
A Numerical Stability Study 
on Truss Structures 

Yuan-yao Qian* -Jean-Louis Batoz 

Division MNM, Laboratoire LG2MS, URA-CNRS 150 
BP 649, Universit~ de technologie de Compi~gne 
60206 Compi~gne, France 

* To whom correspondence should be addressed. And present address : 
D~partement de G~nie civil, universit~ Laval 
Qu~bec, Canada GJK 7P4 

ABSTRACT. This paper, which presents a numerical study on non-linear stability problems of 
truss structures, concentrates on three main parts. First, the derivative of the tangential 
stiffness matrix is used to give the stability analysis with direct calculation of the critical 
points and the branch-switching function. And then a quadratically convergent path
following algorithm is obtained. Compared with the classical arc-length methods, it is more 
efficient in fast convergence and saving CPU time. Finally it studies four geometrically non
linear problems in details. 

RESUME. Cet article, qui presente une etude numerique des problemes de stabilite non lineaire 
des structures en treillis, traite de trois parties principales. Tout d' abord, Ia derivee de la 
matrice de rigidite tangentielle est utilisee pour effectuer I' analyse de stabilite avec le calcul 
direct des points critiques et la fonction "branch-switching". Ensuite un algorithme 
quadratiquement convergent est presente pour suivre Ia courbe charge-deplacements de 
fa~on continue. Comparativement aux methodes de longueur d'arc classiques, celle-ci 
converge plus rapidement et utilise moins de temps de calcul. Finalement, quatre problemes 
geometriquement non lineaires seront etudies en detail. 

KEY WORDS: bifurcation, critical point search, derivative of stiffness, higher order prediction, 
path-follow algorithm, stability, truss structures. 
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1 • Introduction 

The stability problems have been long researched in engineering mechanics. 
With the growing interests in non-linear behavior of the engineering structures, the 
stability study becomes more important. 

One of the main topic, which has been widely investigated by many authors[ e. g. 
AL89, KQ91, MU77, SP85, TH73], is the stability conditions with the 
classification of critical stability points. By the existing criteria, one can 
theoretically say that it is possible to determine all the stable and unstable 
equilibrium states of non-linear structures. In fact, many research activities have 
been reported on this topic[e. g. AB78, BR80, EC83, RI72, RI79]. However, 
numerically it is difficult to approach an arbitrary critical state by the well-known 
arc-length method. This numerical difficulty is another main topic in stability 
study. 

To trace the non-linear response by finite element methods exist there three basic 
algorithms. They are the methods with classical load increment control, with 
incremental displacement control[BAT079] and with the incremental arc-length 
control[e. g. CR81, FR84, RI79, WEM71]. The first two methods fail when more 
than one load level exists for a given displacement or, in other words, when there 
exists a turn back of displacement response during loading procedure. Since the 
algorithm of arc-length methods can pass every turning point very easily, it receives 
a considerable attention and becomes the most commonly used algorithm in finite 
element analysis of non-linear structures in recent years, see e. g. Bergan [BE78], 
Crisfield [CR81, CR86], Riles [RI79] and Wempner [WEM71] et al. The new 
review on solution procedure can be found in [CR91]. 

Unfortunately, not all the non-linear response paths follow the primary post 
critical branches. So that, a branch-switching function which is difficult to be 
supplied by the arc-length method is required at every bifucation point. It is noted 
that most of the currently employed methods used for the stability analysis of 
nonlinear structures rely on the inspection of determinant of tangential stiffness 
matrix[e. g. AB78, BR80, EC83, RA81, RI84, WA88]. And the critical point is 
calculated by a series of reduced incremental steps. However, in some mathematical 
literature, a constraint equation which characterizes the presence of critical stability 
point is appended to the solution process of non-linear equations[M080, SE79, 
WER84] in order to obtain the limit or bifurcation point with needed precision. 
With almost the same idea, Wriggers et al [WR88, WR90] have developed an 
extended system in finite element formulation for the purpose of direct calculation of 
limit or bifurcation points. 

The paper reports a study on the non-linear stability analysis of truss structures. 
It starts by extracting some basic equations and ideas from earlier work by many 
other authors. A special attention is paid to the determination of critical states and 
the post critical behavor of unstable structures. The commonly used stability 
theories, see e. g. [AL89, KQ91, MU77, TH73], are adopted through the constraints 
to the solution processes of critical point searches. Reformulation of some of the 
previous expressions[WR88, WR90] is developed and simplified for truss structures. 
It shows such a stability analysis of non-linear equations that the pre- or post-critical 
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state is reached step by step through the path-following, and the critical state is 
approched in one step from the starting state which is either pre- or post-critical. 
Moreover, during the whole procedure of corrective iteration for critical point 
calculation the approximation of critical eigenvector remains unit which results in a 
reduction of iteration number. Numerical examples presented in this paper 
demonstrate the efficiency of this newly contributed unitary technique. 

Since the derivative of tangential stiffness matrix is obtained and used in the 
stability investigation, it permits us to form a quadratically convergent path
following algorithm which includes the 2nd order approximation of the non-lineaer 
solution. On this method, there have already existed some studies, see e. g. [ER91, 
WA91]. The paper combines this advantage of high order prediction with the 
algorithm for non-linear stability analysis. And it suggests and compares two kinds 
of incremental arc-length which have different kinds of performance in practical 
computation for non-linear analysis. 

The paper also carefully gives a numerical study on some non-linear stability 
problems of 20 and 3D truss structures. It presents a whole response of studied 
structures for either pre- or post-critical behavior. The branch-switching function is 
used in every approched critical state to switch on the considered secondary. branch 
during the path-following procedure. The final results on the response curves are in 
some interesting or maybe fantastic shapes. 

2 . Finite Element Formulation 
and Critical Point Search 

2 .1. Finite element formulation 

Following any typical finite element formulation[BATH82, ZI88], the Green
Lagrange strain vector could be expressed as 

[1] 

with 

~£ = [ B1 + Bnl(v) ] • ~v . [2) 

Herein B1 • v and Bnl(v) • v are the linear and non-linear parts of the strain 
vector respectively. And the second Fiola-Kirchhoff stress vector is given by its 
incremental form 

~S = D • ~£ = D • [ BJ + Bnl(v)] • ~v [3] 

Then, one can arrive at the principle of virtual work 
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[4] 

with SW as the virtual work undertaken by the external forces. This obtained 
principle is in Total-Lagrange description. The derivative of equation [4] shows the 
basic incremental equation for non-linear finite element analysis 

[5] 

where 

is the tangential stiffness matrix and Q is the vector of external loads. In equation 
[6], the matrix G is defined as a connection matrix. 

2. 2. Stability conditions and the classification of critical points 

For static problems, the most commonly used stability criterion is to inspect the 
tangential stiffness matrix KT whether it has some negative eigenvalues or 

not[KQ91, MU77]. The criterion states that the structure is 
stable, if and only if all the eigenvalues of its tangential stiffness matrix are 

positive; 
critical stable, if and only if its tangential stiffness matrix doesn't have any 

negative eigenvalue and it has at least one zero eigenvalue; 
unstable, if its tangential stiffness matrix has some negative eigenvalues. 

According to this criterion, the critical stability points are characterized by the 
following equation 

[7] 

or 

[8] 

Herein <l> is noted as the critical eigenvector of KT. These two equations are used 
to constrain the solution to approach the characterized critical state late. 

There exist two different kinds of the critical points. One is the limit points, and 
the other is the bifurcation points. The classification of critical points is not the 
main topic of this paper. Some previous researches have been dealt with this 
defmition, see e. g. [SP85, WR90]. Here, we use the standard classification as 
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the critical point is a limit (turning) point, if 

[9] 

the critical point is a bifurcation point, if 

[10] 

2.3. Algorithm for critical point search 

Generally, the whole response curve of considered non-linear structure under 
static load can be path-followed step by step if it doesn't bifurcate. However, it is 
very difficult to obtain the critical response for the stability consideration. This is 
just because of the nonnally used path-following algorithms. On the other hand, if 
the response curves of all the secondary branches of post-bifurcation are needed, the 
bifurcation point must be calculated first. This also shows why it is necessary to 
develop an efficient algorithm, which is compatible with the previous path
following algorithms, for the critical point search. 

In fact, the principle of virtual work [4] holds at any equilibrium state. To 
describe the critical state, the constraint [8] is appended to [4]. It gives [KQ91, 
W A88, WR88, WR90] 

[lla] 

[llb] 

To achieve such a critical state which specified by displacement field v and load 
vector Q, we start from an equilibrium state achieved, and an iteration procedure is 
introduced below. This achieved equilibrium state is specified by vo and Qo 
respectively. And it can be either pre- or post-critical. We chose the initial 
approximation of «l> to be «~>o. 

Let us respectively denote vi, Qi and «l>i to be the approximations of v, Q and 
<I> after ith corrective iteration. It means 

V00 = V, [12a] 

[12b] 

[12c] 

if the corrective iteration is converged. Then the linearization of eqs. [lla and b] 
gives [BATH82, WR88, WR90] 
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in which R is the residual and A. is the load factor with 

[14a] 

Q =A.· q [14b] 

And the improved approximations after ith iteration are found to be 

[15] 

ell· = ell· 1 + L1ell· 1 1- 1 
[16] 

[17] 

Finally, the critical point which specified by v and Q can be calculated with desired 
precision by one iteration process. 

To go into more detail, the iterative equations [13a and b] have such a solution 
as follows[BAT079, WR88, WR90]. 

[18a] 

[18b] 

with 

[19a] 

[19b] 

and 

KT(Vi-1) • L1elli1 = -[ KT(Vi-1) • elli-1 J,v·L1vi1 , [20a] 

KT(vi-1) • L1elli2 = -[ KT(vi-1) • elli-1 J,v·L1v? - KT(vi-1)'elli-1 . [20b] 

The right superscripts 1 and 2 denote the first and second parts of the marked vectors. 
In this paper, the approximation of critical vector ell remains unit during the 

iteration procedure. It requires that 
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[21] 

The adoption of equation [21] has two advantages. One is the determination of 
incremental factor t.A.i which gives 

[22] 

Another advantage is the acceleration of iterative convergence. With this technique, 
the corrective iteration of critical point search is more fast convergent. In the 
section of numerical study, a comparison with previous work [WR88] has been 
presented 

It is necessary to note that the starting eigenvector <l>o plays a very important 
role in the studied procedure of iteration. The choice of this vector influences the 
result in two aspects. An incorrect choice could fail in convergence. And an 
appropriate choice could result in both fast convergence and obtaining automatically 
a critical eigenvector which is required by the branch-switching function. Normally, 
the least dominant eigenvector of tangential stiffness matrix at starting equilibrium 
state is the best choice of <1>0. Moreover, the different eigenvector at starting state 
results in different critical mode if the critical state is a bifurcation one of higher 
degree. This property helps us to follow any needed secondary branches. 

2. 4. Branch-switching function 

Only if the critical state is reached, the branch-switching function brings a 
possibility to follow any secondary branches of post-bifurcation response. This 
function is performed through a perturbation of deformation at critical state (see e. g. 
[EC83]): 

[23] 

Herein Ep is a small perturbation factor. It is obvious that if the critical point is 
multi-bifurcated the different critical mode introduces different secondary branche. 

3. Iteration with Higher Order Prediction 

In last section, we have shown that the derivative of tangential stiffness matrix is 
used in critical point search. Here, the derivative is used to formulate an iterative 
algorithm with second order prediction. For truss structures, the derivative can be 
easily calculated and almost no more computational efforts are needed, see e. g. 
[ER91, WA91, WR88]. However, the higher order prediction shows a reduction of 
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total CPU time and the number of corrective iterations because it introduces a second 
order approximation in fll'St iteration loop. 

Since the iterative equation [13a] comes from the linearization of virtual work 
principle, it is valid not only for the critical point search but for path-following 
procedure. Then we have the following. 

3 .1. Iteration of 1st order approximation 

The typical arc-length methods with 1st order approximation are formulated by a 
combination of iterative equation [13a] and a constraint equation. There exist many 
different kinds of constraints on arc-length increment. For example[BAT079, 
CR81, RI79, RI84] 

~vT·~v=~s·~s, [24a] 

or 

~ v T • ~ v + ~). • ~). = ~s · ~s [24b] 

where ~sis the increment of the 'arc-length' and 

~v = ~vl + ... +~vi, [24c] 

~). = ~).1 + ... + ~). i . [24d] 

These two suggested arc-lengths have different kinds of performance in non-linear 
analysis. The experience in numerical study shows that the first arc-length which is 
determined only by the displacement parameters is more appropriate for stability 
analysis where snap-through is considered. This is because it is difficult to make a 
compatibility between load factor and displacement parameters. For example, look 
at the 4th problem of the late numerical study. If the arc-length is defmed by [24b], 
it would be dominated by load factor ~). in pre-critical analysis because of the small 
deformation. Oppositely, the load factor makes almost no contribution to this arc
length for post bifurcation study. In this case, the choice of the value of the arc
length increment & becomes difficulty. 

If one constraint is adopted, e. g. [24a], it should be reformulated in an iterative 
form 

[25a] 

(fori > 1) . [25b] 
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Under such arc-length constraint, the iterative equation [13a] results 

[26a] 

(fori> 1 ) , [26b] 

where A vi 1 and Av? are defined by [19a] and [19b] respectively. And 

[27a] 

AvT · Av.2 
AA.. =- t 

1 AvT·Av.l 
(fori> 1). [27b] 

1 

This is one widely used arc-length algorithm for path-following procedures. 

3. 2. Iteration of 2nd order approximation 

The second order approximation of corrective iteration is only considered in first 
loop of iteration. That means there exists no residual force R for this corrective 
iteration. Let us denote A2A. and A2v as the second order approximation of AA.t and 
Av1 respectively. So the real increments of load factor A. and the deformation 

vector v after frrst corrective iteration are[ER91, W A91, WR88] 

[28a] 

[28b] 

Back to the linearization of the principle of virtual work [lla], we can obtain the 
second order derivative of this principle. It gives the control equation for second 
order approximation as 

And the derivative of constraint [25a] on arc-length increment shows that 

[29b] 
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To solve both equations [29a] and [29b], we have the second order approximation 
of fll'St corrective iteration. Let us denote .!1v13 as the solution of 

Then 

Here .!1v11 has the same definition as the solution of equation [19a] and 

.!1 v 1 T • .!1 v 
1
3 

.!12A. = ----'1"-------l~ 
.!1v

1
1 T • .!1v

1
1 

[30] 

[3la] 

[31b] 

It is noted that except the derivative of stiffness matrix there exists no more 
computation in second order approximation. And the derivative has been already 
formulated in critical point calculation. This is why it is worthy to append the 
second order prediction to path-following algorithms [ER91, WA91 et al]. The 
following numerical study shows that the high order prediction causes a considerable 
reduction(about 25%) of total CPU time. It is coincident with what has been 
reported in Ref. [W A91] on the reduction of CPU time. 

4. Numerical Study 

In this section, 4 non-linear truss structures are studied. A comparison of some 
problems with previous studies is made. 

For all these 4 problems, we adopt both the path-following algorithms with and 
without quadratical predictor. It is found that a reduction of about 25% for the 
numbers of corrective iterations is possible. This reduction is the same as what 
Wagner found before in his study on different structures[W A91]. Since for elastic 
truss structures, it is easy to obtain the analytical expression of the derivative of 
tangential stiffness matrix, the reduction for iteration numbers results in a saving on 
CPU time. 

The units are not indicated specially, because all the units adopted are 
International Standard Units. 

4 .1. Problem 1 Guyed roof system 

This system has been studied by Bogner in his report to WPAFB 68[B068]. 
Our new contribution to the study of this system is the calculation of the limit 
points which is not reported in [B068]. 
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guy (A= .02) 

_, 36 J-.-

Fig. 1 Guyed roof system 

The structure is shown in Figure 1. It is initially prestressed by the tension 
stresses in guy elements. The resulting forces in the members in this initial state 
are 

F(struts) = 0.0 , F(columns) = -2434.9 , 
F(ties) = 608.8 , F(guys) = 1362.5 . 

And the loading force is P = 10000.00 ·A.. 

~ 
.M 

2.5 

~ 
1.5 0 stability grade 

0.5 

-0.5 

-1.5 

w 
-2.5 

0.00 10.00 20.00 30.00 40.00 50.00 

Deflection of point A 

Fig. 2 Response curve of guyed roof system 

The response curve for the apex (point A) of the structure is shown in Fig. 2. It 
includes the snap-through instability phenomena coupled with typical tension 
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structure behavior. Both points B1 (w = 9.692 and A= 2.022) and B2 (w = 38.35 
and A= -2.034) are critical limit points. The curve between B1 and B2 corresponds 
to unstable equilibrium path. The sharp bend of the curve at point C only means 
the rapid change in stiffness which takes place as the columns rotate from one side 
of the vertical to another. Point C is not a critical stability point. The response 
curve near C corresponds a stable equilibrium path. This phenomenon of sharp bend 
will be found in another example of Problem 3. 

We defme such a kind of stability grade as the number of negative eigenvalues of 
tangential stiffness matrix. In Fig. 2, this stability grade is also indicated for every 
portion of the curve. It is clear that only such portions of the curve which have zero 
stability grade correspond to stable configuration. 

4.2. Problem 2 2D truss structure in 'toggle' form 

This is a very simple structure shown by Fig. 3, but its response is characterized 
by most of the stability phenomena. Both the critical limit points and the critical 
bifurcation points are found during the load-displacement history. The structure is 
constructed by 10 truss elements. The load force is P = 1.0 • A . 

i 0.1 
EA= 5000.00 

1.0 

Fig. 3 2D truss structure in toggle form 

0.051 

I z J4: 
1.0 -----If 

The response curves for both primary and bifurcated secondary route are presented 
in Fig. 4. The first and the last critical points along the primary route are 
bifurcation points. And the other two critical points are limit points. The stability 
grades are also indicated for every portion of the response curves to show the 
stability or instability. 

Both bifurcation points exhibit two modes of bifurcation, but they follow a same 
post-critically secondary branch. In this problem, two different starting vectors of Cl> 
are used to obtain two bifurcation modes. These two modes correspond to the 
buckling modes of left and right half of the structure. 

For the computation of all the critical points in this problem, the starting vector 
Cl> is chosen to be the eigenvector of tangential stiffness matrix at the starting 
equilibrium state. Moreover, only the eigenvector which corresponds to the smallest 
positive eigenvalue could be adopted as the starting vector of Cl> for the computation 
of either limit or bifurcation point with first buckling mode. For the computation 
of second bifurcation mode, another eigenvector which corresponds to the smallest 
eigenvalue of the remaining ones is used. 
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~ 
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~ 2.00 

0.00 

-2.00 

-4.00 
0.00 0.05 

Fig. 4 Response curve of 2D structure 
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0.10 0.15 

primary route 
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critical points 
stability de 

0.20 
Displacement 

During the procedure of critical point searches, the approximation vector of 
critical mode is remained to be unit. Table 1 shows a comparison between present 
study and Ref. [WR88] in computation of critical stability points. It is noted that 
the iteration number is considerably reduced in present study. One major reason can 
be established for this reduction of iteration numbers is that the application of the 
mentioned unitary technique. 

Table 1 A comparison in critical stability point computation 

critical iteration number iteration number 
point 

w 
in present study in [29] 

1 3.474 0.02938 2 5 
2 3.777 0.04227 2 4 
3 -3.777 0.1577 2 8 
4 -3.474 0.1706 3 21 

4. 3. Problem 3 3D truss structure in star-shape 

The structure considered is a 3D dome structure in star-shape. It is widely used 
to describe the non-linear phenomenon and to explain the path-following algorithms. 
In those published papers, see e.g. [WR88], the computation is stoped after 
obtaining the primary route of the response curves. 
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... 25.0 ,25.0 I 
1 s.216 1 p 

t ' 2.000' 

-143.3 43.3 EA = 10796.00 

Fig. S Dome structure 

The geometry of the structure is given by Fig. 5. The structure is discretized by 
24 truss elements. And the external force is P = 10.0 ·A. 

~ 
~ 

10.00 

~ 5.00 

-5.00 

o critical point 
on primary route 

0 stability grade 
on primary route 

w (m) 
-10.00 +-..,.....-.--.--.--.-~--__,..-r__,......,.....,.....,.---y--.--.--.~H 

0.00 5.00 10.00 15.00 20.00 

Displacement 

Fig. 6 Response curve 1 of dome structure 

The primary route of the response curves is fully obtained through the path
following algorithm and is indicated in both Fig. 6 and 7. All the critical stability 
points along this route are found. And the calculation is fast convergent for every 
critical point search. Table 2 presents the critical points in an alphabetic order. The 
stability grade is also given in Fig. 6 for every portion of this primary route. 

The first two critical points are limit points which correspond to the local snap
through of the upper dome. And the third one is a bifurcation point which 
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associates with two buckling modes. The secondary routes initiated by these two 
modes are carefully followed and depicted in Fig. 6 and 7 separately. The structure 
exhibits a very complicated and maybe fantastic post bifurcation behavior. 

~ 
10.00 A. 

~ 
l.t( 

primary route----] 5.00 

"' 0.00 

-5.00 o critical point 
on primary route 

w (m) 
-10.00 +-...... '1"""""1~ ....... -.....--.-'T""" ...... ,....,"""""""'T'...,.. ___ ""'"""",......,,.....,.. 

-2.50 2.50 7.50 12.50 17.50 
Displacement 

Fig. 7 Response curve 2 of dome structure 

To go into more detail about the global snap-through of such a structure with a 
highly geometric non-linearity, it is found that each buckling mode of the third 
critical point is symmetric to one of the two symmetry axes of the dome. There 
also exist two different secondary routes because of the different behaviors of these 
two symmetry axes. Just like what we have done for last problem, the two modes 
are obtained through the different choices of two starting vectors of «1». And then the 
branch-switching function is used to initiate an arbitrary post-bifurcation branch. 

Table 2 Critical points for loaded dome structure 

No. of 
critical point 

1 2 3 4 5 

------------------------------------).. 0.3407 -0.2980 8.264 9.409 -5.028 
w 0.7686 3.028 9.097 10.51 11.79 

No. of 
6 7 8 9 10 critical point 

---~----51~---~Aoo---~2M--o2~o--~J4o7-

w 4.645 5.919 7.335 13.40 15.66 
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In both Fig. 6 and 7, points A and B are not the critical stability points. The 
sharp bends at A and B are due to the rotation of several truss elements from upper 
side of the horizontal to the other. 

4.4. Problem 4 Three-dimensional mast [WR88] 

The structure shown by Fig. 8 is a 3D mast It is subjected to a point load of P 
= 5000.0 • A. • Totally 79 truss element are used for the analysis. 

p 

EA = 6300000.00 

1-l -+1...:.::.2.0~ 
t-1 ---tl~....;2;;.;.;;5;._ 4.0 
II 7.0 

Fig. 8 3D mast structure 

The response curves of primary route and two secondary routes are depicted in 
Fig. 9. And the stability grades for the primary route are also given. The critical 
point, say w = 0.0 and A. = 13.84, is a double bifurcation point. With the suggested 
algorithm, we can only obtain the bifurcation point and one buckling mode. The 
other mode is obtained by solving the eigenvalue problem KT • Cl> = 0 at A.= 13.84. 
This is the only problem we have met that it is impossible to obtain all the 
bifurcation modes through the different choices of starting vector Cl>. 

The study of this problem shows that the incremental arc-length suggested by 
[24a] is more appropriate for non-linear stability analysis. If the arc-length 
increment of [24b] is adopted, the solution will meet a poor convergence or 
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divergence. Since the primary route for this problem is a linear path of zero 
deflection w, the incremental load factor dominates the arc-length for pre-critical 
analysis. And it is clear for this problem that the displacement increment makes a 
major contribution to the arc-length for post-critical analysis of secondary branches. 
It is difficult to fmd a good compatibility between pre and post buckling analysis, if 
[24b] is used. 

16.00 

j 
~ 12.00 

8.00 

4.00 

w(m) 
0.00 .J,...;::;::;::;:;:;::;::....,_ ....... ~....._.--~::;:;;:;:;;::;::r:.-..., 

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 
Displacement 

Fig. 9 Response curve of 3D mast 

S. Conclusion 

A numerical stability study on truss structures is presented in this paper. The 
algorithm described allows global path-following of non-linear stability problems. 
It combines both the advantages of critical point search and quadratic convergence. 

Numerical analysis shows that the method used to calculate the critical point is 
very efficient for truss structures. It results in fast convergence that the 
approximation of critical eigenvector remains unit during the whole corrective 
iteration procedure. Together with the branch-switching function, the stability 
analysis here permits us to follow not only the pre-critical response curves of non
linear structures but also any arbitrary secondary branches of post-critical response 
curves with snap-through. 

Another worthy application of the derivative of tangential stiffness matrix which 
has been already formulated in critical stability point calculation is to develop a so
called quadratically convergent path-following algorithm. Since the derivative can be 
directly formulated for truss structures, almost no more computational efforts are 
needed. However, the mentioned application brings a reduction of total CPU time 
for path-following. 
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The numerically studied structures are some common truss structures. They 
behave elastically. Although for some structures, the displacement is small, they 
have the property of highly geometric non-linearity. The global primary response 
curves of studied structures are carefully followed. And the secondary branches of 
bifurcated problems are fully calculated. For such simple truss structures, the results 
show some complicated and maybe fantastic responses. It is very interesting for 
either theoretical investigations or practical applications. 

The presented study is for truss structures, but the methods used could be 
expended to other problems and have a generlized validity. 
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