
is nonsingular. 

There are two important special cases. The first choice Lm = Km leads to 
the well known Galerkin method. The second choice Lm = AKm leads to the 
least-squares method which finds the approximate solution of [1] of the form 
xo + Zm, having the smallest possible residual in the euclidean norm. In fact, 
this observation may be formalized as follows. 

Theorem 3.1. Assume Lm = AKm. Then, Xm is the approximate solution 
provided by the Petrov-Galerkin method if and only if 

[17] 

An interesting question is whether a similar optimality property is also 
satisfied for the Galerkin method, i.e., when Lm = Km. The answer is known 
only in the case of a positive definite Hermitian matrix A. 

Theorem 3.2. Let A be Hermitian positive definite and Lm = Km. The 
following results are equivalent: 

(i) Xm is the approximate solution produced by the Petrov-Galerkin me­
thod. 
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(ii) lib- AxmiiA-1 = minxExo+Kmllb- AxiiA-1· 
(iii) llxm- xiiA = minxExo+Kmllx- xiiA, with X= A- 1b. 

Among the projection methods used to solve a linear system of equations, an 
important class is the Krylov subspace methods. These are the Petrov-Galerkin 
methods where Km is the Krylov subspace associated with the matrix A and 
the initial residual ro: 

Km(A, ro) = span{ro, Aro, ... , Am- 1r 0 }. [18] 

The different versions of Krylov subspace methods arise from different choices 
of the subspaces Km and Lm and from the ways in which the system is pre­
conditioned. The most popular choices of Km and Lm are the following (see 
Saad (1989)): 

1. Lm = Km = Km(A, ro). The gradient conjugate method (Hestenes 
and Stiefel (1952)) is a particular instance of this method when the matrix is 
Hermitian positive definite. Other methods in this class are the full orthogo­
nalization method (FOM) (Saad (1981)), ORTHORES (Young and Jea (1980)) 
and ORTHOMIN (Vinsome (1976)), which are mathematically equivalent one 
to the other, defined to solve non-Hermitian systems. 

2. Lm = AKm; Km = Km(A,ro). The GMRES algorithm, developed by 
Saad and Schultz (1986) to solve non-Hermitian systems of equations, is a good 
representative one in this class. . 

3. Lm = Km(AT, ro); Km = Km(A, ro). Clearly, in the Hermitian case 
this class of methods reduces to the first one. In the non-Hermitian case, the 
biconjugate gradient method (BCG) due to Lanczos (1952) and Fletcher (1976) 
is a good representative of this class. More recently, some efficient variations 
on this method have been proposed, in particular, CGS (Sonneveld (1989)), 
Bi-CGSTAB (van der Vorst (1992)) and QMR (Freund and Nachtigal (1991)), 
which we will describe in the next section. 

4. Lm = Km = Km(AT A,ATro). This is nothing but the conjugate gradi­
ent method applied to the Iiormal equations 

often referred to as CGNR (Hestenes and Stiefel (1952)). The condition number 
of the normal equations is likely to be too large for most problems to make 
this approach competitive with the previous approaches, except possibly to 
indefinite problems, i.e., problems for which the symmetric part of the matrix, 
(A+ AT)/2, is not positive definite. We put in this category also the method 
of conjugate gradient applied to 

AATy = b, 

whose solution y is trivially related to x, solution of system [1], by x = AT y. 
This is often referred to as CGNE, or Craig's method (Craig (1955)). If 
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we express the Galerkin conditions in terms of the y variable, then, I<m = 
I<m(AAT,ro) and Lm = Km. Using the relationship x = ATy between the x 
and y variables, we can verify that for the variable x, Craig's method takes 
I<m = I<m(ATA,ATro) and Lm = A-TJ<m. Moreover, the main difference 
between CGNR and CGNE is that the first minimizes the residual norm over 
Km while the second minimizes the error norm over I<m. 

3.2. The Conjugate Gradient algorithm 

It was developed by Hestenes and Stiefel (1952) for solving Hermitian posi­
tive definite linear systems. The works of Reid (1971) and Concus et al. (1976) 
showed its true potential. Since then, a considerable part of the research in nu­
merical linear algebra has been devoted to generalizations of CG to indefinite 
and non-Hermitian linear systems. The algorithm has a superlinear conver­
gence behaviour (Winther (1980), van der Sluis and van der Vorst (1986)), 
allowing substantial gains if we compare it with other basic iterative methods 
to solve linear systems of equations (Section 2). In exact arithmetic, it finds 
the solution after a finite number of steps, so it is essentially a direct method. 
Let A be an Hermitian positive definite matrix of dimension N. The algorithm 
can be stated as follows. 

1. Initialization: Let xo be an initial guess for the solution of [1]. Set 
ro = b- Axo; P-1 = 0; P-1 = 1; m = 0. 

2. If Xm is a good approximation for the solution·of [1], stop. Otherwise, 
compute: 

Pm = (rm, rm) 

f3m = Pm/ Pm-1 

Pm = rm + fJmPm-1 
Pm am = -:-:----'-'--'------:-

(Apm,Pm) 
rm+l = rm - amAPm 

Xm+l = Xm + UmPm 

3. Set m = m + 1 and go to 2. 

The main results concerning the CG algorithm are summarized in the fol­
lowing theorem (see Lascaux and Theodor (1987) §8.3, thm. 11). 

Theorem 3.3. If r; # 0, 0 ::; i ::; m, the following relations are verified in 
the CG method: 

(rm,Pi) = 0, i :S m -1, 

Km+l (A, ro) = span{ro, r1, ... , rm} = span{po, PI, ... , Pm}, 

(Pm, Ap;) = (Apm, Pi) = 0, i :S m- 1, 

i:Sm-1. 

[19] 

[20] 

[21] 

[22] 
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The condition r; i= 0 from the previous theorem is not restrictive, because 
if r; = 0, then x; = X: is the solution of [1). 

Two vectors u and v satisfying the condition (Au, v) = 0 are known as 
A-conjugates. From [21), the vectors {p;}~ 1 are A-conjugates by pairs, i.e., 
they are orthogonals for the inner product induced by A. 

From the equality [20), it is clear that the iterate Xm+l given by the CG 
algorithm is of the form xo + Zm+l, with Zm+l E Km+l (A, ro). From [22), the 
residual vector rm+l verifies the Petrov-Galerkin condition [15) with Lm+l = 
Km+l (A, r 0). Thus, the CG algorithm is in class 1 ofKrylov subspaces methods 
as we said below, and i~ verifies the theorem 3.2. 

Because of the previo_us results, it is clear that the CG algorithm has out­
standing properties (see Freund, Golub and Nachtigal (1992)): 

- Xm satisfies a minimization property of the residual vector in the A - 1-norm 
(and also a minimization property of the error in the A-norm). 

- Xm satisfies a Petrov-Galerkin orthogonality condition for the residual vec­
tor. 

- Xm can be computed efficiently, based on simple three-term recurrences. 
Thus, an ideal extension of CG to non-Hermitian matrices A would have 

the following features: 
(i) its iterates would be characterized by either a minimization property of the 

residual vector (MR) or a Petrov-Galerkin orthogonality condition for the 
residual vector (OR); 

(ii) for any initial vector it could be implemented based on short vector recur­
sions, so that work and storage requirements per iteration would be low and 
roughly constant. 
Unfortunately, it turns out that, for general matrices, the conditions (i) and 

(ii) can not be fulfilled simultaneously: 

Theorem 3.4. (Faber and Manteuffel, 1984 and 1987). Except for a few 
anomalies, ideal CG-like methods that satisfy both requirements (i) and (ii) 
exist only for matrices of the special form 

where T = T*, (} E JR, O" E (];. [23) 

The class [23) consists of just the shifted and rotated Hermitian matrices. 
Note that the important subclass of real nonsymmetric matrices 

A= I-S, where S = -ST is real, 

is contained in [23), with ei6 = i, O" = -i and T = iS. For this class of 
matrices Freund (1990) has derived practical implementations of the ideal CG­
like methods using (MR) and (OR) approaches. 

Another special case that arises frequently in applications are complex sym­
metric matrices A = AT. For example, the complex Helmholtz equations leads 
to complex symmetric systems. For an overvi~w of CG-type methods and 
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further results for complex symmetric linear systems, we refer the reader to 
Freund (1992). 
Remark 3.1. For non-Hermitian A and even for Hermitian indefinite A, an 
iterate Xm given by a (OR) property need not exist at each step m. In contrast, 
there is always a Xm satisfying a (MR) property. 

Because of theorem 3.4, clearly, it is not possible to have all the oustanding 
features of CG algorithm for an ordinary matrix. Thus, it is necessary to make 
a choice, and this one will be different according to the problem to solve, to 
the storage capacities of the computer and to the computing time available. 

4. Non-Hermitian linear systems 

In this section we present the principal features of some well known algo­
rithms, defined for solving non-Hermitian linear systems of equations. 

We do not intend to be exhaustive here, but only to present some algorithms 
used as a model or simply, more commonly used than others. The algorithms 
themselves are not described in detail, only their oustanding features are men­
tioned. For additional reading we refer to the original paper of each method. 

4.1. The linear GMRES algorithm 

- As mentioned in Section 3, the Generalized Minimal Residual (GMRES) 
algorithm is a Krylov subspace method with Lm = AK;,. and Km = Km(A, ro), 
proposed by Saad and Schultz (1986). 

- It generates an orthonormal basis Vm = [v1, ... , vm] of Km, adding only 
one vector at each iteration, with v1 = ro/f3, {3 = llroll· 

- The iterate Xm is determined imposing a (MR) condition. From remark 
3.1, it is always possible to calculate the next iterate, i.e., Xm always exists. The 
point is that from the orthonormality of Vm+l, the condition (MR) is imposed 
solving a m-dimensional upper Hessenberg system. This one has always a 
unique solution because, if we have not yet find the exact solution, the matrix 
Hm (of dimension (m + 1) x m) is offull column rank. 

llro- Azmll = llro- AVmYmll = minyE<rmllro- AVmYII 

= minyE<rmiiVm+l(f3el- HmY)II = minyE<rmllf3el- HmYII 

- GMRES only involves matrix-vector products with A. 
- It is possible to prove that in exact arithmetic the only possibility to break 

down is to obtain a residual vector equal to zero, i.e., to find the exact solution. 
- Like the conjugate gradient algorithm, if we exclude the influence of round­

ing errors, the algorithm finds the exact solution in at most N steps. Clearly, 
if m = N, we minimize the residual norm over the whole space (CN! 

- Let Pm be the set of polynomials of degree at most m, and .A(A) the 
spectrum of A. Thus the convergence result for GMRES reads as follows. 
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Theorem 4.1. (Saad and Schultz (1986)). Suppose that A is diagonalizable 
so that A= XDX- 1 and let 

c(m) = minpE'Pm,p(O)=lmaX>.;E>.(A)iP(A;)i. 

Then, the residual norm provided at the mth step of GMRES satisfies 

llrm+lll:::; x:(X)c(m)llroll, 

where x:(X) = IIXIIIIX- 1 11. 

[24] 

[25] 

- A consequence of theorem 3.4 is that we can not find a short vector 
recursion to control work and storage requirements per iteration. Here, work 
and storage requirements increase with the iteration index m. To remedy this 
difficulty, we can use the algorithm iteratively, i.e., we can restart the algorithm 
every m steps, where m is some fixed integer parameter, using the approached 
solution Xm as the initial guess of the solution at the next time. This restarted 
version of GMRES is denoted by GMRES(m). 

- The GMRES(m) method converges for all m 2: 1, under the condition 
that A is positive real, as a simple consequence of theorem 4.1. Moreover, if 
A is nearly positive real, i.e. when it has a small number of eigenvalues on the 
left half plane, then m need not be too large for convergence of GMRES(m) to 
take place. In fact, m depends on the spectrum of A. Unfortunately, this result 
does not extend to indefinite problems. From the (MR) property, GMRES(m) 
can not diverge, but it may be stationary. 

4.2. The BCG algorithm 

- The Bi- Conjugate Gradient (BCG) algorithm was first introduced by Lanc­
zos (1952), for solving general nonsingular non-Hermitian linear systems. It is 
a modification of the well known Lanczos algorithm (Lanczos (1950)), origi­
nally introduced to approximate the eigenvalues of A. Nevertheless, BCG was 
ignored until the work of FMcher (1976). 

-It belongs to the Krylov subspace methods (Section 3), with Lm = Km(AT, ro) 
Km = Km(A, r 0 ) and r0 a nonzero vector, nonorthogonal to ro, i.e., (ro, ro) f:. 
0. In particular, we can take r0 = r 0 . BCG generates iterates defined by a 
(OR) property. As we pointed out in remark 3.1, the existence of an iterate 
satisfying a (OR) property is not guaranteed at every step, and the algorithm 
can break down without satisfying the given convergence criterium. 

- Unfortunately, BCG typically exhibits a rather erratic convergence be­
havior with wild oscillations in the residual norm, due to the lack of a (MR) 
property. 

- The algorithm involves matrix-vector products with A and also with AT. 
- BCG uses a short vector recursion, which limits work and storage require-

ments per iteration. 
- Like the previous algorithms, in the absence of roundoff, the algorithm 

performs at most N steps. 
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- BCG generates basis vectors Vm = [ro, r1, ... , rm-d of Km and Wm = 
(ro, r1, ... , rm-1] of Lm such that the biorthogonality condition 

0 ::=; j, k ::=; m- 1, (26] 

holds. This condition could produce a serious breakdown of the algorithm. 

4.3. The CGS algorithm 

-The Conjugate Gradient Squared algorithm (CGS), proposed by Sonneveld 
(1989), is a transpose-free variant of the BCG method; it was developped to 
eliminate the matrix-vector products involving AT. In fact, ifx:;,ca is the mth 
iterates computed by BCG, with 

rBCG = '\[IBCG(A)r m m o, 

the CGS algorithm gives as a new approximation of the solution the vector 
X2m E xo + I<2m(A, ro), with 

( BCG )
2 

r2m = b- Ax2m = '\[fm (A) ro. (27] 

- As is clear from [27], the erratic convergence behaviour of BCG is magni­
fied in CGS, and CGS typically accelerates convergence as well as divergence 
of BCG. Moreover, there are cases for which CGS diverges, while BCG still 
converges. 

-Like BCG, the problem of breakdowns is not solved. 

4.4. The Bi-CGSTAB algorithm 

- The Bi-Conjugate Gradients Stabilized (Bi-CGSTAB) algorithm was pro­
posed by van der Vorst (1992) like a smoothly converging variant of BCG and 
CGS algorithms. It does not involve matrix-vector products with AT. Let 
x:;.ca be the mth iterates produced by BCG, and r:;,ca the associated resid­
ual vector. The iterate X2m E xo+K2m(A,r0 ) given by Bi-CGSTAB algorithm 
verifies 

r2m = b- Ax2m = w!CG(A)xm(A)ro. 

Here Xm E Pm, with Xm(O) = 1, is a polynomial that is updated from step to 
step by adding a new linear factor 

Xm(A) = (1-1JmA)Xm-l(A). (28] 

The free parameter 1Jm in [28] is determined by a local steepest descent step: 

- Bi-CGSTAB can break down without a satisfactory approximation of the 
solution. 
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4.5. The QMR algorithm 

- The Quasi-Minimal Residual (QMR) algorithm (Freund and Nachtigal 
(1991)) is again a Krylov subspace method, with Lm = Km(AT, ro), Km = 
Km(A, ro) and roan initial nonzero vector, nonorthogonal to r 0 , i.e., (r0 , r 0) ::p 
0. In particular, we can take r 0 = r 0 . It overcomes the two sources of break­
down presented by BCG: the (OR) condition, and also the biorthogonality 
condition [26) between the basis Vm of Km and Wm of Lm. 

- The biorthogonality condition [26) is relaxed when a breakdown is encoun­
tered. In this case, we start an internal loop generating the vectors in the basis 
of Lm and Km such that they fulfill the biorthogonality condition [26) by blocks, 
I.e. 

if j # k 
if j = k, 

and Vm = [Vm 1 , •• • , Vm,J, Wm = [Wm 1 , •• • , Wm 1]. 

[29) 

There are some situations where this procedure would build an infinite 
block, without never finding a nonsingular D1c. Fortunately, in practice, round­
off errors will make an incurable breakdown highly unlikely. Moreover, the 
number of internal vectors, i.e., the size of the blocks, remains small. 

- At the mth step, the QMR algorithm generates: 

Xm = Xo + VmYm E Xo + Km(A, ro) 

rm = ro- AVmYm = Vm+l(,Bel- HmYm), · ,B = llroll· 

As Vm+l is not unitary it is not possible to minimize the euclidean norm of the 
residual with a near-constant work and storage requirements. Instead, Ym is 
chosen solving a quasi-minimization problem for the residual norm, i.e., 

[30) 

The least squares problem [30) has always a unique solution, so the algorithm 
will not break down because of the (OR) property, as BCG does. 

- In addition, the matrix Hm is block tridiagonal (while in GMRES it is 
an upper Hessenberg matrix). This allows us to compute the iterates using a 
short vector recursion. 

- The quasi-minimization [30) is strong enough to enable us to prove a 
convergence result similar to theorem 4.1 for GMRES. This is in contrast to 
BCG and methods derived from BCG, for which no convergence results are 
known. Without giving the details, the known results are: 

Theorem 4.2. (Freund and Nachtigal (1991)). Suppose that the L x L matrix 
generated by the QMR algorithm is diagonalizable, and let X E (CLxL be a 
matrix of eigenvectors of H£. If f(m) is given by {24} and ~~:(X)= IIXIIIIX- 1 11, 
for n = 1, ... , L- 1 we have: 

[31) 
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Theorem 4.3. (Nachtigal (1991)) 

ilr~MRII ~ x:(Vm+dllr~MRESII· 

- The algorithm involves matrix-vector products with A and also with AT. 
-In principle, it is always possible to eliminate AT altogether, by choosing 

the starting vector ro suitably. This observation is based on the fact that any 
square matrix is similar to its transpose. In particular, there always exists a 
nonsingular matrix P such that 

ATP = PA. [32] 

In choosing ro = Pro/IIProll, we can replace the operations involving AT by the 
matrix-vector multiplications with P. Therefore, this approach is only viable 
for special classes of matrices A, for which one can find a matrix P satisfying 
[32] easily, and for which, at the same time, matrix-vector products with P 
can be computed cheaply. 

- There are some other transpose-free QMR methods, but in general they 
are modeled after CGS and they do not address the problem of breakdowns 
(see Freund, Golub and Nachtigal {1992)). 

5. Preconditioning techniques for linear systems 

For the solution of realistic problems, it is crucial to combine a good iterative 
method with an efficient preconditioning technique. In this section, we present 
the basic idea of preconditioning, and also some representative examples. For 
a careful revision of this subject, the reader could refer to the survey papers of 
Axelsson {1985) and Saad {1989). 

5.1. A general study of preconditioning 

Let M be a given nonsingular N x N matrix, which approximates in some 
sense the coefficient matrix A of the original linear system [1]. Moreover, 
assume that M is decomposed in the form 

[33] 

The chosen iterative method of resolution is then used to solve the precondi­
tioned linear system 

A'x'=b', [34] 

where 

and [35] 

Clearly, the systems [1] and [34] are relied by the relations [35], and we can 
easily obtain x from x' (and viceversa) by a change of variables. Usually, one 
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avoids the explicit calculation of primed quantities, and instead one rewrites 
the resulting algorithm in terms of the corresponding quantities for the original 
system. If the matrix A has some special structure, the decomposition [33] can 
often be chosen such that the structure is preserved for A'. For example, if 
the matrix A is symmetric and positive definite, one can set M2 == M{ in [33]. 
This allows us to use the same range of iterative methods for solving both the 
systems [1] and [34], in particular, to use some methods specially adapted to 
the given structure of the matrix. 

We remark that the special cases M1 == I or M2 == I on [33] are referred 
to as right or left preconditioning, respectively. The general case is known as 
preconditioning from both sides. 

Obviously, there are two (in general conflicting) requirements for the choice 
of the preconditioning matrix M for a given iterative method: 
(i) M1-

1 AM:J 1 should approximate the identity matrix. In other words, the 
condition number of the matrix A' is smaller than the one of A, and the 
iterative method would present a better convergence behaviour solving [34] 
than [1]. 

(ii) The linear systems associated to matrices M;, i = 1, 2, can be solved 
cheaply. Moreover, for algorithms that involve matrix-vector products 
with AT, the same thing is required to the systems associated to matri­
ces MT, i = 1,2. 
When the iterative method belongs to the class of Krylov subspace methods 

(Section 3), the approximate solutions of [34] are of the form 

and the iterates and residual vectors for [1] and [34] are connected by 

M -1 I 
Xm= 2 Xm and [36] 

For right preconditioning, the preconditioned residual vectors coincide, at 
each step, with their counterparts for the original system. For this reason, 
right preconditioning is usually preferred for Krylov subspace methods based 
on a property (MR). Moreover, it is very easy to compare the effect of different 
preconditioners used for solving a given linear system, because the convergence 
to zero of the preconditioned residual norm is the same of the residual norm 
itself. 

5.2. Some common preconditioners 

After the work of Meijerinck and van der Vorst (1977), a widespread precon­
ditioning technique consists in defining M as an incomplete LU factorization 
of A, i.e. 

M= LU =A+R, 

where L and U are lower and upper triangular matrices respectively, and where 
the residual matrix R is "small". We can distinguish two classes of incomplete 
factorizations: 
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(i) The zero-nonzero structure of L + U coincides with the one of A, i.e., 
mij is a nonzero coefficient of L + U if and only if a;j itself is nonzero. This 
restriction is very advantageous from a programmer's point of view, because 
it allows us to use the same data structure of A (the associated pointer ar­
rays, for example) for the preconditioning matrix without (or with very few) 
supplementary work. 

(ii) We allow a limited amount of fill-in to take place in the structure of 
L + U. A particular case of this class is when R = 0; the matrix M is then a 
complete factorization of the matrix A, and the solution of the problem [34] is 
obtained in only one step. 

Among the preconditioners having the similar structure of matrix A (case 
(i)), the most popular is ILU(O). In the general sparse case, the incomplete 
factorization is obtained by performing the standard LU factorization of A and 
dropping all fill-in elements that are generated during the process (Meijerinck 
and van der Vorst (1977)). In other words, the imposed condition is: 

V ( i, j) such that aij -=/= 0. [37] 

See Dahl and Wille (1992) for an example of this preconditioner on 3D realistic 
calculations. 

The modified incomplete factorization (Gustafsson(1978)) imposes a supple­
mentary condition on the diagonal elements of M at each step of the factoriza­
tion procedure, that is: 

N 

"l:rij = 0, 
j=l 

i = 1, ... ,N. [38] 

Under certain conditions, it is possible to construct modified incomplete factor­
izations such that the order of convergence of the corresponding preconditioned 
conjugate gradient method is increased in relation to the use of ILU(O) as a 
precondi tioner. 

Axelsson (1986) generalized this idea. He wrote the condition [38] in a most 
general form 

Re= c. [39] 

If eT = ( 1, ... , 1) E IRN and c = 0 E IRN, the condition [39] is equivalent to 
[38] and all the two incomplete factorizations coincide. 

Among the preconditioners allowing some fill-in in its matrix structure (case 
(ii)) we can distinguish three groupes: first, the criteria to calculate the coeffi­
cients of the preconditioning matrix is only based in their position. This is a 
generalization of the condition [37], allowing a larger choice on the index ( i, j). 
On the other hand, the criteria to save a calculation is the size of the coefficient. 
The typical test imposed here is 

set ffiij = 0, 
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where E is a prescribed small parameter. Finally, the last class consist of in­
complete factorizations choosing their coefficients as a more or less complicated 
mixing of the two previous techniques. 

The first class generalizes, as we have already said, the ILU(O) factorization, 
introducing the notion of level of fill-in (Watts (1981)): the level of a fill-in 
element is defined as the minimum between its own level and one plus the 
sum of the levels of the L and U elements from which it is spawned in the 
elimination process. Initially, all nonzero elements of matrix A have level of 
fill-in equal to zero, and all the others, infinity. ILU(k) is then defined as the 
incomplete factorization that is obtained by dropping all fill-in elements whose 
level exceeds k. 

When the size of each element is checked in the factorization process, the 
resulting preconditioner approximates better, in general, the original matrix 
than in the previous case. Unfortunately, this process is extremely expensive 
in computing time, and it is not possible in general to give a priori accurate 
bounds for the storage requirements. For some applications of these kind of 
preconditioners to the N a vier-Stokes equations, see for example, Bristeau et 
a/. (1990), Dutto (1990), and D'Azevedo et al. (1992a). 

Zlatev (1982) and Saad (1990) propose a preconditioner of the third class, 
obtained by "mixing" all the two tests mentioned above. Each row of L and 
U is constructed subject to the restriction that only a small amount of fill­
in, for example, k more elements for each one, is allowed beyond the number 
of elements of A already presents in that row. Furthermore, elements which 
are deemed to make only an insignificant contribution to the decomposition 
are also dropped. This technique controls the storage requirements for the 
preconditioner, and it stays close to the problem to solve. See Freund and 
Nachtigal (1991) for some numerical results of this kind of preconditioner. 

The ordering of the unknowns has a great influence in the efficacy of incom­
plete factorizations used as preconditioners. For some numerical examples, see 
Duff and Meurant (1989), D'Azevedo eta/. (1992b) and Dutto (1993). 

Another class of successful preconditioning techniques based on block fac­
torizations was popularized independently by Axelsson, Brinkkemper and Il'in 
(1984) and by Concus, Golub and Meurant (1985). Given a block tridiagonal 
matrix A= tridiag(B[, A;, B;+1), the basic idea is derived from the standard 
block Gaussian elimination process, in which A is factored as 

A= (D- L)D- 1(D- Lf, 

where L is the negative of the strict lower triangular part of A, and D is a 
block diagonal matrix D = diag(D;), defined through the recurrence 

D; =A;- B;Di-\B[, i = 2,3, .. . ,N. 

Even though the blocks D; are dense, a sparse approximation to them can 
easily found, for example, using a banded approximation f; to the inverse 



Iterative methods for linear systems 443 

D-; 1
. Numerical experiments on test problems for two dimensions indicate that 

using good strategies to approach the inverses Di1
, block preconditioning can 

be more efficient for the same computer storage than other preconditionings, 
including the corresponding point ones. 

As mentioned in Section 2, many of the standard point of line relaxation 
techniques such as Gauss-Seidel, SOR, SSOR or ADI, can be used as precon­
ditioners. 

An interesting kind of preconditioner on vector computers is polynomial pre­
conditioning. It consists of choosing a polynomial s and replacing the original 
linear system by 

s(A)Ax = s(A)b. [40) 

To be efficient, polynomial preconditioning require the determination of an 
optimum polynomial s. The preconditioned matrix s(A)A should be as close 
as possible to the identity matrix in some sense. One possible criterion is to 
make the spectrum of the preconditioned matrix as close as possible from that 
of the identity. For example, denoting by .A(A) the spectrum of A and by Pk 
the space of polynomials of degree not exceeding k, we may wish to solve 

Finds E Pk that minimizes max.xE>.(A)I1- .As(.A)j. [41) 

Unfortunately, this problem involves all the eigenvalues of A. If we know some 
continuous set E that encloses .A(A), we can replace the problem (41) by: 

Finds E Pk that minimizes max.xEEI1- .As(.A)j. [42) 

Thus, it is necessary to construct a region E in the complex plane which ideally 
would contain the eigenvalues of the matrix A. If A is a symmetric positive 
definite matrix, the set E can be taken to be the interval [.Amin' .AmaxJ, with 
.Amin and .Amax the smallest and the biggest eigenvalues of A, respectively. In 
the more general non-Hermitian case, it is possible to get eigenvalue estimates 
using a certain number of steps of an iterative algorithm like Lanczos or GM­
RES, and to use this information for computing the polynomials (see Elman, 
Saad and Saylor (1986) and Saad (1989)). 

The main attraction of polynomial preconditioning is that the only opera­
tions involving the matrix are products with vectors. It can be combined with 
a subsidiary relaxation-type preconditioning such as SSOR. The main disad­
vantage of polynomial preconditioning is their poor performance on sequen­
tial machines or parallel machines with small number of processors. Axelsson 
(1985) has shown that polynomial preconditioning is rarely competitive with 
the nonpreconditioned conjugate gradient method, for a symmetric positive 
definite matrix. This conclusion is restricted to the simplest polynomial pre­
conditioning, and it is not known whether a similar conclusion might be proved 
for the more sophisticated preconditioners. 

We want also to mention the more recent efforts in deriving preconditioners 
from domain decomposition techniques. The attraction of this approach is that 
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they have been implemented naturally in many engineering applications in the 
past and, as a result, it is possible at present to benefit from this experience. 
A collection of recent papers on domain decomposition methods can be found 
in the proceedings edited by Glowinski et al. (1988) and Chan et al. (1989). 

Finally, hierarchical multigrid techniques seem to be promising in the con­
text of finite element discretizations. Briefly, these techniques amount to using 
hierarchical basis functions, i.e., a basis that consists not only of the nodal func­
tions at the finest grid, but also of the coarser basis functions from which those 
fine grid functions have been obtained. Thus the function space is identical but 
its basis has changed. Yserentant (1986) has shown that for two-dimensional 
problems, the coefficient matrix arising from the discretization of elliptic par­
tial differential equations with such bases has condition number smaller than 
usual. This alows us to use very simple preconditioners without losing a good 
performance of the iterative methods used. 
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