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AJJSTRACT. In a recent paper a finite elemenJ method for solving the three field Stokes system 
as a basis for the numerical solution of viscoelastic fluid flow problems was introduced. The 
method constructed upon a biquadratic velocity, a discontinuous linear pressure and a 
bilinear extra stress tensor interpolation in quadrilaterals, enriched with fifteen bubble 
tensors, has been proved to yield second order approximations of these variables, in the case 
of rectangular meshes. In this work equivalent results are proven to hold in the case of 
irregular meshes. 

RESUME. Dans un article recent a ete introduite une methode d'elements finis pour Ia 
resolution du systeme de Stokes a trois champs en tant que base pour Ia simulation numerique 
d'ecoulements de fluides viscoelastiques. Cette methode, basee sur les interpolations 
biquadratiques pour Ia vitesse, lineaire discontinue pour Ia pression et bilineaire enrichie 
avec quinze tenseurs bulle pour le tenseur d'extracontraintes sur des quadrangles,fournit des 
approximations du second ordre de ces trois champs, dans le cas d'elements rectangulaires. 
Dans cet article, on demontre des resultats analogues dans le cas de maillages irreguliers. 
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1. Introduction 

An accurate numerical solution of the three field Stokes system is generally 
acknowledged as a basic requirement to be fulfilled by any candidate finite ele
ment method for a successful simulation of viscoelastic flows. Let us recall that 
in the case where the velocity vanishes on the boundary of the flow domain 0 
of 'R 2 assumed here to be a polygon, such a system in variational form may be 
expressed as problem (1), namely: 

Find u E [L2 (0)J~:!, u E [HJ(0)) 2 and p E L2(0)/'R such that 

-(u, £(v)) + (p, div v) = (/, v) 

2~ (u, r)- (r, £(u)) = 0 

(q, div u) = 0 

Vv E [HJ(O)j2 
(t; 

where (.,.) represents the standard inner product of L2(0), f is a field of given 
body forces, 11 is the viscosity of the fluid and u, u, p represent the velocity, 
extra stress tensor and pressure fields respectively. As usual £(v) denotes the 
symmetric gradient of a vector field v. 

In a recent work, SANDRI [SAN 91) proved that, at least for viscoelastic 
fluids of the Oldroyd B - type, second order finite element methods for system 
(I) do produce convergent approximations, though of order 3/2. At the present 
state of the art, it may be legitimately conjectured that a similar conclusion 
applies to Maxwell fluids as well, although in this case some compatibility con
dition between the approximation spaces for u and u such as (3) given hereafter, 
must be necessarily satisfied ( see e. g. [RUA 85) ). 

In [RUA 91) and [RUA 93) two optimal three-field quadrilateral finite ele
ment methods to solve system (1), with a continuous extra stress representation 
were proposed and studied. Notice that, while such a continuity property is gen
erally required in viscoelastic flow simulations, some degrees of freedom must be 
attached to the interior of the elements in order to satisfy the above mentioned 
condition. However, in those works the methods were only proved to converge 
in the case of rectangular meshes. In this paper the author proves that the el
ement introduced in [RUA 93) is second order convergent in the natural norms 
for system (1), in the case of irregular meshes too. As pointed out above, one 
may expect that SANDRI's results [SAN 91) for Oldroyd- B fluids do apply as 
well to this new element, even in the case of a Maxwell fluid. 
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2. The New Finite Element Method 

Let {Th}h be a family of partitions of 0 into non degenerated convex quadri
laterals, satisfying the usual quasiuniformity conditions. For the later conve
nience, we define h =maxKeT,. hK, where hK is the maximum edge length of 
quadrilateral K E 7h. We recall below the natural approximate problem for 
system (1), associated with every 7/a: 

Find (crh,uh,Ph) E Th X vh X Qh, such that 

-(crh, £(v)) + (ph,div v) = (!, v) Vv E Vh 

2
1,(crh,r)- (r,£(uh)) = 0 Vr E Th 

(2) 

(q,div uh) = 0 'Vq E Qh 

where ( . ' . ) denotes the standard L2 (0) inner product, and Qh = Qh In, 
Vh and Qh being defined as in two well-known mixed methods for solving the 
Stokes system in terms of velocity and pressure (see e.g. FORTIN & FORTIN 
[FOR 89] and BERCOVIER & PIRONNEAU [BER 79] respectively ), namely: 

• Vh : In both cases the velocity space is based on standard Lagrangian 
isoparametric biquadratic functions for quadrilaterals with straight edges. 

• Qh is either the space of (discontinuous) functions which are linear over 
each quadrilateral of Th, or the space of continuous piecewise isoparametric 
bilinear functions, associated with 7h. 

Like in [RUA 93] space Th is defined as the direct sum of two spaces Tl 
and Tl. Here Tl is the space of standard Lagrangian isoparametric bilinear 
symmetric tensors associated with Th. Tl in turn is the space of tensors that 
vanish on the boundary of the elements of Th, spanned by fifteen tensors to be 
specified later on. For the moment, let us just recall that according to [FOR 
88] and [RUA X], the following compatibility condition, leads to optimal second 
order convergence results for problem (2), with the above definition of Vh, Tl 
and Qh: 

There exists a strictly positive constant (3 independent of h such that: 

inf np (r, £(v)) > (3 (
3

) 
v E Vh- {0} r E Th- {0} llrllolvll -

where ll·llo = (.,.)t and lvl1 = llgradvllo· 
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According to [FOR 88] and [RUA X], the key steps to establish condition 
(3) may be described in the following manner: 

Consider an arbitrary quadrilateral K of Th. Let K be the unity reference 
square (-1, +1) x (-1, 1) in the cartesian plane (0, :i, i) and :FK be the invertible 
bilinear mapping from K onto K. 

Let now { e;K }f; 1 be a set of linearly independent tensors defined in K, such 
that the restriction to K of t:(v) for any v E Vh may be expressed by 

where ii = {a;}f;1 is a vector of real coefficients and J K is the jacobian of :F K· 

Assume that the L2 (K)-norm of e;K is bounded above independently of hK. 
Now define M linearly independent tensors { O'j }f;1 independent of h that vanish 
on the boundary of K , such that theM x M matrix A= {a;j}, 

h ~K a;i = ~ £; . O'j dzdy , (5) 
K 

is invertible. Here the dot denotes the standard inner product of 'R1 , l 2:: 1. 
In this way we shall define space Tl to be the one of tensors whose restriction 

to every K E 7,.2 belongs to the space spanned by { O'f }J~ 1 , where O'f = O'j o:Fi/. 
In so doing 'VO' E Th we have : 

J\1 

O'jK = L "Yi O'f VK E Th 
i=l 

where f = {"Y;H; 1 is a vector of real coefficients, and 

J\1 

(0', £(v)) = L L "Yi ~ O'f . t:(v) dK = L hK A f. ii 
KET,. j=1 K KET,. 

According to the arguments developped in [RUA X], since all the coefficients 
of matrix A are bounded above by constants independent of h by assumption, 
the fact that I det A I is bounded below by a. non zero constant independent of 
h is all that is needed to establish (3). In fact this is a consequence of the fact 
that in this case IIA -l II is bounded above independently of h. 

Actually among several different possibilities, the space Tl selected in this 
work , is the same as the one used in [RU A 93] for the case of rectangles. More 
specifically this space is locally spanned by fifteen symmetric tensors { O'f} J ~ 1 

associated through mapping :FK with the tensors {O'j}j~ 1 defined inK as fol
lows: 

First set 'IJf(z, y) = (1- z 2)(1- y2
) , and next 
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ui = Wtfi fori= 1, 15 (6) 

where the ;; referred to the frame ( 0, i, i) to be defined in Section 3, are 
represented by: 

(jl = ( ~ ~ ) j 

(j4 = ( ~ ~ ) j 

~ ( y 0) 
U7= 0 0 j 

tfw = ( ~y ~ ) ; 

(j2 = ( ~ ~ ) j 

tfs = ( ~ ~ ) ; 

tfs = ( ~ ~ ) ; 
0 y). 
y 0 , (6') 

As shown hereafter, the so-defined space Tl is such that not only matrix A 
defined by (5) is invertible but det A is bounded below by a non-zero constant 
independent of h. According to the arguments above the associated space Th 
satisfies condition (3) as required. 

3. Convergence Results 

Let us first recall the following results for rectangles given in [CAR 91], [RUA 
93] and [RUA 92]. 

Assume that Th consists of rectangles whose edges are parallel to the carte
sian axes Oz and Ofi. If K E Th we may write :FK = {¥ + z 0 , '4 + y0 } where 
zo and Yo are constants, and lx and 111 are the lengths of the edges of K. Setting 

rK = t• from the initial assumption on {T,.}h, we may assert that there exists 
two constants e and p independent of h, such that 
r K ~ p and r K 1 ~ e 'V K E Th. 

~K 

One may choose the e; 's referred to the frame (0, z, Y) to be the fifteen 
tensors given by: 
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fK- (j. 
i - I fori= 1,9 

~K ( zy z 2 /4rK ); ~ ( y2 zy/rK ) . £10 = £K-
z 2 /4rK 0 11 - zy/rK 0 ' 

( 2rKZY2 
z2y). ( 0 TKY

2 
/4 ) . 

(7) 
~K ~K 

£12 = z2y 0 ' £13 = 
TKY2 /4 zy ' 

~K ( 0 rKZY ) . ~K ( 0 zy2 ) £14 = TKZY z2 ' £15 = zy2 2z2y/rK 

In so doing, the determinant of matrix A is found to be strictly positive and 
approximately equal to 0.1282152754 x 10- 7 , V K E Th , which implies that 
property (3) holds, as recalled in Section 2. 

Let us now go back to the case where K is an arbitrary quadrilateral of Th. 
First of all observe that K can be viewed as the deformation of a rectangle with 
edge lengths equal to lx and ly, parametrized by three angular increments f), ¢J1 

and ¢J2 in the following manner. 

p 

t 

s 

A convex quadrilateral regarded as the deformation of a rectangle 
Figure 1 

Let f) and I)' be the acute half angles between the two pairs of opposite edges 
of K (refer to figure 1). Take f) such that 0 :S f) ::; I)' and consider the pair of 



Viscoelastic Flow on Irregular Meshes 397 

opposite edges of K corresponding to this angle if (} #- (J'. If (} = (}' choose this 
pair arbitrarily. 

If () #- 0 take the intersection P of the prolongations of these edges of K and 
let s be the bissector of the underlying corner with vertex in P. Let also M 1 

and M2 be the intersections of s with the two other edges, and t 1 and h be the 
perpendiculars to s passing through M 1 and M 2 respectively. Finally let t be 
the parallel to t 1 and t 2 passing through the mid-point 0 of the segment M 1M 2 , 

and N 1 and N 2 be the intersections oft with the two edges of K that do not 
contain M 1 and M 2 • In this case R is the rectangle whose edges are parallel to 
sand t, and whose edge mid-points are M1, M2, N1 and N2. 

If() = 0, construct R in the same manner, starting from line s, parallel to 
the two parallel edges and passing through the mid-points M1 and M2 of the 
two other edges of K. 

Now we define t/J; to be the angle formed by the edge of K and the edge of R 
that pass through M; fori= 1, 2, measured from the latter towards the former, 
and both oriented in the same given sense, in such a way that -1r /2 ::; t/J; ::; 1r /2. 
In so doing the so-called deformation of R onto K is completely defined. 

Here again we set lx = length(M1M2), ly = length(N1N2), and rK = lyflx. 
In so doing, one may easily establish that 0 ::; tg(J < r K, whereas 8' = lt/J 1-t/121/2. 
Now refer the mapping :FK to the direct cartesian coordinate system ( O,i, t), 
where i and fare the unit vectors of s and t respectively, in such a way that i 
is oriented from P to 0 if (} #- 0, or in an arbitrarily chosen way otherwise. In 
so doing we assume that t/1 1 and t/12 are positive in the trigonometric sense. 

Now set a= tg (), /31 = tg tP1 , /32 = tg t/12, and OK = max(a ,I/3II , l/321 ), 
and define 

(8) 

Notice that OK is a measure of the distortion of a quadrilateral K with respect 
to a rectangle. 

Now we refer again to Figure 1, where the vertices of quadrilateral K are 
numbered from one to four as indicated. The values of the coordinates ( :z:;, y;) 
of the i-th vertex in system sOt, i=1, 2, 3, 4 are given respectively by 

{9) 
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In so doing, we may express mapping :F K in terms of the ( z;, y;) 's in the 
following manner. Let (s,t) = :FK(z,y), where z andy are the coordinates of 
a point in the reference plane zOy. We have 

s = z + fz + dy- ezy 
(10) 

t = y + cz + ay - bzy 

where 4z = Et==I z; and 4y = Et==l y;, and 

4d = Z4 - Z I - Z2 + Z3 4a = Y4 - Yl - Y2 + Y3 
4b = Y2 - Y1 + Y4 - Y3 
4c = Y2 - Y1 - Y4 + Y3 

4e = Z2 - Z I + Z4 - Z3 ( 11) 
4f = Z2 - Z 1 - Z4 + Z3 

Actually, using (9), and setting D= 4(1- a2,8~)(1- a 2.Bnll:r the values of 
a, b, c, d, e, fin terms ofrK,a,.B1 and .82, are found to be respectively: 

a= [rK(2- a2,8~- a 2,8n + a3 (,8~ + .BnJ/ D 
b = [a( -2 + a2.Br + a 2.B5) + rKa2 (,8~ - .anJ/ D 
c = [(1- a 2.81.82)[(.B2 - ,B!)rKa + (.81 + .82)a2JJ/ D 
d = [,B1(rK- a)(l- a 2,85} + .B2(rK + a)(l- a 2.BDJ/ D 
e = [,B2(rK + a)(l- a 2.BD + .Bt(rK- a)(1- a 2,85)]j D 
f = [2- a2 (,8~ +.an+ rKa(,B5- .BnJ/ D 

(12) 

Moreover, by simply observing Figure 1, one concludes that both a and fare 
strictly positive. 

Taking the above remarks and expressions as a starting point we first esta
blish 

Lemma 1 For every v E Vh and 'V K E Th we have in the local bases ( i, i) 

where {,8;}]~ 1 is a convenient set of real coefficients associated with v and ten
sors £;K in the system sOt are represented by: 
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~7 +)y 
2- 2/y 

ac Y ab y2 TI - TI 
c + ae 2 

- 2J X 2J'IY 

y- E.x 
a 

d jb 2 
-2aY+ 'fa'IX 

y2 - ¥xy + *xy2 

~xy - 2: y2 + 2ea xy2 

(13) 

Lxy _ ..!Ly2 + ~xy2 ] 
a 2a 2a 
0 
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Proof: 

Let BK =grad :F'K1
. Taking (10) into account we have in system sOt: 

B =[a-bz -d+ez]J- 1.(14) 
K -c + by f - ey F 

On the other hand, the gradient of every field v defined in 0 restricted to K E Th 
is given by: 

grad VjK o :FK = g~ V BK 

where v = viK o :F K and g;;-d denotes the gradient in the reference plane zOy. 
Hence by definition we have 

t'(v)IK o :FK = (g;;-d v BK + Bk(g;;-d v)T]/2 

In the particular case where v E Vh, the space of each component of v is the 
one spanned by the monomials 1, z, y, zy, z 2, y2 , z 2y, zy2, z 2y2. 

Using this fact to expand g;;-d v, together with (14), the Lemma becomes 
the consequence of a straightforward calculation. q. e. d. 

Now we derive a basis {f;K}f;1 of the space spanned by {ef}f~ 1 in such a 
way that t'(v)IK o:FK is alternatively expressed by (4). We establish in Lemma 
2 below that actually M < 16. 

Lemma 2 'tv E Vh and "tK E T;., t'(v)/ K o :Fk is given by {4) with M = 15 
where the f;K' s are given by 

~K -K ~K -K -K ~K -K · --
t'1 = t'1 , t'2 = t'2 + t'3 , t'; = t'i+ 1 for'= 3, 15 (15) 

Proof: 

Let us first establish that there are at most fifteen linearly independent tensors 
in the set {Ef}f~ 1 • Indeed assume that 

16 

I: "(;ef = o (16) 
i=l 

Through a trivial though lengthy identification process, we find out that identity 

(16) is satisfied if and only if the following relations hold, whereby we have set 
I - fora d I - ~ 'Y1 - 'Y7 - 2ii: an 'Y10 - 'Ylo - 2r • 

c 
/1 = j/3 

c2 1 

/5 = a{YlO 
2c 1 b 

/8 = JllO - j/3 
-2b I 

/12 = JflO 
-2e 1 

/15 = -a-l7 

/2 = _,3 
2d 1 e 

/6 = -;;17 - ~/2 
d2 I 

/9 = ajf7 
- -bf 

/13- 2a2 /12 

/16 = ;j~/15 

/4 = 
I 

l7 = 

/11 = 

/14 = 

d 
~/2 
-C I - -! I 

~flO- dllO 
-2bc 1 

ajllO 
-2ed 1 

Qjl7 
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It is readily seen that if cd :f:. af we have "(; = 'Y~o = 0, which implies that 
"(5 = "(g = 'Yll = 'Y12 = 'Yt3 = 'Y14 = 'Yt5 = 'Yt6 = 0. On the other hand, any 
vector f E 'R16 of coefficients which is a multiple of(], -1, 1, -~, 0, ~. 0, -j, 0, 
0, 0, 0, 0, 0, 0, 0) satisfies identity (16) and conversely. 

Summarizing, if cd :f:. af we have M = 15, which means that one of the if's 
is linearly independent of the remaining fifteen. Notice that the relation cd = 
af implies that (y4 - Y2 )( Z3- z t) + (Y3 - Yt )( z2 - Z4) = 0. Since this situation is 
discarded by a simple geometric argument (the vector product of both diagonals 
of K must not vanish), we effectively have cd :f:. af. 

On the other hand, as one may easily verify '2:J!l,i;tJ "(;if = 0 implies that 
'Yi = 0 'ii, i :f:. 3. 

Hence the space spanned by {ef}!~ 1 is the same as the one spanned by 
-K 16 -K 15 {£; }i=l,i;tJ• or yet by the set{£; };=1 defined in (15) q. e. d. 

Let us now set 

, a 2rK - rKa2 ({3~ + {3n + a3({3~- {3?) 
rK = 7 = 2 + rKa({3~- {3n- a2 (f3~ + {3~) 

and make the following assumption: 

Assumption A: There exists two strictly positive constants p' and e' indepen
dent of K such that r~ is bounded above and below by fr and p' respectively. 

Notice that Assumption A holds if we have 

AssumptionS: 6K < min(2- 1f\(2rK)- 113] 

Indeed in so doing we have 

rK > r' > rK(1- 26j.) 
(17) 

1- 2rK6k - K- 1 + 2rK6k 

Thus we may take 

e'= 
inf 1- 2rK6k 

K ETh rK 

and 

p' = inf rK(1- 26_k) 
K E Th 1 + 2rK6k 

Henceforth we make Assumption B on mesh Th. 

Notice that one of the consequences of Assumption B is the fact that the angles 
(J, I cP tl and I cP2I are smaller than 1r /4. 

Now we have: 
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Lemma 3 The !et {£;K}{~ 1 given by {15) for which (4) holds, may be written 
as: 

~K ~ K K 
E; = E[ + 6; i = 1, 15 

~K ~K 

where E[ i! given by the same expression as E; in {7) , if one replaces r K 

with r~, and where the t:,. f 's are tensors who!e L 2 (K) -norms are all bounded 
above by a term C OK , where Cis a constant independent of K. 

Proof: 

This result is a trivial consequence of (13) , (15) e (12) . q. e. d. 

Now just for convenience we will work with a local basis {O:f }J~ 1 defined as a 
suitable linear combination of the tensors Uj , j = 1, 15 with coefficients inde
pendent of h, whose main property is given in 

Lemma 4 For every K E Tk there ezist fifteen linearly independent ten!ors 
{O:f}]~ 1 belonging to the space spanned by {ui}}~ 1 given by {6) - {6') that 
satisfy h E'~ . o:f dxdfi = o;1 

Proof: According to [RUA 93) if K is a rectangle, matrix A= {a;j} given by (5) 
has the following properties: 

First of all, the diagonal terms of A are the following strictly positive numbers 
independent of rectangle K: 

16 . 32 16 
ai i = g J = 1, 2; a 33 = -gi aii = 

45 
j = 4, 5, 7, 8; 

32 . 
aii = 45 J = 6, 9 ; 

32 . 128 . 
aii = 

225 
J = 10, 13; aii = 

1575 
J = 11, 14; 

32 . 
a11 = 

525 
J = 12, 15 

On the other hand the only non zero off-diagonal terms of matrix B = {b;j 
( diagA) -1, A}, are : 

1 
btl , 1 = b t4,2 = b 12,9 = bt5,6 = S j 

1 rK b - · b - . 
! 0,3 - 10rK, 13 ,3 - lO ' 

Now set uj = ui / aii j = 1, 15. By choosing 

7 
b9, 12 = b6,15 = 3; 
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~K 

~K- I ,.,, • d ~K- .I .r . - 5 7 10 11 13 14 u9 - u9 - - 5-, an uj - uJ tor 1 - , , , , , 

a straightforward calculation leads to: 

where the er s are associated with rectangle K (see (7)). 

~K· 

The Lemma is then a simple consequence of the definition of the £'; s from the er s given by (7), as specified in Lemma 3. q. e. d. 

It follows from Lemma 4 that, matrix AK = { (aK )ij } defined in the same 
manner as A= {a;j} in (5), by replacing Uj with uf is of the form 

where 

with 

As a final preparatory result we have 

Lemma 5 If parameter 6 given by (8) is sufficient small matriz AK is invertible 
'V K E 1h . Moreover there ezists a constant C independent of h such that 

According to Assumption B which implies upper and lower bounds for r~ given 
by (17), and recalling {16), {13) and {12), the moduli of all the coefficients 
of matrix .tlAK are bounded above by a term of the form c 6K, where cis a 
constant independent of K. Therefore, from well-known results, matrix AK will 
be invertible, provided 6K is small enough to yield ii.tlAKii < 1, where 11·11 
represents any consistent matrix norm. 
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Moreover, if parameter 6 is sufficiently small then there exists a constant '"Y 
< 1 such that \I~AK II < '"Y V K E Ti. and VT,.. Therefore we have 

IIAK-1
11 :S 1 _ I~AKII :S 1 ~ '"Y V K E Ti. and V Th. 

which proves the Lemma. q. e. d. 

As pointed out in Section 2, Lemma 5 is sufficient to establish (3). As a conse
quence, recalling again the arguments given in [FOR 88], we have the following 
convergence result: 

Theorem 1 If the !olution (u, u, p) of !y!tem {1} as !uch that u E H 3 (0), and 
p E H 2 (0), approzimate !olution ( O"h, uh, Ph) of !y!tem (2} !ati!fie!: 

where C i! a con!tant independent of h, provided the qua!iuniform family of 
partition! {Ti.}h i! !uch that the di!tortion parameter {J given by {8} i! not too 
large. 

4. Concluding Remarks 

i) The same results proved in this paper should apply to the element conside
red in [RUA 91] in which Tf is a space with local dimension equal to twelve 
instead of fifteen. However, not only the corresponding analysis is technically 
more complex, but this element only works if the pressure space Qh consists of 
discontinuous piecewise linear functions (for the same vh as here!). 
ii) The boundedness of the three angular increments used in this paper as 
a distortion measure of quadrilaterals seems to be only a formal requirement. 
Indeed, in all the computer tests for the Stokes system performed so far with 
arbitrary quadrilaterals, the new finite element method showed both stable and 
accurate behaviour, irrespective of the distortion degree of the mesh. These 
results will be included in a forthcoming paper on viscoelastic flow simulations. 
iii) Tf is defined as a space spanned at the level of a quadrilateral K of the 
mesh, by {uiK}J~ 1 , where uf = O"j o :F/( 1, with O"j given by (6)-(6'). There
fore Tl is related to the frame which mappings :F K are referred to. Here this 
means dependence on the local basis (i, i), which in turn depends on K. Thus, 
computation with such uiK requires in principle a post-processing of the mesh, 
in order to determine the axes Oi and Of for each element, together with cor
responding rotation matrices with respect to a fixed cartesian frame. Strictly 
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speaking, the latter are to be applied to rTj for j = 10, 15, in each element. No
tice however that in the context of viscoelastic flow simulations, such additional 
computational effort is negligible. 
iv) Finally it should be noted that the finite element method studied in this 
paper has the same convergence properties as the one introduced by MARCHAL 
& CROCHET in [5). Notice that for both elements the velocity representation 
is the same, together with the one of the pressure, as long as it is constructed 
upon continuous Q1 (isoparametric bilinear) functions. The essencial difference 
lies in spaces Th defined in this work and in theirs. Let us recall that in the 
latter, Th consists of continuous Q1 functions based on a quadrilateral mesh 
four times finer than Th. 

Although the use of space Q 1 could show some computational advantages, 
the author would like to emphasize that in this approach the number of extra 
stress degrees of freedom increases roughly by a factor of three, compared to 
the present one, when related to the same velocity mesh Th. In any case this 
author feels that it would be wise to perform extensive experiments with both 
methods, in order to compare their performances in the framework of classical 
test problems in viscoelasticity. 

Acknowledgment 

This paper was prepared in July j August 1991 at the Department of Com
puter Science of the Catholic University of Rio de Janeiro. The author would 
like to thank his doctoral students, J. H. CARNEIRO DE ARAUJO , M. A. 
M. SILVA RAMOS and P. R. TRALES for having so kindly contributed to the 
successful accomplishment of this research work. 

References 

[BER 79] 1\1. BERCOVIER & O.PIRONNEAU, "Error Estimates for the Finite Element 

fVIethod Solution of the Stokes Problem in the Primitive Variables", 

Numer. !\·lath., 33 (1979), 211-224. 

[CAR 91] J. H. CARNEIRO DE ARAUJO, Metodos de Elementos Finitos Otimizados para 

o Sistema de Stokes Auociado a Problemas de Viscoelasticidade, Dnctnral dissertation, Pon

tificia Unh·ersidade Catc'.lica do Rio de Janeiro, 1991. 

[FOR 89] A. FORTIN & M. FORTIN, "A New Approach for the Finite Element Simula

tion of Viscoelastic Fluws", Jour. Non-Newtonian Fluid Mech., 32 (1989), 295-310. 



406 Revue europ6enne des 616ments finis. Vol. 1 - n° 4/1992 

[FOR 88] M. FORTIN & R. PIERRE, "On the Convergence of the Mixed Method of Crochet 

& Marchal for Viscoelastic Flows", Comp. 1\Ieth. Appl. Mech. Engin., 73 (1988), 341-350. 

[MAR 87] J. M. 1\.fARCHAL & M. CROCHET," A New Finite Element for Calculating Vis

coelastic Flow", Jour. Non-Newtonian Fluid lvlech., 26 (1987), 77-114. 

[RUA 85] V. RUAS, "Une methode mixte contrainte-deplacement-pression pour Ia resolution 

de problemes de viscoelasticite incompressible en deformations planes", Comptes Rendus de 

l'Academie des Sciences de Paris, t. 301, Serie II, 16 (1985), 1171-1174. 

[RUA X]----------, "An Optimal Second Order Three Field Finite Element Method 

for the Stokes System with Continuous Extra Stresses", to appear. 

[RUA 91] V. RUAS, J.H. CARNEIRO DE ARAUJO & 1\LA.M. SILVA RAMOS, "Finite El

ement Models for Viscoelstic Liquids: Some Recent Developments", in: Numerical Methods 

in Laminar and Turbulent Flow, Vol VII, Eds. C. Taylor, J.H. Chin, G.M. Homsy, Pineridge 

Press, Swansea, 1991, 1658- 1668. 

[RUA 93] ---------, "Approximation of the Three-Field Stokes System Via Opti

mized Quadrilateral Finite Elements", to appear in RAIRO - 1\·lodelisation Mathematique et 

Analyse Numerique. 

[RUA 92] V. RUAS & J. H. CARNEIRO DE ARAUJO, "Un metodo mejorado de segundo 

orden para Ia simulacic'm de flujo viscoelastico con elementos finitos cuadrilaterales", Revista 

lnternacional de Metodos Numericos para calculo y Diseiw en lngenieria, vol. 8, n£. 1, (1992), 

77-85. 

[SAN 91] D. SANDRI, Analyae Numerique de Fluidea Non Newtoniena: Fluidea Viacoelaati

quea et Fluidea Quaai-Newtoniena ,These de Doctorat, Universite Claude Bernard- Lyon I, 

Lyon, 1991. 

Curriculum Vitae 

Docteur d'Etat (1982) in Numerical Anal.1·sis (NA), Universite Paris VI. Professeur of NA 

at PUC/RJ since 1982. Professeur de 1\ilecanique a l'Universite de Saint Etienne since 1989. 

Member of Laboratoire de 1\lodelisation en 1\lecanique, UPMC/CNRS, Paris, since 1988. 




