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ABSTRACF. Shells are known to be optimal in many ways, provided certain basic shell oriented design 
rules are followed. The shape, thickness and material distribution play a dominant role. Minimum 
material, a specific frequency response, maximum load carrying capacity, a pure membrane stress 
state are typical design objectives. In the present contribution the form finding and thickness 
variation are embedded in the concept of structural optimization which combines design modelling, 
structural and sensitivity analyses and mathematical optimization schemes to a general design tool. 
The structural response may be based on linear elastic, eigenvalue and geometrically nonlinear 
analyses. In particular, the imperfection sensitivity with respect to buckling is discussed. A few 
selected examples demonstrate the versatility of optimization schemes in shell design, among these 
are the tuning of a bell and the form finding of a classical reinforced concrete dome shell. 

RESUME. Les coques sont reconnues comme etant des structures optimales sous differents aspects 
dans la mesure ou certaines regles de base de conception sont respectees. La forme, l'epaisseur etla 
repartition du materiau constituant Ia coque jouent un role preponderant. Les criteres d'optimisation 
typiques sont la minimisation du volume de materiau utilise, une reponse frequentielle specifique, 
une capacite portante maximum et un comportement en membrane pure. Cet article concerne 
/'optimisation de forme et d'epaisseur en utilisant un outil general de conception qui combine 
/'analyse des structures, le calcul des sensibilites et les algorithmes d'optimisation. L'etude de Ia 
structure peut etre baste sur des analyses liniaires elastiques, non liniaires geometriques ou pour 
les vibrations libres. En particulier, nous discutons des effets des imperfections sur Ia stabilite. 
Quelques exemples demontrent le caract ere general des schimas d'optimisation pour Ia conception 
des coques. Parmi ces exemples, nous presentons l'itude d'une cloche et d'un dome classique en 
bitonarmi. 

KEYWORDS : shells, shape optimization,form finding, sensitivity analysis. 
MOTS-cLts : coques, optimisation de forme, analyse de sensibilite, analyses par ilements finis, 
paramitrisation. 

Revue europeenne des elements finis. Volume 2- n° 3/1993, pages 377 a 398 



378 Revue europcenne des elements finis. Vol. 2- n° 3/1993 

1. INTRODUCTION 

Shells belong to the most common and most 
efficient structural elements in nature and 
technology. They are used whenever high re­
sistance, large spans and minimum material 
are required or a shel(l)ter and containment 
function is needed. In this respect they also 

may be termed optimal structures showing 
excellent structural performance and in many 
cases also architectural beauty. However, as 

symptomatic of optimized systems shells can 
be extremely sensitive with respect to their 
mechanical behavior as well as their aesthet­
ics [20). Any design should consider this sen­
sitivity to become finally successful. 

Besides the thickness distribution the overall 
shape of the shell is directly related to this as­
pect. It is well known that an extremely thin­
walled shell heavily relies on a load carrying 
principle based on a membrane stress state 
avoiding bending as far as possible. Further­
more, the stress state has to reflect the char­

acteristics of the chosen material: a fabric 
membrane needs enough prestress avoiding 

wrinkling under compression, a reinforced 

concrete shell ought to be mainly in compres­
sion. This ideal situation can of course rarely 
be achieved, if a so-called geometrical, 
mostly analytically defined shape is adopted. 
In this case extra structural elements like 
additional reinforcement, prestress, stiffen­
ers, edge beams etc. ("prostheses") are 
needed to put the shell into the desired posi­
tion. In contrast natural or structural shapes 
try to avoid most of these extra stiffening com­
ponents. They are obtained by an inverse ap­
proach in which the objective of a desired 
structural response is prescribed and the ini­
tial design, e.g. the shape and thickness dis­

tribution, is looked for. The interrelationship 
between shape and structural response has 
been intensively discussed by the authors 
in [21). [22]. It has been mentioned that one 
of the described methods, namely structural 
optimization, seems to be the most general 

and versatile technique as design tool. This 
statement is based on the fact that each de­
sign follows essentially an optimization pro­
cess. Specifically with respect to the form­
finding of a shell structure the objective can 
be stated as follows [22]: 

Find the shape and thickness distribution of 
a shell, so that 

• 

• 

• 

• 

• 

• 

the boundary conditions and all pos­
sible load cases are considered, 

material properties are taken into ac­
count (e.g. no tension for masonry or 
concrete), 

stresses and displacements are limited 
to certain values, 

an almost uniform membrane stress 
state results, 

buckling, excessive creep and nega­
tive environmental effects are avoided, 

a reasonable life time is guaranteed 

and hopefully 

• manufacturing and service costs are 
justified and the design is aesthetically 
pleasing. 

These requirements interact with each other 
and are in some cases even contradictory so 
that a compromise has to be made. For exam­
ple, a free form shell may lead to expensive 
formwork and an efficient concrete shell 
might look rather bulky. 

Structural optimization is currently under­
stood as a synthesis of several individual dis­
ciplines like structural and sensitivity analy­
ses, computer aided geometrical design 
(CAGD), mathematical optimization, interac­

tive graphics etc. Apparently, it is a computa­
tional method, consequently only those re­
quirements described above may be part of 
the process which can be cast into a mathe­
matical formulation. Unfortunately, also the 
term 'optimization' is misleading since it sug-



gests that there is only the one optimal solu­
tion. Firstly, only parts of the complete task 
can be included up to now so that always a 
model problem is investigated. Secondly, 
even for this restricted model a local optimum 
is reached. In other words, creativity of the de­
sign is still kept as part of the game; fortu­
nately, the process is - in this rather general 
perspective - extremely parameter sensitive 
and allows a lot of design freedom. Structural 
optimization is nothing else then an addi­
tional design aid. Its applications can be clas­
sified into: 

• 

• 

• 

homogenization problems (uniform 
stress state etc.), 

optimal use of material (trimming, maxi­
mum load carrying capacity), 

optimal structural response (tuning, 
e.g. frequencies). 

In this paper we concentrate on shape and 
thickness optimization. The tuning of axisym­
metric shells to certain frequencies and buck­
ling loads by shape modification is described 
in [16]. Minimum weight and cost design of 
rotational shells is addressed in [23]. Shape 
optimization schemes are used in (15] to elim­
inate bending and minimize membrane 
stresses of arbitrary shells with constant 
thickness. Shape optimization of prismatic 
curved shells and axisymmetric shells is in­
vestigated in [9], (1 0] where also further refer­
ences are- given. The literature for optimiza­
tion of nonlinear shell structures is rather 
limited, e.g. [25]. In this context a different 
shape sensitivity with respect to the influence 
of small geometrical imperfections on the 
buckling and failure load of optimized struc­
tures has to be mentioned. 

The present paper summarizes a general 
scheme for shape and thickness optimization 
of free-form shells developed in the authors' 
research group [3], (7], (11], (12], (19]. This 
includes the geometrical parameterization, 
sensitivity analysis, the application of certain 

Shape optimization of shell structures 379 

mathematical programming schemes and -
most important - a general concept to incor­
porate all kinds of objectives, constraints and 
design variables. The formulation is currently 
extended to geometrically nonlinear struc­
tures including buckling and its related 
imperfection sensitivity (24]. 

2. OPTIMIZATION MODEL 

2.1 General Procedure for Shape 
Optimization of Shells 

Hanging fabric models or their numerical sim­
ulation are excellent techniques in the form­
finding process for a membrane oriented 
shell design [17]. They are simple and ideally 
suited in the initial phase since they always 
give a rough picture of a potential shape. 
However, their application has certain limits. 

Usually, the material of the membrane used in 
the experiment or analysis is not related to 
that of the real shell. Wrinkling of the hanging 
fabric in general cannot be avoided and it is 

not clear, how different load cases can be in­
corporated. Furthermore, experimental data. 

have to be processed anyway for a subse­
quent structural analysis. 

Therefore, a more general approach to shell 
design is advocated here following the prin­
ciples of structural optimization. They ideally 
reflect the individual design stages every en­
gineer usually goes through, namely 

1. choose a reasonable initial shape, 

2. evaluate the structural response for 
several load cases, 

3. 

4. 

check stresses, displacements, buck­

ling load and other safety requirements 
and serviceability conditions, costs, 

compare the quality of the design with 
any chosen optimality criteria, 
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5. if necessary, evaluate a new trend ap­
plying sensitivity analyses and propose 
an improved design, 

6. repeat the process until all criteria and 
constraints are satisfied. 

To allow some flexibility and generality 
the process has to be structured in optimiza­

tion, i.e. geometry definition, mechanical be­

havior, design objectives and constraints and 
mathematical optimization module are 

strictly separated (Fig. 1). 

This procedure is absolutely different to the 
hanging model or other principles where the 
shape generating rule itself (i.e. mechanical 
response to given loads) is already the crite­
rion for optimality. Nevertheless, the same re­
sults can be achieved if equivalent objectives, 
material data, boundary and load conditions 
are chosen. But beyond this the methods of 
structural optimization can handle problems 
with many load cases, arbitrary design objec­
tives and constraints not necessarily related 
only to mechanical behavior, loads like body 
forces and support conditions which change 
with every modification of shape. 

mathematical 
programming 

approximation 
methods 

optimality 
criteria 

objective(s) 

constraints 

derivatives 

Figure 1 - Design = optimization loop 

CAGD 

2.2 Definition of Optimization Problem 

The rather abstract mathematical statement 
of a non-linear optimization problem 

minimize the objective f(x) 
subject to 

equality 
constraints: g1(x) = 0 ; j = 1, ... , m. 

(1) inequality 
constraints: g1(x) s 0 ; j = m. + 1, ... ,m 

bounds for 
optimization variables: .!h s x s x. 

has to be redefined in mechanical terms 
(Fig. 2). 

For shells coordinates and thicknesses of cer­
tain selected design or structural nodes are 
selected as optimization variables. In order to 
allow a smooth and ·efficient solution, the 
number of design variables should be kept as 
small as possible but still allowing enough 
freedom for a general shape. Besides the 
most common objective "weight" there are 
other functions of natural significance like 
strain energy minimization which is equiva­
lent to maximizing the stiff-ness. This means 
that the bending strains in a shell are mini-

linear 
eigenvalue 

nonlinear 

dynamics 

variational SA 

discrete SA 



mized so that a membrane stress state is 
achieved. Stress levelling with a prescribed 
target of stress oavg can be applied to gener­
ate a shell mainly in compression. Tuning to a 
certain response, for example a single fre­
quency or a desired spectrum or maximizing. 
the failure load are classical objectives in en­
gineering. In all cases we have to keep in mind 
that optimized structures may result in ex­
treme parameter sensitivity. 

Inequality constraints are taken into account 
to check the safety and reliability require­
ments which have to be satisfied. Typical 
constraints of this type are stress and dis­
placement limits. If the stiffness or the critical 
load factor are to be maximized a prescribed 
structural mass is introduced via an equality 
constraint. This constraint prohibits an accu­
mulation of mass which would otherwise pro­
duce unrealistic massive structures. 

For multi-objective optimization the problem 
has to be generalized (Fig. 3) allowing only a 
compromise. Here, either several weighted 
objectives are combined to one compromise 
or one dominant function f 1 (x) is chosen as 
leading objective whereas the other functions 
are introduced as constraints. Alternatively, 
Pareto optimal solutions are located on the 
so-called functional- efficient curve A- B 
in the criteria space with C as the min - max 
solution. Also different load cases can be han-

• general objective 

• leading objective 
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• Design variables x 

coordinates of selected nodes 

thickness of selected nodes 

other cross sectional parameters 

• Objectives f(x) 

weight or volume 

strain energy 

stress leveling 

tuning function 

fundamental frequency 

critical load factor -A. 

• Constraints 

weight or volume gw = .:!L - 1 = 0 
Wall 

displacements gu = U~u - 1 S 0 

stresses g.=~l -1 so 

frequencies 

load factor 

A 

Figure2 - Typicalvariab/esandfunctionsin 
optimal shape design of shells 

k 

weighting factors 

number of individual 
objective functions 

as constraints 

• Pareto optimization I 
f, I 

f--A Pareto optimal solutions 

>z "--V ______ f2 

Figure 3 - Multi-objective optimization 
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died in a similar way if for example the values 
for one objective of several load cases are 
added to one general function. 

3. GEOMETRIC REPRESENTATION (3] 

3.1 Design Model 

Shape finding means optimization of geome­
try. Characteristic optimization variables are 
therefore geometric parameters defining the 
structural shape. The number of variables 
can be reduced dramatically without loss of 
generality if CAGD concepts are used. By 
these methods shapes of free formed shells 
can be described by the coordinates of a few 
so-called "design nodes" which can be cho­
sen as variables. Additionally, the continuous 
thickness variation can be optimized where 
thicknesses at design nodes are taken as dis­
crete variables. 

The general methods of CAGD are the basis 
of modern pre-processors to design struo­

tural geometries in two and three dimensions. 
Shapes are approximated piecewise by "de­
sign patches". Within each design patch the 
resulting shape r8 is parameterized In terms 

·of shape functions Hio patch parameters u, 
v, w and design nodes rdi which describe 
the location ofthe patch in space: 

( 2) 

shift design nodes 

Figure 4 - Bezier patch 

There are many different shape functions 
available, e.g. Lagrangian interpolation, 
Coons transfinite interpolation, Bezier and 
B-spline approximations. In shape design of 
free form shells one dimensional cubic Bezier 
.and B-splines and two dimensional bi-cu­
bic Bezier patches (Fig. 4) appear to be supe­
rior to others. 

Continuity conditions between adjacent 
patches of composite surfaces can be formu­
lated in superimposed "continuity patches". 
They are generated automatically and pre­
served during manual user interactions and 
shape optimization. Fig. 5 shows different 

types of continuity patches depending on 
whether they are connecting two or four de­
sign patches or are defined at an isolated cor­
ner. In either case four nodes are independent 
and control the locations of the remaining 

generated shape 

Figure 5 - Interactive surface modification, continuity patches connecting four Bezier patches 



Shape optimization of shell structures 383 

generated shape 

ground plan 

Figure 6 - Free formed shell (16 Bezier elements) 

nodes leading to a reduction .of geometrical 
degrees of freedom which is very welcome in 
structural optimization to stabilize the proce­
dure. 

The idea of continuity patches is very helpful 
in interactive design of free formed shells be­
cause they can serve as initial shapes for sub­
sequent optimization runs or as valuable in­
teractive pre-processor tools for input 
preparation of complex shapes. Fig. 6 
shows the plan of a free form shell de­
scribed by a total of 16 Bezier patches and the 
generated shape modeled by 8-noded iso­
parametric shell elements. 

3.2 Linking 

The concept of linking is a necessary tech­
nique to introduce certain geometrical 
constraints. One application has already 
been mentioned above in the context of conti­
nuity requirements. Another one is the inter­
action of the analysis model (e.g. finite ele­
ment model) and the design model 
(geometrical macro element model). A com­
monly used rule which links variables r8 of 
the analysis model via the design model with 

variables x of the optimization model Is de­
fined as: 

with: (4) 

In these relations r~ and r3 denote coordi­
nates of analysis and design models, respec­
tively, which remain constant during the opti­
mization process. Linking matrices Lax and 
Ldx describe linear relations between opti­

mization variables x and variable coordi­
nates of analysis and design model, respec­
tively. Had denote nonlinear relations 
between design and analysis model and are 
identified as shape functions. In addition, 
specific linking rules can be introduced to 
prescribe move directions of nodes, linear 
combinations of nodal variables, symmetry 
conditions, projection rules etc. (3]. 

The concept of linking can drastically reduce 
the number of optimization variables. It also 
allows the user to guide the solution Interac­
tively into a reasonable design. 
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4. ANALYSIS 

4.1 Structural Analysis 

Once the design model is defined a finite ele­
ment mesh can easily be interpolated within 
each design element (eqn. (2)). This concept 
cannot totally avoid mesh distortions during 

shape optimization. However, by choosing 
reasonable patches and prescribed move 
directions the effect can at least be dimin­
ished. In most cases the structural response 
for shape optimization is based on linear elas­
tic analyses or eigenvalue formulations for 
buckling or vibration. The equilibrium condi­
tion of the discretized system G = 0 leads to 
the usual stiffness expression. Its homoge­
neous counterpart defines an eigenvalue for­
mulation for the load parameter >... The ho­
mogeneous equation of motion yields the free 
vibration problem: 

equilibrium G(u,A.) = 0 (5 a) 

=t> Ku=R (5 b) 

stability K1 ell 0 (6 a) 

=t> (K-A.K0)eii=O (6 b) 

free vibration Ku+Mii=O (7a) 

=t> (K - fil M) ell = 0 (7b) 

K, K9 , M and R are the elastic stiffness ma­
trix, geometric stiffness matrix, mass matrix 
and external load vector, respectively. KT is 
the sum of K and Kg. u denotes the vector 
of the nodal displacement parameters. 

Shells are known to be extremely sensitive 
with respect to small deviations of their ideal. 
shape. The buckling load of the real, 
imperfect shell may be drastically lower than 
that of the perfect structure. This is in particu­
lar true for optimized structures. It brings up 
the question, how nonlinear effects and 
imperfection sensitivity can be included in the 
optimization procedure. This problem is dis­
cussed in detail in (24] for maximizing the crit­
ical load of geometrically nonlinear strue> 
tures and is briefly outlined in the following. 

The discretized nonlinear 'equilibrium equa­
tions G(u, A.) = 0 are usually linearized, lead­
ing to the tangent stiffness matrix KT, and it­
eratively solved by a Newton type of iteration, 
in general combined with a path-following 
scheme, e.g. the arc- length -method 
(24]. The maximum load, which is either a bi­
furcation or a limit point, is controlled by the 
stability criterion (6 a). Usually the criterion is 
utilized during the loading process to check 

whether or not the structure is in a stable equi­
librium position or a bifurcation into another 
equilibrium path occurs. 

In order to pinpoint a critical load exactly a 
so-called extended system can be utilized 
[30]. 

{ 

G(u, A.) } linearization 

K1(U, A.) ell = 0 ~ 

e (ell) (8 a) V 

[(K~:) •• : 1 (K~ :).l][::]= -[K~ J 
or e.. o M e J (8 b) 

Here displacements u, buckling mode ell 
and the critical load parameter >.. are the un­
knowns. e (~) is an additional constraint on 
the length of the buckling mode ~. Again the 
linearized equation (8 b) is the basis of a New­
ton type iteration. ( ), denotes the corre­
sponding partial derivatives. A solution of the 
unsymmetrical set of equations (8 b) Is by­
passed by a partitioning method. This, in turn, 
requires the factorization of the tangent stiff­
ness matrix KT which is singular at critical 
points. In (24], [30] different schemes are 
proposed to augment (8 b) and circumvent 
this difficulty. 

Although the extended system can be started 
already at the undeformed configuration, the 
direct solution for the critical point may not 
converge. Thus a few steps are computed by 



the path following algorithm coming close to 
the critical point before the extended system 
is turned on. 

Once the critical point of the perfect structure 
including the buckling mode is determined, 
the original structure is perturbed by a frac­
tion of this mode and the resulting Imperfect 
structure is investigated again by the ex­
tended system. Its critical load - usually a 
limit point - is the basis for the maximization 
of the load factor by the optimization proce­
dure (Fig. 7). A new design is obtained. The 
critical point of the new perfect structure is 
computed starting with the extended system 

at the critical stage of the old perfect struo-
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ture. This gives the new buckling mode used 
as imperfection. And again the imperfect 
structure is investigated in the same manner 
by the extended system. The procedure is re­
peated until convergence is reached, i.e. no 
further increase of the critical load can be ob­
served. For details see [24]. 

4.2 Sensitivity Analysis [11] 

The sensitivity analysis supplies gradient in­
formations on objective and constraints with 
respect to optimization variables. In general, 
any function t (objective or constraint) de­
pends on optimization variables x and state 
variables u, e.g. for displacements. Thus, 

Path Following (PF) and Extended System method (ES) 

perfect structure imperfect structure 

geometry perturbed 
~ 
by fraction of A. 
buckling mode c 

Sensitivity analysis 
Mathematical optimization 

0 
I new design I 

0 

Uc 

perfect structure imperfect structure 

geometry perturbed 
~ Ac 
by fract1on of 

buckling mode 

Uc 

~ 
I Convergence check I 

Figure 7 - Optimization including imperfection sensitivity 
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the total derivative of t with respect to x is 
given as: 

.Q!_ =.ill_ du + .ill_ 
dx au dx ax 

(9) 

where the determination of the response sen­
sitivity du/dx is part of the job. It can be car­
ried out by several different techniques. They 
can be divided into variational or discrete 
methods, depending on whether the gradi­
ents are obtained before or after discretiza­
tion [1], [8]. Nevertheless, the same results 
will be obtained if variation, discretization and 
derivation are done consistently [11]. Within 
the present approach all three variants of dis­
crete sensitivity analysis (DSA) are adopted: 
numerical, semi-analytical and analytical. 

The analytical derivation ofthe state variables 

is given as: 

(10) 

where R is the load vector and K is the sys­
tem stiffness matrix. The major concern is the 
calculation of the pseudo load vector: 

R = dR _ dK u (11) 
dx dx 

which results in analytical derivations of R 
and K. 

Since the element stiffness matrix is decom­

posed into several individual matrices (e.g. 

kinematic operator, constitutive matrix, de­
terminant of Jacobian) the analytical deriva­
tion has to be carried out for all individual ma­
trix elements. 

However, the analytical version of DSA ap­
pears to be very reliable for all kinds of ap­
plications at the cost of a higher programming 
effort. Additionally, it is even more efficient 

than the numerical forward difference 
scheme if only parts of the structure are af­
fected by shape variations. It definitely de­
pends on the optimization problem which 
method is to be preferred. Therefore, all of 
them should be provided. 

For the optimization of the critical load (sec­
tion 4.1) the total derivative of the critical load 
factor dA.c/dx has to be determined which in 
turn depends on the derivative ducfdx of the 
related displacement field. For details see 
(24]. 

5. MATHEMATICAL OPTIMIZATION 

The optimization problem eq. (1) is in most 
cases definitely nonlinear since all functions 
(objective f(x) and constraints g(x)) are 
nonlinear functions of the optimization vari­
ables x. A local solution is characterized as 
a stationary point of the corresponding La­
grangian function: 

L(x, u) = f(x) + vr g(x) (12) 

v are the Lagrange multipliers or dual vari­
ables. The necessary condition ·:for the sta­
tionarity of L or the corresponding con­
strained minimum of f(x) is defined by the 
Kuhn-Tucker conditions. They give a set of 
nonlinear equations to determine the optimal 
solution x*, v*: 

aL * • -~- = g1 = 0 ; j = 1, ... m. 
.,vi 

(13) 

aL * • • } -= gl VI= 0 av1 
vj ~ 0 

j = m. + 1, ... m 

where f*, g* and L * are the function values 
at the optimal solution. Without loss of practi-



cal relevance for the presented range of ap­
plications the problem functions are stated to 
be continuous in gradients and curvature. 

The methods of non-linear programming 
can be divided into (i) primal methods (e.g. 
method of feasible directions), (ii) penalty 
and barrier methods (e.g. sequential uncon­
.strained minimization technique), (iii) dual 
methods and (iv) Lagrange methods (14]. 
They are distinguished by the type and num­
ber of independent variables they use. 

Lagrange methods can be stated to be the 
most sophisticated numerical optimization 
techniques and they are applicable for all 
kinds of constrained problems. They are de­
signed to solve the Kuhn-Tucker conditions 
(13) directly and are operating In the full 
space of primal and dual variables. Iterative 
solution of (13) by subsequent linearization 
leads to a natural extension of the classical 
Newton-Raphson procedure which became 
known e.g. as SOP-method (sequential qua­
dratic programming [26]). Since in the con­
text of structural optimization the evaluation 
of second derivatives with respect to opti­
mization variables is far too expensive quasi­
Newton variants are used. In the k-th itera­
tion step the corresponding quadratic 
subproblem states as: 

minimize: 

subject to: 

agl(xk) dk + ( k) = 0 
ax gl x ; j = 1, ... m. 

agl(xk) k -ax- d + g1(x") s 0 ; j = m. + 1, ... m 

with: dr s ~"- xr 

where Bk is the current approximation of the 
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second derivatives of the Lagrangian with re­
spect to x. 

SOP-methods have been used rather infre­
quently within structural optimization so far 
but with the increasing complexity of prob­
lems like shape optimization these methods 
get more and more accepted (27]. The au­
thors can report very good experiences with 
all kinds of structural optimization problems. 

The performance of the iterative design loop 
can be improved in certain applications if in 
every iteration step objective function and 
constraints are replaced by proper approxi­
mations. Usually, approximations are derived 
from first order linearizations with respect to 
problem oriented, generalized variables. The 
idea came up first for sizing of statically deter­
minate trusses where cross sectional areas 
as the design variables enter the stress 
constraints in the denominator. Conse­
quently, if areas are substituted by their recip­
rocal value the correct solution emerges. The 
idea has been generalized and applied also in 
shape optimization. Depending on the kind of 
approximation these techniques became 
known as hybrid approximation, convex li­
nearization or method of moving asymptotes 
(MMA). for a review see (2], (3]. The special 
advantages of approximation methods are 
convex and separable sub-problems which 
can be solved efficiently by specialized solu­
tion schemes, e.g. dual optimizers. In (6] an 
extended version of the method of the moving 
asymptotes (EMMA) is proposed which es­
sentially demonstrates that the method can 

be embedded in the SOP-formulation as 
special case. 

6. EXAMPLES 

6.1 Bl-parabolic Roof Shell [5) 

This example is used to demonstrate the ef­
fects of different objective functions and the 
variety of shapes which can be generated by 
only two variables. The structural situation is 
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shown in Fig. B. A shell of rectangular plan (b 
= 6 m, I = 12 m) and uniform constant thick­
ness (t = 0.05 m) is supported by dia­
phragms at the smaller edges. The shape is 
generated by four Bezier patches. The design 
nodes are linked (i) to preserve double sym­
metry and (ii) to describe a bi-parabolic sur­
face which can be controlled by two vertical 
coordinates as indicated. In the initial design 
both coordinates are set to x1,2 = 3 m de­
scribing a cylindrical shell. The structure is 
loaded by a uniform vertical load p = 5 kNfm2 
(snow). Support conditions are fixed hinges. 

Due to symmetry of loads and structure only 
one quarter of the shell has to be analysed. 
This was done by 72 eight - noded isopara­
metric shell elements which are 2x2 reduced 
integrated. 

In a first optimization run strain energy was 
chosen as objective function without stress 
constraint assuming the structure is suffi­
ciently reinforced to resist also high tension 
forces. The resulting shape (Fig. 9 a) is an an­
ticlastic surface (HP), very similar to a minimal 
surface which acts almost like a membrane in 
tension and compression. Since the struc­
tural thickness is fixed, the result is alterna­
tively restricted by an upper bound (6 m) on 
variable x1. 

To get a more suitable design for concrete the 
objective "stress leveling" was used to re-

E =30,000 MPa, 
v =0.2 (concrete) 

Figure 8 - Parabolic roof shell: problem 
statement 

duce tension stresses in the lower fibres ofthe 
structure which are caused by interactions of 
normal forces and bending moments. A tar­
get stress of o8 = - 100 kN/m2 was pre­
scribed. 

The optimal structure (Fig. 9 b) is a synclastic 
shape (EP) where the area of tension in lower 

fibres is reduced to a minimum. Tension can­
not be avoided totally because of the simple 

optimal values: 
s1* = 6m 
s2* = 3,12m 

initial values: 
s1 =3m 
s2 =3m 

a) optimal shape, minimization of strain energy 

optimal values: 
s1* = 0.90m 
s2* = 1.97m 

initial values: 
s1 =3m 
s2 =3m 

b) optimal shape, stress leveling 

optimal values: 
s1* = 1.64m 
s2* = 1.34m 

initial values: 
s1 =3m 
s2 =3m 

c) optimal shape, weight minimization 

Figure 9 - Parabolic roof shell: 
initialshapesndoptimizationresults 



shape function and the rectangular plan of the 
structure. It is remarkable that the dia­
phragms.- although possible- do not disap­
pear. If they vanish, the resulting shape has a 
horizontal tangent plane at the corner leading 
to negative curvature and Increased bending. 

If "weight" is used as objective fu.nction any 
shape between the "minimal surface" and a 
plate can be determined which is forced by 
additional constraints on stresses and dis­
placements. Fig. 9 c shows one result ob­
tained with constraints on v. Mlses effective 
stresses which are not allowed to exceed an 
arbitrarily chosen value of om = 400 kNJm2. 

6.2 Tuning of a Bell [4], [12] 

The major design aspect for a bell is to pre­
serve high tonal quality. For this reason the 
tuning of the basic frequencies denoting the 
partial tones of the bell is introduced as objec­
tive of the optimization problem without any 
other constraints. The frequency require­
ments of a minor- and a major-third bell are 
very much influenced by the number n of 
goal frequencies A.;0 and the individual 
weighting factors w; used in the objective f>,. 

f = f (1.1 - A.10)
2 w 

1. 1=1 A~ I 

The harmony of the lowest five partial tones 
leads to the following frequency require­
ments [Hz]: 

major-third minor-third 
bell bell 

hum 512 512 
fundamental 1024 1024 
third 1290 1218 
fifth 1534 1534 
octave 2048 2048 

This tuning problem Is a multi-criterion opti­
mization problem. As optimization strategy a 
SOP-method is used. Since all frequency re­
quirements are met exactly at the optimal 
solution, the individual weighting factors w; 
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are only important for the convergence of the 
algorithm. 

a) Design-Model 

thickness 
distribution 

geometry 
description 

b) Optimization Model 

0.70 x1 
0.82 X 

0.87 X 

0.92 1 
variables for 

sizing shape 

Figure 1 o - Definition of the optimization 

modal of the bell 

The variables for the optimization model are 
selected with special care to obtain a well 
posed optimization problem. As shown in Fig; 
10 eight sizing and ten shape values in the de­
sign model are used as relevant optimization 
variables. Some restrictions for design coor­
dinates and nodal thickness values are 
introduced to obtain a useable optimization 
result. The number of variables can be further 
reduced by using linking schemes for sizing 
and shape variables, like the vertical shape 
coordinates in Fig. 10 which altogether are 
linked to the variable x1• 

From the above mentioned 18 relevant opti­
mization variables 15 are used as indepen-
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dent variables to improve the minor-third 
bell. Seven of. them are sizing variables. 
The resulting shape (Fig. 11) shows only 
slight modifications of the initial shape. 

To obtain the major-third bell, the height of 
the bell is introduced as additional variable. 
The shape of this bell has an increased height 
and a moderate bump at half the height of the 
bell, also described by Schoofs [28). 

In both optimization procedures the objective 
function becomes zero within a given toler­
ance bound. This means that the frequency 
requirements are fulfilled exactly (see final 
frequencies in the table of Fig. 11 ). The itera­
tion history of the objective function and the 
lower three eigen-frequencies are shown in 
Fig. 11 for both, the minor- and major­
third bell. The difference is pointed out by 
the third eigen-frequency which is in­
creased for the major-third bell. 

6.3 Kresge-Auditorium at MIT [22) 

6.3.1 Structure, Objective 

Saarinen's famous Kresge auditorium (1955) 
at the MIT (Fig. 12) belongs to the class of 
shells with a geometrical form. The three 
point supported dome is a 1/8 segment of a 
sphere with a radius of 34.29 m (Fig. 13), a 
side length of about 48.5 m and an elevation 
atthe vertex of 14.5 m and atthe crown ofthe 
arches of 8.23 m. The shell has a thickness 

of 8.9 em which increases to 12.7 em atthe 
edge beam and to 49.5 em ·at the supports. 
The edge beam is 25.4 em wide and varies 
from 50.8 em depth at the crown to 91.4 em 
at the support. A steel casting is added which 
is pinned to the abutment. The dead load is 
3.98 kNfm2, a uniform live load, representing 
roughly also the wind, is 1.44 kNJm2. 

to demonstrate that rigid geometrical 
shapes do not lead to an appropriate 
shell-like behavior. This is not only ver­
ified by linear elastic analyses, It can be 
confirmed by geometrically and materi-

ally nonlinear analyses, 

initial minor major 

18 11 211 2Z 

z ....... ,. ••••• ., 

2 4 B a ~ n u ~ ~ 211 

- ..... 
+-+ ••••• 

Figure 11 - Optlmlzatlonresultsandltera­
tion history of minor- and major-third bell 
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Figure 12 - Kresge auditorium at MIT. Cambridge, MA 

I 

Figure 13 - 1/8 - segment of sphere 

to answer the question how a natural 
shape of a dome of this size and kind 
should look like. 

In optimization the total strain energy is used 
as objective thus minimizing the bending in 

the she
1

11. In the first instance it looks Uke that 
this design objective may cause a conflict 
since a membrane oriented stress state 
mainly in compression turns out to be more 
sensitive with respect to buckling and geo­
metrical imperfections (see results for geo­
metrically nonlinear analysis). The objective 
has to be judged in the context of the chosen 
rrtaterial, i.e. reinforced concrete with a low 
tension capacity. 

6.3.2 Scope of Study 

The initial analyses are based on linear elastic 
material properties with a Young's modulus 
of 3 . 104 N/mm2 and Poisson's ratio of 
0.2. This holds also for the shape optimiza­
tion. Afterwards the original and the opti­
mized shells are investigated by geometri­
cally nonlinear analyses. Finally, the 
nonlinear behavior of reinforced concrete is 
added. On'y dead load is applied based on a 
concrete weight 25 kNfm3. This load which 
leads to 2.23 kNJm2 for a thickness of 
8.9 em is augmented in the entire shell area 
by a uniform load of 1.75 kNJm2 for the extra 
coverage. No live load is considered. In order 
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to avoid high stress concentrations the shell 

corner is slightly cut off at the supports (at a 
distance of 1.20 m from the ideal corner 
point). 

The finite element analyses are based on 

8-node isoparametric shell elements with re­
duced integration. 42 elements are used for 

1/6 of the shell. Initial stability and geometri­
cally nonlinear analyses of the perfect and 
imperfect structure are performed to under­

stand the buckling sensitivity of the shell. In 

this case the entire structure is modelled to al­
low for unsymmetrical failure modes. The 

imperfections are based on the fundamental 
eigenmode scaled to a fraction of the thick­

ness. 

The material nonlinear analyses are based on 
an incremental inelastic, orthotropic material 
model with a smeared crack approach for the 
concrete (13). [18]. The layer-wise model 

utilizes a 20 failure curve, a nonlinear stress 
- strain curve in compression including soft­
ening and tension stiffening. The chosen ma­

terial properties are: initial modulus of elastic­
ity E0 = 3 . 104 N/mm2, uniaxial strength in 
compression fc = 30 N/mm2 and ten­
sion f1 = 2.2 N/mm2, strain at maximum 
compression Ec = 0.004, maximum strain of 
tension stiffening Eut = 0.0025. Each steel 
layer has multi-linear 1 D properties. Double 

layered reinforcement with 2.57 cm2Jm in 
both directions is used. An elastic, linear 
hardening model with E = 2.1 . 1 os N/mm2 
and Eh = 0.2. 105 N/mm2 is applied. The 

yield limit fy is 240 N/mm2. 

6.3.3 Shape Optimization 

• Analysis of original dome 

For simplicity, the thickness is varied only in 
the direction of the supports with a maximum 
value of 0.35 m. The edge beams have a 
width of 0.25 m, their thickness varies from 
0.51 to 0.91 m. in the analysis it is simu­
lated by a thicker shell element. The displace­
ments at the vertex and crown of the arches 

are 1.7 cfn and 5.9 em, respectively. Con­
siderable bending occurs not only at the sup­

port but also beside the edge beams, leading 
to tension stresses of up to 17 N/mm2. Of 

course if no edge beams are added unaccept­
able values for the displacements (maximum 
.29 em) and stresses(> 25 N/mm2) result. 

• Shell with "optimized" shape 

The above described techniques for shape 

optimization were applied to the three-point 
supported shell having the same plan dimen­
sions, vertex elevation and construction vol­
ume (amount of concrete). For simplicity only 
two design elements (bicubic Bezier ele­
ments) are introduced, defined only by five 
geometric variables. in addition, extra thick­
ness parameters are chosen allowing an "op­

timal" thickness variation. Two studies were 
performed: In the first one an edge beam with 

a varying thickness can develop, in the other 

one the shell is supposed to have a free edge. 
In this case the elements of the boundary are 
prevented from geometrically bending down­
wards indirectly developing into an edge 
beam. As side constraints the minimum and 

maximum thickness is chosen as 8.9 em 
(thickness of MIT -shell) and 100 em, re­

spectively. No other constraints are used. 

Figure 14 c shows the shape of the optimized 
shell with a free edge. It can be seen that it 
differs substantially from the original 
sphere. it is more parabolic at the edge and 
has a more pronounced curvature perpendic­
ular to the boundary. The niain difference is 
the large increase of the elevation of the 

crown which comes along with a negative 
Gaussean curvature. The thickness varies 
from 8.9 em to 42.8 em. The displacements 
at the center and at the crown of the arch are 
reduced to 0.2 em and 0.3 em, respectively. 

The stresses are clearly smaller (max. 

v. Mises stress 6.4 N/mm2), bending almost 

vanishes. Although there is tension it is al­
most negligible (about 1/10 compared to the 

previous solution). 



Figure 14 - Shapes of shells 

The shell exhibiting an edge beam has a 
slightly different shape (Fig. 14 b).The thick­
ness of the edge beams varies from 8.9 em at 
the crown to 100 em at the corners. The shell 
itself is also thinner in this region. The wavy 
character above the support disappears be­
cause now the shell carries the loads more via 
the edge beams to the foundation. Although 
the displacements are further reduced the 
overall stress state is similar. The results of 
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a. original shell 

b. optimized shell 
with edge beam 

c. optimized shell 
w/o edge beam 

d. inverted membrane 

this investigation could be improved H geo­
metrical as well as structural models are re­
fined, 

• Shell as Inverted membrane 
A uniform dead load is applied to an extremely 
thin membrane with very low bending stiff­
ness having the same plan dimensions. The 
deformation of the membrane with free edges 
is monitored by a geometrically nonlinear 
analysis until the center deflection reaches 
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0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 

characteristic displacements [m] 

Figure 15a - Load - deflection diagram: initial buckling and geometrically nonlinear analyses 

6.---------------------------------------------------, 
optimized shell 

5 • w. imperfections 

' -- _\-- 0 

original shell 
• w. imperfections 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -~- - - - - 0 

o~~------~~--.-.--r~,-~-.-.,-.--.-.--T-~-.--r-4 
0 0,05 0,1 0 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 

characteristic displacements [m] 

Figure 15b - Load - deflection diagram: geometrically and materially nonlinear analyses 

Figure 16 - Comparison of shapes 

-------

optimized shell 

inverted membrane 

original shell 



the value of the total height of the original 
sphere. This shape is inverted (Fig. 14 d). A 
thickness variation similar to the original 
structure is assumed and a linear elastic 
analysis is performed. 

The final shape differs from the optimized 
shape primarily near the free edge. Oppo­
site to this it exhibits a positive Gaussian 
curvature (which was artificially pre­
vented in the optimization model). Further­
more, slight membrane wrinkles can be visu­
alized at the support. But the structural 
analysis leads to a similar positive response 
compared to the optimized shell: small dis­
placements, low stresses, little tension, less 
bending. 

The three shapes are compared In Fig. 16. 
v. Mises and principal stresses are plotted In 
(22). 

6.3.4 Nonlinear Analyses 

The original shell with edge beam and the op­
timized shell with free edges are further inves­
tigated first by a geometrically nonlinear but 
elastic analysis (Fig. 15 a). Afterwards the ma­
terially nonlinear formulation is added (Fig. 
15 b) simulating the collapse of both struc­
tures. 

The Initial buckling analysis of the original 
shell leads to a load multiplier of >.. = 17.6 with 
a symmetrical failure mode which Is 29 per­

cent of the Zoelly load for a perfect spherical 
shell under pressure The load multiplier >.. is 
defined with respect to the variable weight of 
the concrete and the uniform load of the cov­
erage. A large deflection analysis indicates 
distinct nonlinearities but leads almost to the 

same buckling load (A.= 16.2), see the load 
deflection diagram Fig. 15 a. The same holds 
for the imperfect structure with a maximum 
imperfection amplitude of 1.5. thickness (A.= 
15.3). This means that the "amputated" shell 
itself anticipates the enormous imperfection 
sensitivity usually present in complete spheri­
cal shells and spherical caps. 
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This is different for the optimized shell. Be­
cause of the free edge the buckling load is 
slightly lower in this case (A.= 11.3 in an initial 
buckling analysis,>..= 16.4 in a large deflec­
tion analysis, Fig. 15 a). As expected the opti­
mized structure is more sensitive with respect 
to initial imperfections. For a maximum 

imperfection amplitude of 1.5 . thickness the 
nonlinear elastic buckling load drops to >.. = 
8.6. 

The real collapse behavior is very much in­
fluenced by material failure and therefore 
yields to lower failure loads compared to elas­
tic analyses. The structural response already 
depicted in the left lower corner of diagram 15 
a is zoomed in Fig. 15 b. Now the anticipated 
result is obtained. Although the optimized 
shell with a free edge is still imperfection sen­
sitive to a certain extent its safety margin is 
still sufficient. The original shell with edge 
beams but without mullions results in an 
extremely poor behavior with a maximum 
load multiplier >.. slightly above 1.0. 

It needs to be mentioned that the above de­
scribed study is still of academic nature and 
is intended only to demonstrate some charac­
teristic features of shells. For a real design 
much more investigations (environmental ef­

fects, long time behavior, non-uniform loads 
etc.) have to be undertaken to verify the feasi­
bility of the design. 

6.3.5 Conclusion for MIT -Shell 

The comparison of all four shapes (Fig. 16) 
gives a good insight what a "natural" form 
means. In the sphere the stress flow is di­
rected towards the cut off free edge and does 
not find a stiffening element unless a heavy 
edge beam or a support is added. Contrary to 
this the other forms develop an arch with a suf­

ficient stiffness by increasing the curvature 
perpendicular to the free edge. This causes a 
considerable reduction in displacements and 
stresses. Whether this curvature is positive 
(inverted membrane solution) or negative 
(enforced by constraints in the optimized 
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solution) does not play an important role. It is 
interesting to note that the three-point sup­
ported shell, Investigated in [18] in which 
three kinks between the corners and the 
center were admitted, carries the loads 
mainly in the direction of these lines. 

7. CONCLUSIONS 

The methods of structural optimization have 
been presented as general computational 
tools to find the shape of shells subjected to 
many different combinations of objectives 
and constraints. This Includes of course the 
form finding of membranes. The correspond­
ing objectives (e.g. prestress) and 
constraints (e.g. a desired design space) can 
be formulated as an optimization problem as 
well, for example applying the least-square 
principle or the minimum surface solution. 

In general, shape optimization Is based on lin­
ear elastic structural response including at 
best linear buckling or eigen-frequency 
analyses. In this paper the formulation is ex­
tended also to geometrically nonlinearities in­
cluding instability phenomena. A key point of 
this approach Is that it allows to include the 
imperfection sensitivity with respect to buck­
ling. Further studies are currently under way 
to verify the method for shape optimization of 
nonlinear shell structures. The effects of ma­
terial non-linearities as well as time depen­
dent influences have not been considered but 
are challenging tasks for further studies. 
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