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Abstract

Drilling monitoring aims at anticipating and detecting drillstring failures
during well construction. A key element for the monitoring activity is the
estimation of friction along the wellbore trajectory. Friction models require
the evaluation of the actual wellbore trajectory. This evaluation is performed
applying one of many various reconstruction methods available in the industry
to discrete deviation measurements. Although all these methods lead to
nearly identical bit location, friction estimations are highly dependent on
reconstruction methods due to huge differences in the trajectory derivatives.

To control this instability, a new reliable estimation of wellbore friction
using a nonlinear trajectory smoothing process is introduced.This process uses
a multi-scale approach and a specific nonlinear smoothing through subdivision
schemes and their related decimation schemes. Two smoothing processes are
compared: one using an interpolatory subdivision operator, and the other, a
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non-interpolatory subdivision operator. Validation has been performed on a
synthetic plane trajectory perturbated by noise. The non-interpolatory process
provides trajectory derivatives estimates much closer to those of the initial
trajectory. Both processes have been applied to a real three-dimensional
wellbore trajectory, improving significantly the friction estimates.

Keywords: Torque and drag, friction, drilling, trajectory, subdivision, multi-
scale, smoothing.

Abbreviations: T&D: Torque and Drag; PU: Pick-Up; SO: Slack-Off; FR:
Free-Rotating.

1 Introduction

Well drilling is a complex activity developed for oil/gas extraction or for
geothermal activities. An engineering study provides an optimal trajectory
considering several objectives and constraints:

• The target objective, located according to a geological study;
• The consideration of surface constraints (environmental limitations,

production platforms), which limit the possible well head locations;
• An optimal well architecture, defined from a reservoir engineering study;
• The feasibility of the drilling operations to complete the well until

reaching the final target, especially ensuring limited friction inside the
wellbore while tripping;

• The wellbore stability and the hydrodynamic balance throughout the
drilling process, ensured through a proper mud and casing program.

The friction between the pipes and the wellbore wall is monitored through
realtime discrete Hook Load and Torque surface measurements. The results
of a Torque and Drag (T&D) model can then be used to match these
measurements by calibrating the friction coefficients. A further discrepancy
between measurements and model predictions provides a warning of potential
wellbore instability or poor hole cleaning.

A T&D model is based on a friction calculation along the wellbore, so
its results are very sensitive to the wellbore trajectory, in particular to the
trajectory derivatives. The wellbore trajectory must be described carefully to
avoid friction artefacts and consequently erroneous warnings. In practice, the
trajectory is reconstructed from survey measurements collected periodically
at discrete bit depths. However, results provided by T&D models are unstable
due to poor approximation of trajectory derivatives.
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This short summary shows that reliable trajectory reconstruction as well as
stable trajectory derivatives estimates are fundamental data in the framework
of wellbore monitoring.

After a short review of reconstruction methods and of friction models,
Section 2 focuses on the development of a smoothing process which can
provide stable derivatives estimates. Section 3 is devoted to numerical tests.

1.1 Trajectory Reconstruction

As mentioned above, a key point for drilling monitoring is the control of the
trajectory, keeping in mind that the length of the well can reach 10 km. There
is no direct way to accurately know the drillbit location. The data available to
the directional driller are the length of the drillstring introduced inside the well
and two angles measured at regular interval close to the bit. More precisely,
introducing a local orthonormal coordinates system (O;�i,�j,�k) of R

3 where
O is the surface point at the drilling start, �i (resp. �j) is the local horizontal
unit vector pointing toward the North (resp. East), and �k :=�i ×�j is the local
unit vector pointing toward the Earth’s centre, the values of the following
parameters (s, ϕ, α) are measured at each connection, i.e. before adding a
pipe to the drillstring:

• The bit depth s ∈ [0, L], where L is the forecast length of the com-
pletely drilled well. The length of each pipe of the drillstring is known
within ±1 cm accuracy, but a large uncertainty remains to determine
the bit depth because of pipes elongation and deformation due to their
elasticity;

• The inclination angle ϕ(s) ∈ [0, π] and the azimuth angle α(s) ∈ [0, 2π[
are the classical spherical coordinates angles of the bit orientation vector
�t(s) in the basis (�i,�j,�k). The angle ϕ (resp. α) is known within ±2◦
(resp. ±0.5◦) accuracy.

During drilling, the available data are a sequence of triplets {(si, ϕi, αi)}n
i=0,

where i = 0 stands for the surface condition (usually with (s0, ϕ0, α0) =
(0, 0, 0)) and i = n stands for the last drillbit location measurement. These
data can be equivalently described by the set of couples {(si,�ti)}n

i=0, usually

with �t0 =

⎛
⎝0

0
1

⎞
⎠.

The purpose of trajectory reconstruction is to build a curve Γ starting from
the origin O, given the set {si,�ti}n

i=0. It is constructed recursively solving the
following problem: given a point A(xA, yA, zA) with arc length sA from O
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Figure 1 Reconstruction methods: left (MCM), right (MTM). Arcs AB are built using the
other elements and the hypotheses of the method. For the (MTM), parameters r and p are
respectively the radius and the pitch of the helix.

and unit tangent vector�tA, and given the arc length sB from O and unit tangent
vector �tB at the point B right after A, what are B’s coordinates?

As the exact shape of the arc ΓAB linking A to B is not known, the
problem is ill-defined and the difficulty in answering this question lies in
the shape assumed for ΓAB . Many reconstruction methods exist, each one
based on different hypotheses. Following is a list of some of the existing
trajectory reconstruction methods delivering trajectories at least tangentially
continuous1, that is to say Γ ∈ C1([0, L]), where Γ is identified as the trace of
a curve Γ(s) parametrized by its arc length s ∈ [0, L] (see Figure 1):

• (MCM) Minimum Curvature Method (Wolff & de Wardt, 1981): ΓAB is
the unique circular arc of the plane (A;�tA,�tB) of length sB − sA with
tangents �tA and �tB at its ends;

• (QUM) Quadratic Method (Kaplan, 2003): ΓAB is the unique parabolic
arc of the plane (A;�tA,�tB) of length sB − sA with tangents �tA and �tB at
its ends; as tangents are interpolated between sA and sB , ΓAB obtained
by integration might have length different from sB − sA. An analytical
normalization factor is then used to preserve the arc length;

• (MTM) Minimum Torsion Method (Kaplan, 2003): this method also
requires {sD,�tD} at the point D prior to A. If {�tD,�tA,�tB} are coplanar,
ΓAB is the circular arc defined through (MCM); if not, ΓAB is assumed
to be the constant-pitch helix of length sB − sA with tangents �tA and �tB
at its ends and whose extension until abscissa sD has tangent �tD;

• (SIT) Spherical Indicatrix of Tangents 2 (Gfrerrer & Glaser, 2000):
splines of order 3 interpolate tangents so that ΓAB ∈ C2([sA, sB]) is

1Since the trajectory is generated by a tangentially continuous drillstring, the trajectory
should at least have the same regularity.
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obtained by integration; however, the interpolated tangents are not
necessarily of norm 1, so the integrated arc length might differ from
sB − sA;

• (ASC) Advanced Spline Curve (Abughaban et al., 2016): same as (SIT)
using splines of order 4, so that ΓAB ∈ C3([sA, sB]).

The application of these reconstruction methods on the same set of actual
survey measurements provides discrete trajectories that are close to each other
according to engineering purpose. Indeed, in all the performed simulations so
far, at the same depth si, their distance measured in the L∞– norm remains
smaller than 10 m even when L reaches thousands of meters. Therefore, all
these methods are widely acceptable and used.

Furthermore, using the interpolation based on the assumptions of each
reconstruction method, the position Γ(s) at any length s ∈ [0, L] can be
recovered, in particular on any regular segmentation {si}N

i=0 of [0, L]. It turns
out that these local interpolations are all stable and that the distance between
the interpolated points remains defined within the same error of order 10 m.

Thereafter, {Γ(s), 0 ≤ s ≤ L} refers to an approximation of the trajectory.

1.2 Friction Model (T&D)

The friction model, usually called T&D model, is an essential mathe-
matical and physical tool for well planning and surface monitoring (see
Johancsik, Friesen & Dawson, 1983; Sheppard, 1987; Belaid, 2005; Mitchell
& Samuel, 2007; Aadnoy, Fazaelizadeh & Hareland, 2010 for more details).
It requires some inputs: the drill-string composition, the wellbore trajectory
(defined through the vectors Γ(s)), and many drilling parameters (mud
density, drillstring angular speed and axial speed, etc.). The T&D model
allows to estimate the friction factor corresponding to the Hook Load and
Torque measurements while hoisting, lowering or only rotating the strings;
those phases are usually called Pick-Up (PU), Slack-Off (SO) and Free
Rotating (FR).

For example, the model allows to ensure that cuttings are correctly carried
along the wellbore annulus (good hole cleaning), or to detect any risk of pipe
getting stuck. Two friction factors are usually defined along the trajectory: fa

for the axial friction and fr for the rotational friction. It is then possible to
check that Hook Load and Torque values remain in correct ranges, so that the
well is correctly cleaned, by comparing fa and fr to values from the literature
(Samuel, 2010).

The T&D model is expressed in the local Frénet-Serret frame (�t, �n,�b)
as a function of the arc length s ∈ [0, L] on the trajectory. As a whole,
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it connects the tension and moment vectors (�T (s), �M(s)) at bit (s = L)
to their values at surface (s = 0) through the friction factors (fa, fr). Given
two of these couples, the model provides the third one. Denoting (·)′ := d(·)

ds ,
Equation (1) recalls the Frénet-Serret relations, involving the curvature κ(s)
and the torsion τ(s):

d

ds

⎛
⎝�t

�n
�b

⎞
⎠ =

⎛
⎝ 0 κ 0

−κ 0 τ
0 −τ 0

⎞
⎠ ·

⎛
⎝�t

�n
�b

⎞
⎠ (1)

The reals κ and τ are given by:

κ(s) = ‖Γ′ × Γ′′‖2, τ(s) =
det[Γ′,Γ′′,Γ′′′]

κ2 , (2)

and are therefore related to higher order derivatives of Γ.

In the Frénet-Serret frame, �T (s) :=

⎛
⎝Tt

Tn

Tb

⎞
⎠ and2 �M(s) =

⎛
⎝ −Mt

0
E.I.k

⎞
⎠.

The drilling fluid circulation affects the pipe tension. To consider the impact
of both fluid pressures inside (pi) and outside (po) the pipe applied on the
inner (Si) and outer (So) sections of the pipe, the “effective” pipe tension
T ∗ := Tt + (po.So − pi.Si) is defined (cf. Mitchell, 2009 for more details).

Finally, the set of equations for the friction model used in this work is
given by: (cf. Figure 2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) (T ∗)′ + EIκκ′ + w(�k.�t) − fafc = 0,

(b) (Mt)′ + rofrfc = 0,

(c) fc =

√
f2

c,n+f2
c,b

1+f2
r

,

(d) fc,n = w(�k.�n) + κ[T ∗ + τ(Mt + EIτ)] − EIκ′′,

(e) fc,b = w(�k.�b) − κ′(Mt + 2EIτ) − EIκτ ′,

(3)

where E is the pipes Young modulus, I is the second momentum of area of the
pipes, r0 is the outer radius of the pipes, ρsteel is the pipe density, �w = w�k is
the buoyed weight per unit length of pipe, and fc is the pipe/wellbore normal
contact force per unit length. These equations provide a link between the

2The tangential component of �M is defined with the minus sign to count positively the
surface momentum.
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Figure 2 Left: Force balance on a pipe element. Right: Force balance for a pipe section.

effective tension along the drillstring T ∗, the torsional moment Mt and the
lineic pipe/wellbore contact force fc (cf. Appendix A for more details about
these equations).

This model is a Soft-String model. It is assumed that there is a continuous
contact between the drillstring and the wellbore, and hence a continuous
friction. Therefore, Hook Load measurements during PU and SO phases are
used to calibrate fa and Torque measurements during FR phases are used
to calibrate fr. From Equations (3), this calibration strongly depends on the
trajectory parameters κ and τ as well as their derivatives up to κ′′ and τ ′, so
up to Γ(4)(s), the 4th derivative of the trajectory.

As already mentioned in Section 1.1, the estimation of the trajectory
remains acceptable whatever the reconstruction method. However, even if
trajectory location error is controlled regardless the trajectory reconstruction
method used, the error on higher order derivatives estimation is not controlled.
In particular, section by section reconstruction of the trajectory is the source
of higher derivatives discontinuities at the junction points. A consequence is
that the estimate of fa or fr is unstable and not accurate (see Figure 11).
Moreover, there is no argument to decide if a reconstruction method provides
better estimations of the trajectory derivatives than another. For instance,
the regularity of the reconstruction does not imply a good estimate of the
derivatives.

The proposed solution of this problem is, from an initial reconstruction
Γ(s), to construct a close trajectory with minimal oscillations, called a smooth
trajectory, and to estimate the friction from this new trajectory. In particular, the
smoothing process must handle higher derivatives discontinuities at junction
points, as well as the noise inherent to the survey measurements.
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A smoothing process that provides a trajectory of minimal oscillations
must be efficient whatever the trajectory and without prior knowledge about
it. This means that it is not possible to consider a linear spatial frequency
filtering on the trajectory. Moreover, the objective is to control the L∞– error
associated to the approximation of a curve and its derivatives using a polygon
and its divided differences. Standard curve-fitting techniques can construct a
good approximation of the trajectory, but they cannot control simultaneously
its derivatives estimates.

Therefore, the non-parametric and non-linear smoothing process pre-
sented in the following section is based on a multi-scale analysis. One can
prove indeed (Garcia, 2019) that if it is correctly defined, the derivatives of
this smooth trajectory converges towards the derivatives of the real trajec-
tory when the L∞– error between the initial reconstruction and the exact
trajectory converges towards 0.

2 Multi-scale Smoothing of Trajectories

Given a discrete approximation {Γ(sk)}k∈Z of a three-dimensional trajectory,
this section presents a multi-scale smoothing acting independently on each
coordinate of the trajectory. Therefore, without loss of generality, the univari-
ate case (X(s) ∈ R) will be considered. The sequence X0 = (X0(sk))k∈Z,
where {sk}k∈Z ⊆ R

+, is first plugged into a multi-scale framework following
Harten (1996).

2.1 Multi-scale Analysis and Smoothing

Multi-scale analysis is a mathematical tool used to represent the graph of
a function {X(s), s ∈ R} using different levels of approximation. Each
level is characterized by the index j ∈ Z. The main ingredients of a multi-
scale analysis are interscale operators linking the spaces (V j)j∈Z standing
for approximation spaces at various scales. The approximation of X at level
j is called Xj , so that ∀k ∈ Z, (k2−j , Xj

k) approximates (k2−j , X(k2−j)).
A subdivision operator h : Xj−1 ∈ V j−1 �−→ hXj−1 ∈ V j and a decimation
operator h̃ : Xj ∈ V j �−→ h̃Xj ∈ V j−1, as soon as they satisfy h̃h = Id,
define a bijection between V j and V j−1 × W j , where W j is the space of
errors (ej) (Dyn, 1992; Harten, 1996), as:{

Xj−1 = h̃Xj

ej = (Id − hh̃)Xj (4)
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Figure 3 Two scale decomposition (left) and reconstruction (right).

Relation (4) can be inverted as Xj = ej + hXj−1. A sketch of the two-scale
decomposition and reconstruction is provided on Figure 3.

Since the previous two-scale operations can be iterated, a multi-scale
decomposition of a sequence X0 down to level −jmax < 0 can be defined as
the family of sequences (X−jmax , e−jmax+1, e−jmax+2, . . . , e−1, e0).

A multi-scale smoothing can be defined in 3 steps incorporating a specific
error truncation. It reads, jmax being given: (see Figure 4)

(1) Multi-scale decomposition: starting from level 0, decomposition steps
are iterated to reach level −jmax;

(2) Error truncation: errors ej of each level are processed into new errors ej ;
(3) Multi-scale reconstruction: starting from level −jmax, reconstruction

steps are iterated to reach level 0 using the errors ej .

There exists many choices for the subdivision operators and associated
decimation operators (see for instance Dyn, 1992; Kui, 2018). In this paper,
two subdivision operators will be used, called Lagrange interpolatory scheme
(Deslauriers & Dubuc, 1989) and shifted Lagrange scheme (Dyn, Floater, &
Hormann, 2005). Their definitions are given below for a 4-point stencil, as
well as those of the corresponding decimations used in this paper:

4-point interpolatory Lagrange scheme

Decimation: (
h̃Xj

)
k

= Xj
2k (5)

Subdivision:⎧⎪⎨
⎪⎩

(hXj−1)2k = Xj−1
k

(hXj−1)2k+1 =
1
16

(
−Xj−1

k−1 + 9Xj−1
k + 9Xj−1

k+1 − Xj−1
k+2

) (6)
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Figure 4 Structure of the multi-scale smoothing algorithm. The left part is the multi-scale
decomposition (step 1), the middle part is the error truncation (step 2) and the right part is the
multi-scale reconstruction (step 3).

4-point shifted Lagrange scheme

Decimation:(
h̃Xj

)
k

=
1

2304

(
95Xj

2k−3 − 133Xj
2k−2 − 315Xj

2k−1 + 1505Xj
2k

+ 1505Xj
2k+1 − 315Xj

2k+2 − 133Xj
2k+3 + 95Xj

2k+4

)
(7)

Subdivision:⎧⎪⎨
⎪⎩

(hXj−1)2k =
1

128

(
−5Xj−1

k−2 + 35Xj−1
k−1 + 105Xj−1

k − 7Xj−1
k+1

)
(hXj−1)2k+1 =

1
128

(
−7Xj−1

k−1 + 105Xj−1
k + 35Xj−1

k+1 − 5Xj−1
k+2

) (8)
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The specific form of (5) and of the first line of (6) explains why the
first pair of schemes is called interpolatory while (7) and (8) are called
non-interpolatory.

Subdivision operators can reproduce or quasi-reproduce polynomials up
to a certain degree p (see Kui, 2018). In particular, the subdivision scheme
described by Equations (6) (resp. (8)) quasi-reproduce polynomials up to
degree p = 3 (resp. p = 4). As both subdivision operators will be used in
the multi-scale smoothing, comparison will allow to evaluate the impact of
this important property on the current approach.

2.2 Error Truncation and Global Multi-scale Smoothing

Instabilities in the estimate of the derivatives are connected to the presence of
“local high scale oscillations” in the reconstructions. These oscillations can be
quantified considering the coefficients (aj

k := 4j(Xj
k−1 −2Xj

k +Xj
k+1))k∈Z,

which correspond to a discrete estimate at level j of the second order derivative
of the function X(s). Indeed, a multi-scale framework is available for the
coefficients (aj

k)k∈Z. For our schemes, it reads:

Interpolatory subdivision:⎧⎪⎨
⎪⎩

aj
2k =

1
4

(
−aj−1

k−1 + 6aj−1
k − aj−1

k−1

)
+ 4j .

[
ej
2k−1 + ej

2k+1

]
aj

2k+1 =
1
2

(
aj−1

k + aj−1
k+1

)
− 4j2ej

2k+1

(9)

Non-interpolatory subdivision:⎧⎪⎪⎨
⎪⎪⎩

aj
2k =

1
32

(
3aj−1

k−1 + 34aj−1
k − 5aj−1

k+1

)
+ 4j

[
ej
2k−1 − 2ej

2k + ej
2k+1

]
aj

2k+1 =
1
32

(
−5aj−1

k−1 + 34aj−1
k + 3aj−1

k+1

)
+ 4j

[
ej
2k − 2ej

2k+1 + ej
2k+2

]
(10)

It should be noted that the multi-scale framework described by
Equations (9) is unstable and does not converge, while the one described
by Equations (10) is stable and convergent. For each subdivision scheme,
this result is linked to the order p for the quasi-reproduction of polynomials
mentioned earlier (see Garcia, 2019).
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To quantify the level of the oscillations, we introduce the notion of local
scale:

Definition 2.1. For any sequence X0 and any value k0 ∈ Z, the local scale
Sk0 is defined as the largest value j such that there exists (k1, k2) with:

∀j < j′ ≤ 0, such that ∀k, k12−j ≤ k2−j′ ≤ k22−j , ej′
k = 0.

Clearly the sequences ((aj
k)k∈Z)−jmax≤j≤0 can be seen as the result of

subdivision, given by the first term of the right hand side of Equations (9)
(resp. (10)), and errors, given by the second term 4jA(ej) of the right hand
side of Equations (9) (resp. (10)). As soon as this multiresolution is stable,
the norm of a0 is linked (independently of jmax) to the norm of the weighted
errors 4jej for −jmax + 1 ≤ j ≤ 0. This link induces that reducing the norm
of second order derivatives a0 can be performed by cancelling coefficient (ej

k)
with an efficiency increasing with the value of j.

Therefore, the error truncation of our multi-scale smoothing aims to
construct a polygon X

0
at a controlled distance of X0 (i.e. ‖X0−X

0‖∞ < ε)
with a minimal local scale.

The proposed smoothing process is then sketched as follows, with the
sequences X0 as input and X

0
as output:

(1) Multi-scale decomposition: decomposition of the input polygon X0 into
the family of sequences {X−jmax , e−jmax+1, . . . , e0}.

(2) Error truncation:

(a) Initialization: ej := ej for all level j ∈ {−jmax + 1, . . . , 0};
(b) For (j, k) ∈ {−jmax + 1, . . . , 0} × Z sorted such that level j are in

decreasing order, then non-zero |ej
k| are in decreasing order (zeroes

are ignored):

• Set ej
k = 0;

• Multi-scale reconstruction: construct the sequence X
0

using the
sequences {X−jmax , e−(jmax−1), . . . , e0};

◦ If ‖X0 −X
0‖∞ < ε, then proceed with the next pair (j′, k′);

◦ If not, set back ej
k := ej

k, then proceed with the next pair (j′, k′);

(c) If any ej
k has been set to 0 during the last step (b), repeat step (b).

(3) Multi-scale reconstruction: construct the output sequence X
0

using the
sequences {X−jmax , e−(jmax−1), . . . , e0}.

This procedure improves the estimate of the derivatives since one can
prove (Garcia, 2019) that within a tube of width ε > 0 around a C∞ curve,
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Figure 5 Polygons of different local scales. Small (resp. large) local scale is associated to
the 4 points (resp. 14 points) polygon. First and second derivatives approximations using the
4 points polygon are clearly closer to the real values related to the central curve.

a polygon X
0

of minimal local scale is such that its derivatives converge
towards those of the C∞ curve (see Figure 5). This convergence is dependent
on the existence of a stable multi-scale framework for the derivatives to study,
derived from the chosen subdivision operator.

Remark 1. Here the whole process has been presented in the case of an
infinite sequence of values X0 = (X0

k)k∈Z. In practice, the process is applied
on finite sequences X0 = (X0

k)0≤k≤N ∈ R
N+1 for N ∈ N. In this case, the

process requires adaptations at the edges of the sequences. These adaptations
are presented in Appendix B.

3 Results

3.1 Application to a Noisy Known Trajectory

To validate the multi-scale smoothing process, a test plane curve is considered
with constant-step segmentation on its arc length s. It is defined as (Γ :=
[X0

k = x(sk), Y 0
k = π

180x(sk) sin( π
180x(sk))]; sk = k ∈ {0, . . . , 3000}).

Fixing ε = 0.1, a uniform noise of amplitude 0.5ε is added to Γ, and the
smoothing process is applied. Then the curvature and its two first derivatives
are evaluated before and after smoothing and are compared to these of the
initial smooth curve. The integer jmax is set to 6. Initial trajectory, noisy
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Figure 6 Comparison between the initial trajectory (dotted line with circles), the noisy
trajectory (starred line) and the smoothed trajectories (+ line for interpolatory scheme and
× line for non-interpolatory scheme). Local zoom in a high curvature region.

Figure 7 Comparison of the trajectory derivatives estimates along the plane trajectory,
including zooms around a high curvature region (same symbols as Figure 6). From top to
bottom: curvature; first derivative of the curvature; second derivative of the curvature. Noisy
derivatives have such high order of magnitude that they barely appear on these graphs scales.

trajectory and smoothed trajectories can be seen on Figure 6. Corresponding
estimates of curvature and its derivatives are plotted on Figure 7.

The comments on the results are the following:

• Curvature and its derivatives are widely overestimated when the noisy
curve is used;
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• Estimations of curvature and its first derivative using smoothed curves are
quite similar for both subdivision schemes and very close to the original
ones. The only difference between the two smoothing processes remains
in some peaks, present in the interpolatory smoothing but absent in the
non-interpolatory one. In both cases, these estimations are really better
than the estimations without smoothing;

• Estimations of the second derivative of curvature are quite different for
the two smoothing processes: the interpolatory one has a very fluctuating
estimation with amplitude ten times higher than the non-interpolatory
one, although this estimation is already much better than with the noisy
trajectory. The non-interpolatory smoothing provides a better estimate
than the interpolatory smoothing.

Globally, the smoothing is very efficient even if the interpolatory
smoothing should be restricted to low order derivative estimates. The non-
interpolatory smoothing seems more efficient than the interpolatory one. This
could be expected in relation to the stability of the multi-scale framework up
to higher order of derivatives for the non-interpolatory scheme (see comment
in 2.1). Those results validate the smoothing process developed in this paper.
The resulting improvement of friction estimations along a wellbore using this
process is now studied.

3.2 Application to a Three-dimensional Trajectory Derived from
Survey Measurements

In this section, the smoothing process is applied on reconstructed trajectories
of a real wellbore. The three-dimensional trajectory Γ considered is now

described by Γ(s) =

⎛
⎝X(s)

Y (s)
Z(s)

⎞
⎠ for s ∈ {si}N

i=0 such that Δsi := si − si−1 =

1 m for all i ∈ {1, . . . , N}.
The smoothing process is applied to each coordinate with ε = 0.1 m

and jmax = 8. An important difference with Section 3.1 is that the original
trajectory is not known. Indeed, for this real well, the only available data are a
set of measurements {si, ϕi, αi}N

i=0 as described in Section 1.2, with no other
way to estimate the trajectory than using reconstruction methods.

A reference trajectory is required to compare trajectory derivatives before
and after smoothing. Since the (MCM) is the standard reconstruction method
in the Oil and Gas industry and has proven its reliability on bottom hole
location estimation, the (MCM) reconstructed trajectory will be considered as
the reference wellbore trajectory.
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Figure 8 Comparison of the trajectory derivatives estimates along the trajectory reconstructed
from noisy survey measurements. From top to bottom: curvature, first derivative of the
curvature, second derivative of the curvature, torsion, and first derivative of the torsion. Each
colour stands for a different reconstructed trajectory with no further smoothing.

Thus, (MCM) is first used for reconstruction of the reference trajectory
from the set of measurements {si, ϕi, αi}N

i=0. Then, noise is added to these
survey measurements. Using the accuracy mentioned in 1.1, the noise added
to each position every 10 m of arc length is a uniform noise of amplitude 1 cm.
This noise is then cumulated for every bit depth si throughout the wellbore.
For inclination angles (resp. azimuth angles), a Gaussian noise is applied with
standard deviation σ = 0.5

3 (resp. σ = 2
3) centred around each measurement

ϕi (resp. αi).
Derivatives estimates for each trajectory reconstructed from noisy survey

measurements are compared. The results are given in Figure 8 for the curvature
k and the torsion τ .

The conclusions of this comparison are the following:

• Curvature estimates are close for every trajectory; however, local ampli-
tudes in curvature derivatives can be very different for each trajectory,
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in particular for spline-based reconstructed trajectories (SIT and ASC)
where amplitudes can be 10 times higher than for the others. Note that
these trajectories are the most regular ones.

• The same dispersion for torsion and its derivative can be noted; the
problem is even worse as torsion variations can be drastically different
from one trajectory to another, without any way to decide if one trajectory
provides better estimations than the other.

These results illustrate well the need to get a reliable method to estimate
derivatives up to 4th order. To observe the efficiency of the multi-scale
smoothing process, Figure 9 compares different derivatives estimates:

• From the reference trajectory reconstructed using (MCM);
• From the trajectory reconstructed from noisy measurements using (ASC);
• From interpolatory and non-interpolatory smoothings of the (ASC)

trajectory reconstructed from noisy measurements.

The improvement performed by smoothing is very significant.

Figure 9 Comparison of the trajectory derivatives estimates using the (ASC) reconstructed
trajectory. From top to bottom: curvature, first derivative of the curvature, second derivative
of the curvature, torsion, and first derivative of the torsion.
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Again, higher derivatives estimates are better when applying the non-
interpolatory scheme than when applying the interpolatory one.

3.3 Impact on Friction Estimate

Friction estimates along each wellbore trajectory are now compared. As
mentioned in Equations (3), more parameters need to be defined: E =
2.1 × 1011 Pa (pipes Young modulus), ρsteel = 7850 kg.m−3 (pipes density),
g = 9.80665 m.s−2 (gravity acceleration), fp = ρsteel × g (pipes volumic
weight), ρmud = 1200 kg.m−3 (fluid density). Finally, the simplified and
realistic drillstring used is illustrated in Figure 10.

Again, the (MCM) reconstructed trajectory is chosen as the reference tra-
jectory before adding noise to the survey measurements following Section 3.2.
Using the friction model described in Equations (3) with the parameters
above defined, surface pipe tension and pipe torque at different bit depths
are calculated using3 f∗

a = 0.20 and f∗
r = 0.25. These synthetic surface

parameters will be considered as reference surface measurements in the
sequel. Then the T&D model is used for each trajectory (smoothed or not)
reconstructed from the noisy survey measurements, varying the values of
fa and fr. For each trajectory, the goal is to find the pair (fa, fr) which
best matches with the surface measurements, as illustrated in Figure 11
where each line of the graphs stands for one value of the coefficient
fa or fr.

The locations of interest stand between 700 m and 1200 m, as there is not
enough difference in surface estimations for shallower regions. The objective
is far from being fulfilled before smoothing as can be seen on Figure 11, mainly
for fr calibration related to (ASC) reconstruction.

Figure 10 Illustration of the drillstring dimensions used for the simulations.

3In practice, calibrated f∗
a and f∗

r are not equal to each other.
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Figure 11 Torque and Tension surface measurements (dots) compared to the T&D model
predictions (lines) for the (ASC) reconstructed trajectory. Each line of the graphs stands for a
different friction factor from 0 to 0.30 with a 0.01 step. Predictions using the friction factors
used to generate the surface data (0.20 for axial and 0.25 for rotational) are represented with
bold lines on each graph. The left (resp. right) graphs are forecast surface pipe tensions (resp.
surface torques) associated to different bit depths and axial movements. The upper (resp. lower)
graphs are the Torque and Tension estimations from the non-smoothed (resp. smoothed) (ASC)
reconstructed trajectory.

As it was not possible to calibrate a single friction factor in this depth
interval for all the reconstruction methods, an interval of extreme values has
been determined. The corresponding results appear in Table 1.

The friction factors intervals obtained before smoothing the trajectories are
very different according to the reconstruction method. For instance, friction
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Table 1 Calibrated friction factors intervals depending on the reconstruction method used
and the subsequent smoothing applied. Real values are 0.20 for axial and 0.25 for rotational

Process Friction MCM-QUM MTM SIT ASC
None Axial [0.17; 0.19] [0.10; 0.13] [0.04; 0.07] [0.05; 0.08]

Rotational [0.21; 0.23] [0.12; 0.17] [0.05; 0.08] [0.06; 0.10]

Interp. Axial [0.15; 0.18] [0.14; 0.18] [0.13; 0.17] [0.13; 0.17]

Rotational [0.18; 0.23] [0.18; 0.23] [0.15; 0.21] [0.12; 0.21]

Non-interp. Axial [0.19; 0.21] [0.18; 0.21] [0.18; 0.20] [0.18; 0.20]

Rotational [0.23; 0.26] [0.23; 0.26] [0.22; 0.25] [0.23; 0.25]

factors are twice smaller using (SIT) than using (MCM), which is nonsense
given that the bit location is the same for both trajectories.

These gaps between reconstructions are much smaller after applying the
interpolatory smoothing. Indeed, the coefficients intervals after smoothing
now all include common values (0.15−0.17 for axial and 0.18−0.21 for
rotational). However, the common values do not match the values used to
generate the surface data.

Using the non-interpolatory smoothing, not only the intersection of the
intervals is not empty, but the values used to generate the data also belong
to it. Furthermore, the interval bounds are the same for all the smoothed
reconstructions. This last smoothing is therefore very efficient for friction
estimations independently from the reconstruction method initially used.

For both processes, the intervals cover friction factor values higher than
before applying the smoothing process, which could be expected. Indeed,
the existence of a stable multi-scale framework for the divided differences is
linked to the regularity of the output trajectory of the smoothing process. Since
the trajectory is more regular after applying the smoothing process, smaller
contact efforts are generated according to the T&D model.

4 Conclusion and Perspectives

In this paper, a new process for the evaluation of friction inside a wellbore from
surface measurements has been derived. It allows a stable and satisfactory
calibration of friction factors that are essential parameters for the drilling
monitoring, regardless of the trajectory reconstruction initially used.

This new process is based on a multi-scale smoothing of trajectories using
subdivision schemes. Tests and applications on real trajectories reveal the
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efficiency of the method and showed that high order subdivision schemes
(here non-interpolatory Lagrange scheme) should be preferred to others.

Improvements can be proposed in different directions:

(1) The choice of the tolerance ε > 0 was not discussed in this publication.
It could be adapted according to the local curvature along the trajectory,
as developed in Garcia (2019).

(2) The smoothing step currently implemented acts independently on each
coordinate with the same tolerance ε > 0, so it forces a point Γ(sk) of the
smoothed trajectory to stand in a 2ε-side cube centred around Γ(sk). This
criterion, simple to implement and already efficient, was chosen as a first
approximation to test the algorithm. To include a more realistic physics of
the smoothing process, the cube could be replaced by an axially oriented
circular cylinder of height h > 0 and radius r > 0, with r related to
the radial clearance between the pipes and the wellbore, and h linked to
pipes length uncertainty.

(3) Subdivision schemes with higher order p for quasi-reproduction of poly-
nomials should be used to control derivatives estimates after smoothing
up to order 4 (see Garcia, 2019).

Appendix A. Friction Model

In the Serret-Frénet frame (�t, �n,�b) associated to the wellbore trajectory, the
following hypotheses are made:

• The drillstring is an elastic beam with section So − Si, Young modulus
E and second momentum of area I;

• The contact between the drillstring and the wellbore is continuous;
• Axial and rotational pipe/wellbore friction coefficients fa and fr are

separately defined;
• The drilling fluid has a constant mud weight ρmud both inside and outside

the pipe;
• Viscous drag from the fluid is not considered;
• Precession angle ϑ, as introduced by Mitchell & Samuel (2007) is also

considered (cf. Figure 2);
• kro << 1 and τro << 1,

Efforts and momentum involved in the balances are listed below:

• Effective tension along the pipes �T ∗ := �T + (poSo − piSi)�t =
(T ∗, Tn, Tb);
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• Momentum of the pipes �M = (−Mt, 0, EIκ);
• Pipe buoyed lineic weight �w = (ρsteel − ρmud)(So − Si)g�k =

(wt, wn, wb) where ρsteel is the pipe density;
• Lineic pipe/wellbore contact normal force �fc = fc(0,− cos(ϑ), sin(ϑ));
• Lineic pipe/wellbore friction force �fcf = −fc(fa, fr sin(ϑ), fr cos(ϑ)).

Then, steady-state forces and momentum balances are given by:{
( �T ∗)′ + �fc + �fcf + �w = �0,

�M ′ + �t × �T ∗ + �ro × (�fc + �fcf ) = �0.
(A1)

According to Figure 2, �ro = ro(0, cos(ϑ), − sin(ϑ)). Then the following
system of 6 equations is obtained, by projection of Equations (A1) in the
Frénet-Serret frame:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T ∗)′ − κTn + wt − fafc = 0,

T ′
n − κT ∗ − τTb + wn − fc(cos(ϑ) + fr sin(ϑ)) = 0,

T ′
b + τTn + wb + fc(sin(ϑ) − fr cos(ϑ)) = 0,

−M ′
t − rofrfc = 0,

−κMt − EIκτ − Tb + rofafc sin(ϑ) = 0,

EIκ′ + Tn + rofafc cos(ϑ) = 0.

(A2)

Tn and Tb, so as T ′
n and T ′

b, can be derived from the two last Equations of (A2):

{
Tn = −EIκ′ − rofafc cos(ϑ),

Tb = −κM ′
t − EIκτ + rofafc sin(ϑ).

(A3)

Equations (A3) are then derivated:⎧⎪⎪⎨
⎪⎪⎩

T ′
n = −EIκ′′ − (rofafc cos(ϑ))′,

T ′
b = −κ′(Mt + EIτ) − κM ′

t − EIκτ ′

+ (rofafc sin(ϑ))′,

(A4)

where M ′
t can be replaced by its expression from the 4th Equation of (A2).
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Equations (A3) and (A4) are inserted into the 4 first equations of (A2).
Neglecting terms with κro and τro, the following system is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ∗′ + EIκκ′ + wt − fafc = 0,

M ′
t + rofrfc = 0,

wn + κ(T ∗ + τ(Mt + EIτ)) − EIκ′′ − (rofafc cos(ϑ))′

= fc(fr sin(ϑ) + cos(ϑ)),

wb + κ′(Mt + 2EIτ) − EIκτ ′ + (rofafc sin(ϑ))′

= fc(fr cos(ϑ) − sin(ϑ)).

(A5)

Finally, neglecting (rofafc cos(ϑ))′ and (rofafc cos(ϑ))′, 3rd and 4th
equations of (A5) provide the expression of the lineic normal contact effort
fc. Therefore the complete system of equations is given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T ∗′ + EIκκ′ + wt − fafc = 0,

M ′
t + rofrfc = 0,

fc =
√

[wn+κ(T ∗+τ(Mt+EIτ))−EIκ′′]2+[wb−κ′(Mt+2EIτ)−EIκτ ′]2
1+f2

r
.

(A6)

Appendix B. Adaptation of the Smoothing Algorithm to a
Finite Length Input Sequence

The multi-scale analysis of a unidimensional trajectory introduced in Sec-
tion 2 has entirely been developed for the case of an infinite sequence
X0 = (X0

k)k∈Z. In practice, the trajectory is defined through a finite sequence
X0 = (X0

k)0≤k≤N ∈ R
N+1. This situation requires some adaptations at the

edges and some limitations linked to the number of points.

B.1. Edges Adaptations

Equations (5) to (10) involving centred stencils with 4 or 8 points are only
valid for points having at least 2 or 4 neighbours at both sides. This condition
is automatically fulfilled at any position for an infinite sequence of points but
is no longer valid in the case of a finite sequence for points close to both
ends of the sequence. Therefore, operators h and h̃ must be redefined at edges
(Kui, 2018). For sake of simplicity, only the left edge adaptation is detailed
(the right edge adaptation is derived by symmetry). Equations (B1) to (B3)
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give the relations for the interpolatory and non-interpolatory schemes for the
first points:

• Interpolatory initial Decimation: unchanged;
• Interpolatory initial Subdivision:

(hXj−1)0 = Xj−1
0 (unchanged)

(hXj−1)1 =
1
16

(
Xj−1

0 − 5Xj−1
1 + 15Xj−1

2 + 5Xj−1
3

) (B1)

• Non-Interpolatory initial Decimation:

(h̃Xj)0 =
1
16

(
5Xj

0 + 15Xj
1 − 5Xj

2 + Xj
3

)
(h̃Xj)0 =

1
16

(
Xj

0 − 5Xj
1 + 15Xj

2 + 5Xj
3

) (B2)

• Non-Interpolatory initial Subdivision:

(hXj−1)0 =
1

128

(
195Xj−1

0 − 117Xj−1
1 + 65Xj−1

2 − 15Xj−1
3

)
(hXj−1)1 =

1
128

(
77Xj−1

0 + 77Xj−1
1 − 33Xj−1

2 + 7Xj−1
3

)
(hXj−1)2 =

1
128

(
15Xj−1

0 + 135Xj−1
1 − 27Xj−1

2 + 5Xj−1
3

)

(B3)

Similarly, aj
0 must be redefined as aj

0 = 4j(2Xj
0 − 5Xj

1 + 4Xj
2 − Xj

3).
Given this complementary set of relations, Equations (9) and (10) express-

ing second derivatives (aj
k)k at level j as a subdivision of second derivatives

(aj−1
k )k at level j − 1 plus errors can be generalized as follows:

Interpolatory scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aj
2k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aj−1
0 − 4j [5ej

1 + ej
3], k = 0

1
4

(
−aj−1

k−1 + 6aj−1
k − aj−1

k+1

)
+ 4j [ej

2k−1 + ej
2k+1],

k ∈ {1, . . . , N − 1}
aj−1

N − 4j [ej
2N−3 + 5ej

2N−1], k = N

aj
2k+1 =

1
2
(aj−1

k + aj−1
k+1) − 4j2ej

2k+1, k ∈ {0, . . . , N − 1}

(B4)
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Non-interpolatory scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aj
2k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(5aj−1

0 − aj−1
1 ) + 4j [2ej

0 − 5ej
1 + 4ej

2 − ej
3], k = 0

1
32

(3aj−1
k−1 + 34aj−1

k − 5aj−1
k+1) + 4j [ej

2k−1 − 2ej
2k + ej

2k+1],

k ∈ {2, . . . , N − 3}
1
4
(aj−1

k−1 + 3aj−1
k ) + 4j [ej

2k−1 − 2ej
2k + ej

2k+1],

k = 1, N − 2, N − 1

aj
2k+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(3aj−1

k + aj−1
k+1) + 4j [ej

2k − 2ej
2k+1 + ej

2k+2],

k = 0, 1, N − 2

1
32

(−5aj−1
k−1 + 34aj−1

k + 3aj−1
k+1) + 4j [ej

2k − 2ej
2k+1

+ ej
2k+2], k ∈ {2, . . . , N − 3}

1
4
(−aj−1

N−2 + 5aj−1
N−1) + 4j [−ej

2N−4 + 4ej
2N−3 − 5ej

2N−2

+2ej
2N−1], k = N − 1

(B5)

B.2. Number of Values

Since the smoothing process should be applied while drilling, the number
of points of the sequences is supposed to vary. In order to apply one
decomposition step of the multi-scale analysis using the interpolatory (resp.
non-interpolatory) schemes to a sequence of N + 1 points, N must be even
(resp. odd). Iterating the argumentation, jmax > 0 consecutive decomposition
steps can be applied iff ∃n ∈ N such that:

• N + 1 = n × 2jmax + 1 using the interpolatory scheme;
• N + 1 = n × 2jmax using the non-interpolatory scheme.

If N does not fulfil these conditions, extra values X0
k with k < 0

and k > N can be generated and aggregated to (X0
k)k

k=0 ∈ R
N+1 over the

edges 0 and N . A linear extrapolation of degree 1 is proposed, until reaching
the first number N ′ of values which fulfils the previous conditions. For a real
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three-dimensional wellbore trajectory, the new values for k < 0 are usually
given by (x0

k = 0, y0
k = 0, z0

k = k). Conversely, given N , the previous
conditions provide an upper bound for the choice of jmax.

As noted earlier, the interpolatory smoothing is not translation invariant
and does not give the same weight to every point of the trajectory. Indeed,
some points are kept identical throughout the multi-scale decomposition, even
if they are very noisy. Advantage can be taken from adding points at each
endpoint of the trajectory, to harmonize the weights given to each point.

Supposing that m values are missing from the N + 1 values to reach
the required number of values, it is possible to add m values at both edges
of the original trajectory (X0

k)k
k=0 ∈ R

N+1, which becomes (X0
k)N+m

k=−m ∈
R

N+2m+1. Then, the multi-scale algorithm can be applied to each sequence
of N + m + 1 consecutive points in the set

{
(X0

k)N+i
k=−m+i; i ∈ {0, . . . , m}}

.
Since each sequence includes the original trajectory location 0 ≤ k ≤ N , the
required smoothed trajectory can be defined as the average of all the previous
smoothed sequences at these locations (after removing the 2m added points
for k < 0 and k > N ).

B.3. Adaptation for Varying Values of the Length
of the Sequence

Depending on the depth of the last survey measurement, the number N + 1
of points in the discretization of the trajectory is varying. The number m of
points to be generated at each endpoint of the trajectory depends on N , i.e.
on the depth of the last survey measurement. Since m is also the number of
trajectories averaged at the end of the process, the quality of the smoothing
process could depend on N .

To have a smoothing process independent from the length of the sequence,
it is possible to systematically average the same number p of smoothed
sequences:

• m = p: the current process already averages p sequences to provide the
required smoothed trajectory;

• m > p: as more than p could be averaged, a criterion must define
the p sequences to average; for example, the p sequences that are best
centred around the points (X0

k)N
k=0 can be chosen, or the p sequences(

(X0
k)N+i

k=−m+i

)p−1
i=0 in which the position of the points with k < 0 is well

known in the case of a wellbore trajectory;
• m < p: this case can be treated like the case m > p by extrapolating

2jmax more points at each endpoint of the trajectory.
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