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Abstract

The current contribution is centered on bending of rectangular plates using the
finite element method in the strain-gradient elasticity. To this aim, following
introducing stresses and strains for a plate based on the Kirchhoff hypothesis,
the principle of the virtual work is adopted to derive the weak form. Building
upon Hermite polynomials and by deeming convergence requirements, four
rectangular elements for the static analysis of strain-gradient plates are
presented. To explore the performance of the proposed elements, particularly
in small scales, some problems are solved and the results are compared with
analytical solutions.

Keywords: Strain-gradient Elasticity, Finite Element Method, Kirchhoff
plate.

1 Introduction

Albeit the classical continuum mechanics is valid for most analyses in large
scales, it fails for problems in small scales. There are some evidences for short-
comings of the classical mechanics (Stolken and Evans, 1998; Hutchinson,
2000; Lam, Yang, Chong, Wang and Tong, 2003; Haque and Saif, 2003).
Fleck, Muller, Ashby and Hutchinson (1994) conducted some experiments
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on the plastic torsion of wires in small scales and showed that the stiffness
of the material is higher than the prediction of the classical mechanics. The
strain-gradient theory elaborated by Mindlin (1964) and Mindlin and Eshel
(1968) is able to predict the response of an object in the small scale accurately
(Aifantis, 2003). It is worthy of note that Mindlin (1964) firstly developed the
theory of elasticity with microstructure by the inclusion of a micro-volume in a
particle defined in the macro-medium. Finally, by making some assumptions,
three simpler models were derived from the original theory of elasticity with
microstructure.Aifantis (1992) proposed the simple, robust model in which the
only unconventional material constant is the so-called material length-scale
parameter. Due to its simplicity and robustness, the model has been widely
used in the analyses associated with the strain-gradient elasticity (Ru and
Aifantis, 1993; Aifantis, 2009; Aravas, 2011; Beheshti, 2017a).

The static analysis of plates in the gradient elasticity has been addressed
by some researchers. Papargyri-Beskou and Beskos (2008) extracted the
partial differential equations as well as the boundary conditions for a flexural
plate allowing for the Kirchhoff model and provided analytical solutions
to the simply supported rectangular plate. Later, Lazopoulos (2009) devel-
oped a formulation for the bending of strain-gradient Kirchhoff plates and
derived the differential equation and boundary conditions. Further, building
upon the strain-gradient elasticity model presented by Lam et al. (2003),
Wang, Zhou, Zhao and Chen (2011) studied the size-dependent behavior of
simply-supported Kirchhoff plates analytically.

It should be pointed out that analytical techniques often work on simple
geometries, boundary conditions, and loadings specially for strain-gradient
elasticity in which the gradient of the strain tensor plays an important role.
Consequently, a reliable numerical method is an asset for solving complex
problems. In this paragraph, the most important works in the numerical
analysis of gradient elasticity are introduced briefly. Shu, King and Fleck
(1999) and subsequently Amanatidou and Aravas (2002) developed mixed
finite element formulations based on C0 interpolation functions for the analysis
of two-dimensional strain-gradient solids. In Papanicolopulos, Zervos and
Vardoulakis (2009), a C1-continuous finite element for the three dimensional
analysis of solids was developed. Fischer, Mergheim and Steinmann (2010)
made use of three different C1-continuous finite elements to analyze the large
deformation of strain-gradient solids and compared their results with those
based C1 Natural Element Method. Askes, Morata and Aifantis (2008) split
the fourth-order equations of gradient elasticity into two sets of second-order
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equations and devised C0 strain-gradient elements. Furthermore, use was
made of the Hermite polynomials to elaborate high-order elements for the
deformation analysis of solids, bars, beams, and plates by Beheshti (2016,
2017b, 2018a, b). Additionally, the Isogeometric Analysis has also been used
in the analyses associated with the gradient elasticity. In this regard, Niiranen,
Kiendl, Niemi and Reali (2017) addressed the sixth-order boundary value
problem connected with the gradient Kirchhoff plate in bending using the
Galerkin-type isogeometric analysis. Interested readers on numerical schemes
in strain-gradient elasticity are recommended to study Tsinopoulos, Polyzos
and Beskos (2012) and Singh, Nair, Rajagopal, Pal and Pandey (2018).

The objective of the current contribution is presenting four novel
rectangular elements for the bending analysis of rectangular plates with an
emphasis on the convergence requirements. In Section 2, building upon the
Kirchhoff plate model, the strain field and then the stress field accounting for
the constitutive equations in the strain-gradient elasticity are derived. Section 3
in which the weak form for the bending of the strain-gradient plate is given
is followed by Section 4 that is centered on the finite element formulation
of the problem and introducing the rectangular elements. Afterwards, some
numerical examples are solved by using the developed elements in Section 5.
Finally, a conclusion is presented in Section 6.

2 Kirchhoff Plate Model

In this section, building upon the Kirchhoff plate model along with constitutive
equations in the strain-gradient elasticity, the strains, strain-gradients, stresses
and double stresses for the bending of a plate are presented. Also, for the
notational convenience, it is supposed that, in the present contribution, Greek
subscripts take the values of 1 and 2 and Latin subscripts take the values
of 1, 2 and 3.

2.1 Components of Strain Tensors

In the Kirchhoff plate model, which is widely used for this plates, cross sections
normal to the midsurface in the underformed state remains straight and per-
pendicular to the deformed midsurface after deformation. Additionally, it is
assumed that the thickness of the plate does not alter during the deformation.
These simplifications yield following strain field (Ugural, 1981):

εαβ = −x3w,αβ , (1)
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where w is the deflection of the midsurafce. Also, it must be noted that the axis
x3 is in the thickness direction and the x1x2-plane coincides with the middle
plane.

To proceed with the derivation of strains, it should be noted that the
gradient of the infinitesimal strain tensor, ξijk = εjk,i, features promi-
nently in the Form II of the strain-gradient theories developed by Mindlin
(1964) and Mindlin and Eshel (1968). The non-vanishing components of the
strain-gradient tensor are

ξγαβ = −x3w,γαβ , ξ3αβ = −w,αβ . (2)

Now, all non-zero components of strain and strain-gradient tensors are
accomplished and by inserting them in constitutive equations stress and
double stress tensors are achieved.

2.2 Components of Stress Tensors

Building upon the aforementioned strain field, it is very straight-forward to
extract the stress field allowing for the strain-stress relations in the linear
elasticity. For the analysis of a thin plate, the following stress field can be
presented (Ugural, 1981):

σ11 =
E

(1 − ν2)
[ε11 + νε22], σ22 =

E

(1 − ν2)
[νε11 + ε22],

σ12 =
E

(1 + ν)
ε12.

(3)

As for the double stress tensor, the nonzero components are (Aravas, 2011)

μi11 =
El2

(1 − ν2)
[ξi11 + νξi22], μi22 =

El2

(1 − ν2)
[νξi11 + ξi22],

μi12 =
E

(1 + ν)
ξi12.

(4)

where l is the so-called material length scale parameter in the strain-gradient
elasticity.

It is worthwhile to note that the stress-strain relations above are on basis
of simple, robust strain gradient theory proposed by Aifantis (1992). In the
model, the components of the double-stress tensor are

μijk = l2(λδjkξipp + 2Gξijk), (5)

where λ stands for the Lame’s constant and G is the shear modulus.
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3 Variational Formulation

To derive the weak form associated with the small deformation of a plate
in bending, the principle of virtual work (PVW) is adopted in current
contribution. For the static state, PVW says that the variation of the strain
energy is equal to the variation of the work done by external loadings,
δU = δW . The variation of the strain energy for the strain-gradient plate
reads

δU =
∫

v
{σαβδεαβ + μiαβδξiαβ} dV︸︷︷︸

dAdx3

. (6)

By considering the stress and strain fields, it is plausible to integrate the relation
above over the thickness direction. Before proceeding with the procedure, let
us introduce the following resultants:

Mαβ =
∫

t
σαβx3dx3, Sγαβ =

∫
t
μγαβx3dx3, P3αβ =

∫
t
μ3αβdx3,

(7)
where t stands for the thickness of the plate.

It is beneficial to arrange relations above in the matrix form for the FE
formulation. Hence, the total resultant vector is made of the aforementioned
resultants. It is

Q = {M̃
T
, S̃

T
, P̃

T }T , (8)

with

M̃ = {M11, M22, M12}T , S̃ = {S111, S122, S211, S222, S112, S212}T ,

P̃ = {P311, P322, P312}T . (9)

Additionally, the resultant vectors can be expressed by

M̃ = −D1κ1, S̃ = −D2κ2, P̃ = −D3κ1, (10)

where the material matrices are

D1 =
t2

12l2
D3 = D

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1 − ν)/2

⎤
⎦ ,

D2 = Dl2

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ν 0 0 0 0
ν 1 0 0 0 0
0 0 1 ν 0 0
0 0 ν 1 0 0
0 0 0 0 (1 − ν2)/2 0
0 0 0 0 0 (1 − ν2)/2

⎤
⎥⎥⎥⎥⎥⎥⎦ , (11)
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D = Et3/12(1− ν2) is the flexural rigidity of the plate and the strain vectors
are

κ1 = {w,11, w,22, 2w,12}T , (12)

κ2 = {w,111, w,122, w112, w,222, 2w,112, 2w,122}T . (13)

In addition, by substituting Equation (10) in Equation (8), the alternative form
of the total resultant vector is accomplished as follows:

Q = −Dκ (14)

with

D =

⎡
⎣ D1 0 0

0 D2 0
0 0 D3

⎤
⎦ and κ = {κT

1 ,κT
2 ,κT

1 }T . (15)

Finally, the variational strain energy can be rewritten in the following form:

δU =
∫

A
δκT DκdA. (16)

As for the variational external work, it reads

δW =
∫

A
pδwdA (17)

where p is the distributed, transverse load exerted to the middle surface of the
plate.

The matrix form of the variational strain energy and the variational external
work ease construction of the stiffness matrix and the load vector in the finite
element method presented in the next section.

4 Finite Element Formulation

In this section, all procedures associated with the development of the elements
for the static analysis of a plate in the gradient elasticity are presented.
Following introduction of the approximated deflections of the plate based
on the finite element method, the associated shape functions for the four
rectangular plate elements are presented. Subsequently, by exploiting the
relations derived in the previous section, the stiffness matrix and the load
vector are submitted. Two issues should be dealt with herein. The novelty
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of present work is attributed to the four rectangular plate elements for static
analysis of Kirchhoff plates in the strain-gradient elasticity. It is crucial to
mention that a majority of finite element analyses conducted in the area of
gradient elasticity are centered on two- and three-dimensional solids and
beams. Also, the data presented in the numerical section can be used by future
studies for comparison purposes and for checking the performance of the
proposed elements, results from the FE plates are compared with analytical
solutions in detail.

4.1 Displacement Approximation

Without dealing with details, we directly focus on the approximated
displacement for the four-node rectangular elements designed in the current
contribution. Recall from textbooks in finite element method that three require-
ments should be satisfied to construct a reliable, accurate element (Hughes,
1987). Briefly, those are continuation of a variable in the element and more
importantly in the element boundaries and completeness of shape functions.
In the present work, we base the shape functions on the Hermite polynomials
and try to explore the convergence of the rectangular elements allowing for the
requirements. Four rectangular plate elements with three, four, six and nine
degrees of freedom per node are presented herein and those are abbreviated
to P3, P4, P6 and P9, respectively. It is worthy of note that the four nodal
points are in the corners of the rectangle. Furthermore, it must be pointed out
that we do not define a parent element in the current FE formulation and the
elements are defined with respect to the local coordinate system located in
the bottom left corner of the rectangular element. The approximated field can
be introduced as follows:

w∗
e =

2∑∑∑
i=1

2∑∑∑
j=1

H∗T
ij w∗

ij , (18)

where the asterisk must be replaced with P3, P4, P6 and P9.
Furthermore, the shape function vectors are

HP3
ij = {H11

0i H12
0j , H11

1i H12
0j , H11

0i H12
1j }T , (19)

HP4
ij = {H11

0i H12
0j , H11

1i H12
0j , H11

0i H12
1j , H11

1i H12
1j }T , (20)
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HP6
ij = {H11

0i H12
0j , H11

1i H12
0j , H11

0i H12
1j , H11

1i H12
1j , H21

2i H22
0j , H21

0i H22
2j }T ,

(21)

HP9
ij = {H11

0i H12
0j , H11

1i H12
0j , H11

0i H12
1j , H11

1i H12
1j , H21

2i H22
0j , H21

0i H22
2j ,

H21
2i H22

1j , H21
1i H22

2j , H21
2i H22

2j }T , (22)

and the nodal generalized-displacement vectors have the following forms for
every element:

wP3
ij = {wij , w,1ij , w,2ij}T , (23)

wP4
ij = {wij , w,1ij , w,2ij , w,12ij}T , (24)

wP6
ij = {wij , w,1ij , w,2ij , w,12ij , w,11ij , w,22ij}T , (25)

wP9
ij = {wij , w,1ij , w,2ij , w,12ij , w,11ij , w,22ij , w,112ij , w,122ij , w,1122ij}T .

(26)

Also, the subscripts i and j appearing in the above relations determine the node
position in the rectangular elements, see Figure 1. For instance, the pair (2,2)
indicates that the corresponding node is located in the top right corner of the
rectangular element.

As for the above-mentioned shape functions, the Hermite polynomials are
taken into account. Suppose that two points are located on the axis xγ , γ is
an integer (say 1 or 2), one is at the origin and the other is at the distance of
aγ from the origin in the positive direction. The following one-dimensional

x1

x2 wij w,1ij w,2ij w,12ij w,11ij w,22ij w,112ij w,122ij w,1122ij

11 21

2212

P9

wij w,1ij w,2ij w,12ij
wij w,1ij w,2ij w,12ij w,11ij w,22ij

wij w,1ij w,2ijP3
P4
P6

Figure 1 Rectangular plate elements.
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functions accounting for imposed conditions on the third-order and fifth-order
polynomials and their derivatives can be presented (Bogner, Fox and Schmit,
1966).

H1γ
01 = (2x3

γ − 3aγx2
γ + a3

γ)/a3
γ , H1γ

02 = −(2x3
γ − 3aγx2

γ)/a3
γ ,

H1γ
11 = (x3

γ − 2aγx2
γ + a2

γxγ)/a2
γ , H1γ

12 = (x3
γ − aγx2

γ)/a2
γ ,

(27)
and

H2γ
01 = (a5

γ − 10a2
γx3

γ + 15aγx4
γ − 6x5

γ)/a5
γ ,

H2γ
02 = (10a2

γx3
γ − 15aγx4

γ + 6x5
γ)/a5

γ ,

H2γ
11 = (a4

γxγ − 6a2
γx3

γ + 8aγx4
γ − 3x5

γ)/a4
γ ,

H2γ
12 = (−4a2

γx3
γ + 7aγx4

γ − 3x5
γ)/a4

γ ,

H2γ
21 = (a3

γx2
γ − 3a2

γx3
γ + 3aγx4

γ − x5
γ)/2a3

γ ,

H2γ
22 = (a2

γx3
γ − 2aγx4

γ + x5
γ)/2a3

γ .

(28)

Recall that the local coordinate system is at the left, bottom corner of the
rectangular element so that x1 and x2 are parallel to the horizontal and vertical
axes, respectively. Thus, a1 and a2 are the element length along x1 and x2
axes, respectively. For finding details about the derivation of the Hermite
polynomials above, refer to the work of Bogner, Fox and Schmit (1966).
Clearly, by multiplication of the one-dimensional Hermite polynomials, the
appropriate shape functions for the analysis of the plate are derived.

4.2 Stiffness Matrix and Load Vector

As noted before, in the FE formulation herein no parent space is defined and
all calculations are defined with respect to the local coordinate system in each
element. In addition to the local coordinate system, it is assumed that there is
a global coordinate system that is aligned with the local ones.

The first step for extracting the stiffness matrix is inserting the
approximated deflection field, i.e. Equation (18), into the strain vectors, i.e.
Equations (12) and (13), then the result in the total strain vector κ. It yields

κe = BWe, (29)

with
We = {w11, w12, w22, w21}T , (30)
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that We is the element generalized-displacement vector. Note that for
convenience, the superscript associated with the element type has been
eliminated.

By inserting Equation (29) into Equation (16), the variational strain energy
for every element can be obtained

δUe =
∫

Ae

δκT
e Dκedx1dx2 = δWT

e KeWe with

Ke =
∫

Ae

BT DBdx1dx2, (31)

where Ke is the stiffness matrix for a typical element. It worthy of note that a
definite analytical integration is implemented to calculate the stiffness matrix
rather than a numerical integration. By applying the same procedure, the force
vector for an element can be derived. It reads

δWe = δWT
e Fe with Fe =

∫
Ae

pHedx1dx2 and

He = {HT
11,H

T
21,H

T
22,H

T
12}T (32)

Finally, by bearing in mind the principle of the virtual work, the final matrix
equation is KW = F where K, F and W are the assembled stiffness matrix,
the assembled load vector, and the assembled generalized-displacement
vector, respectively.

4.3 Convergence Requirements

In this section, the requirements associated with the convergence of elements
are studied in detail. Those involve the continuity of the field in the element,
continuity of the field along the element interfaces, and completeness of the
variable. The first requirement is not challenging and it is easily satisfied for
all elements developed herein. However, the last two conditions are not very
simple to fulfill. Thus, a topic has been devoted to those.

4.3.1 P3 element
For the element with three degrees of freedom per node, by expanding
the approximated field for the deflection of the plate it is concluded that,
in the element interface, the deflection is a function of nodal DoF in the
same interface, accordingly continuous between two adjacent elements. Also
it must be mentioned that the first normal derivatives of the deflection is
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continuous along the common side, but the second normal derivatives do
not satisfy the compatibility of the element. Another crucial topic is that
the proposed polynomial for the deflection does not meet the completeness
condition, in the sense presented by Bogner, Fox and Schmit (1966), i.e.
w(x1, x2) =

∑r̄
r=0

∑s̄
s=0 αrsx

r
1x

s
2 where r̄ and s̄ are the maximum power of

x and y in the approximated field.

4.3.2 P4 element
Let us focus on the element with four degrees of freedom per node. For this
case, the polynomial used to approximate the deflection is complete. But the
second normal derivative of the deflection is not continuous along the common
sides. Accordingly, the element does not satisfy the compatibility condition.
It must be pointed out that the major difference of the element with the P3
element is the completeness.

4.3.3 P6 element
It should be noted that the major idea of increasing the number of degrees
of freedom is satisfying the compatibility of elements given the highest order
of derivatives appearing in the weak form. The investigation into the element
P6 exhibits that it is continuous but incomplete. Thus, it fails to meet all
convergence requirements.

4.3.4 P9 element
Let us concentrate on the element P9. The element is not only compatible but
also complete. That is to say, deflection and its first and second derivatives
in every interface are defined with respect to the degrees of freedom in the
common nodes only, hence continuous along the common side. On the account
of the fact that the variational index is 3 in Equation (6) it is necessary to
fulfill the C2-continuity of the deflection in order to pass the compatibility
requirement. It is expected that the element is the most accurate one in
the current analysis. The critical information about the performance of the
elements is exposed in the numerical analyses.

5 Numerical Results

To explore the performance and validity of the proposed elements for the
small deformation analysis of the strain-gradient plates, some problems are
solved and the results are compared with the analytical strain-gradient and
classical solutions. In such a way, not only the convergence of the elements
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is studied but also the size-dependent behavior of plates in small scales are
taken into account. For reporting the result of plate deformation conveniently,
a non-dimensional displacement w̄ is defined. It is w̄ = 1000wD/Pa2 and
w̄ = 1000wD/pa4 for a square plate under the point force, P, and the pressure,
p, respectively. Further, in all analyses conducted in this section, it is supposed
that plates are squares with the length a and the ratio of length to thickness
is a/t = 100 satisfying the thin plate condition. In all examples, the material
parameters are E = 200 GPa, ν = 0.3 and l = 0.1 mm (Bagni, Askes and
Susmel, 2016). In addition, we focus on two types of boundary conditions
involving simply-supported and clamped ones. The former and the latter for
an edge along the x2 axis are defined as follows:

w = w,2 = w,22 = 0, (33)

w = w,2 = w,22 = w,1 = w,12 = w,122 = 0. (34)

By replacement of the subscript 1 with 2 and vice versa above the relation is
modified for an edge along x1 axis.

The nondimensional deflection of plates in different sizes is provided for
various elements in some tables. In addition, it is worth noting that the result
of different meshes has also been included in the tables.

5.1 Simply Supported Square Plates

The first example is about the deformation of simply supported plates. Since
the analytical solution for this type of plates is available to us, see the
Appendix, the problem is of great importance. In other words, the accuracy
and performance of all elements can be checked and the finite element
results can be compared with the analytical solutions. Two various loadings
involving the pressure and the central point force are considered and central
non-dimensional displacements are tabulated in Tables 1 and 2. Further, the
deformed shape of the plate under the loadings has been shown in Figure 2.
In these tables, in addition to the finite element solution for various meshes
and elements, the analytical strain-gradient and classical responses are also
incorporated.

The absolute error value of the element P3 is around 5 per cent for both
cases involving distributed and terminal loadings, hence it fails to predict
the response of the plates. As for the element P4, for both loads, the results
are stiffer than the analytical data and relative error is about 0.3%. For
the distributed and concentrated loadings, the element P6 has the error of
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Table 1 The nondimensional deflection of the plates at the center for simply supported plates
under pressure

w̄C†

Element Number of Elements (Ugural,
t/l Type 4×4 8×8 12×12 16×16 20×20 24×24 w̄ASG 1981)
1 P3 0.2926 0.2962 0.2966 0.2963 0.2958 0.2951 0.3124 4.06

P4 0.3097 0.3102 0.3108 0.3112 0.3114 0.3115
P6 0.3118 0.3123 0.3124 0.3124 0.3124 0.3124
P9 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125

2 P3 0.9510 0.9628 0.9642 0.9637 0.9625 0.9607 1.0155 4.06
P4 1.0067 1.0083 1.0103 1.0114 1.0120 1.0125
P6 1.0134 1.0149 1.0152 1.0153 1.0154 1.0154
P9 1.0155 1.0155 1.0155 1.0155 1.0155 1.0155

8 P3 3.2041 3.2454 3.2525 3.2543 3.2544 3.2537 3.4208 4.06
P4 3.3913 3.3971 3.4040 3.4078 3.4102 3.4119
P6 3.4140 3.4188 3.4199 3.4203 3.4205 3.4206
P9 3.4209 3.4209 3.4209 3.4209 3.4209 3.4209

128 P3 3.8024 3.8519 3.8611 3.8643 3.8658 3.8666 4.0594 4.06
P4 4.0244 4.0313 4.0395 4.0442 4.0471 4.0491
P6 4.0512 4.0570 4.0583 4.0587 4.0590 4.0591
P9 4.0594 4.0594 4.0594 4.0594 4.0594 4.0594

†The superscript C stands for the classical solution.

approximately −0.01% and −0.02%, respectively. Finally, the element P9
that meets all convergence requirements bears almost no error, say 0.001
percent.

The note the draws much attention is that the element P9 is completely
convergent even for small number of elements. Accordingly, the disadvantage
of the element which is high number of DoF is balanced by lower number
of elements. Further, as can be verified, it is the most accurate element, see
Figures 3 and 4 in which the relative error of the finite element method building
upon the central displacement is depicted versus total number of nodes.

Let us focus on the size-dependent behavior of the strain-gradient plates.
As is clear in Tables 1 and 2, by gradually increasing the ratio t/l, the strain-
gradient results tend towards the classical solutions, whereas for the small
value of t/l the strain-gradient response is stiffer than the classical one. That
is, in the case in which size of structure is sufficiently large, the classical and
strain-gradient results are identical.
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Table 2 The central nondimensional deflection for simply supported plates under concen-
trated force at the center

w̄C

Element Number of Elements (Ugural,
t/l Type 4×4 8×8 12×12 16×16 20×20 24×24 w̄ASG 1981)
1 P3 0.8294 0.8458 0.8484 0.8484 0.8474 0.8458 0.8919 11.59

P4 0.8745 0.8847 0.8875 0.8887 0.8893 0.8897
P6 0.8869 0.8905 0.8913 0.8916 0.8917 0.8918
P9 0.8911 0.8918 0.8919 0.8919 0.8919 0.8919

2 P3 2.6957 2.7495 2.7586 2.7594 2.7571 2.7530 2.8989 11.59
P4 2.8421 2.8755 2.8846 2.8885 2.8906 2.8919
P6 2.8826 2.8945 2.8969 2.8978 2.8982 2.8985
P9 2.8962 2.8985 2.8988 2.8989 2.8990 2.8990

8 P3 9.0831 9.2688 9.3059 9.3180 9.3220 9.3221 9.7679 11.59
P4 9.5755 9.6888 9.7199 9.7337 9.7414 9.7462
P6 9.7117 9.7522 9.7607 9.7639 9.7654 9.7662
P9 9.7578 9.7658 9.7672 9.7677 9.7679 9.7680

128 P3 10.7792 11.0009 11.0471 11.0644 11.0727 11.0774 11.5921 11.59
P4 11.3631 11.4979 11.5350 11.5516 11.5609 11.5668
P6 11.5248 11.5731 11.5833 11.5870 11.5888 11.5899
P9 11.5796 11.5892 11.5909 11.5915 11.5918 11.5920

0.1
0.1
0.1
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0.0
0.04
0.02
0.0

(a) 
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0.0033
0.0001

(b) 

Figure 2 Deformed shape of a simply supported plate under (a) pressure (b) point load.

5.2 Clamped Square Plates

This example is concerned with the bending of square plates that are clamped
in all four sides. Similar to the preceding example, two types of the loading
including the uniform distributed load and the terminal force at the center
are taken into account, see Figure 5. Let us begin with the element P3 that
is the simplest element. As can be predicted and is visible in the Tables 3
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Number of Nodes
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t/l=8, P3
t/l=8, P4
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-1

0

1
t/l=128, P3
t/l=128, P4
t/l=128, P6
t/l=128, P9

(d) 

Figure 3 Mesh convergence study on a plate under pressure for (a) t/l = 1 (b) t/l = 2
(c) t/l = 8 (d) t/l = 128.

and 4, the element is not able to estimate the deflection of the plate accurately
and the corresponding error is about −3 per cent. For the distributed loading,
interestingly, the result of the elements P4 and P9 are completely similar.
However, the element P9 is less sensitive to the mesh, so that the results do not
alter by increasing the elements from 16 to 576. Also, notice that the elements
are distributed evenly along the x1 and x2 axes. Additionally, it should be
emphasized that for the point force the P4 provides us with the stiffer results,
say the error is 0.05 per cent. By comparing the results of the element P6 with
the convergent element P9 in the Tables 3 and 4, it is deduced that the relative
error of the P6 is −0.04% approximately.
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Number of Nodes
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t/l=2, P4
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-7

-6

-5

-4

-3
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t/l=8, P3
t/l=8, P4
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t/l=8, P3
t/l=8, P4
t/l=8, P6
t/l=8, P9

(d) 

Figure 4 Mesh convergence study on a plate under central point force for (a) t/l = 1
(b) t/l = 2 (c) t/l = 8 (d) t/l = 128.
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Figure 5 Deformed shape of a clamped plate under (a) pressure (b) point load.
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Table 3 The nondimensional deflection of the plate at the center for clamped plates under
pressure

Element Number of Elements w̄C

t/l Type 4×4 8×8 12×12 16×16 20×20 24×24 (Ugural, 1981)
1 P3 0.0931 0.0943 0.0946 0.0947 0.0947 0.0946 1.26

P4 0.0972 0.0973 0.0973 0.0973 0.0973 0.0973
P6 0.0966 0.0971 0.0972 0.0972 0.0973 0.0973
P9 0.0973 0.0973 0.0973 0.0973 0.0973 0.0973

2 P3 0.3027 0.3064 0.3077 0.3080 0.3080 0.3079 1.26
P4 0.3161 0.3162 0.3162 0.3162 0.3162 0.3162
P6 0.3141 0.3157 0.3160 0.3161 0.3161 0.3161
P9 0.3162 0.3162 0.3162 0.3162 0.3162 0.3162

8 P3 1.0200 1.0327 1.0374 1.0391 1.0397 1.0400 1.26
P4 1.0651 1.0654 1.0654 1.0654 1.0654 1.0654
P6 1.0584 1.0639 1.0648 1.0651 1.0652 1.0653
P9 1.0654 1.0654 1.0654 1.0654 1.0654 1.0654

128 P3 1.2104 1.2257 1.2313 1.2335 1.2345 1.2351 1.26
P4 1.2639 1.2643 1.2644 1.2644 1.2644 1.2644
P6 1.2561 1.2625 1.2636 1.2640 1.2641 1.2642
P9 1.2644 1.2644 1.2644 1.2644 1.2644 1.2644

Table 4 The central nondimensional deflection of the plate for clamped plates under point
force

Element Number of Elements w̄C

t/l Type 4×4 8×8 12×12 16×16 20×20 24×24 (Ugural, 1981)
1 P3 0.4033 0.4146 0.4176 0.4185 0.4186 0.4184 5.6

P4 0.4216 0.4289 0.4303 0.4307 0.4309 0.4310
P6 0.4255 0.4298 0.4306 0.4309 0.4310 0.4311
P9 0.4304 0.4311 0.4312 0.4312 0.4312 0.4312

2 P3 1.3109 1.3477 1.3576 1.3607 1.3615 1.3612 5.6
P4 1.3705 1.3941 1.3986 1.4001 1.4007 1.4011
P6 1.3829 1.3972 1.3997 1.4006 1.4010 1.4012
P9 1.3989 1.4012 1.4016 1.4017 1.4017 1.4017

8 P3 4.4176 4.5434 4.5786 4.5917 4.5976 4.6004 5.6
P4 4.6179 4.6981 4.7132 4.7185 4.7209 4.7222
P6 4.6605 4.7088 4.7176 4.7207 4.7222 4.7230
P9 4.7145 4.7225 4.7239 4.7244 4.7246 4.7247

128 P3 5.2427 5.3925 5.4349 5.4513 5.4594 5.4639 5.6
P4 5.4803 5.5756 5.5936 5.5999 5.6028 5.6043
P6 5.5310 5.5885 5.5990 5.6027 5.6045 5.6055
P9 5.5951 5.6047 5.6071 5.6071 5.6074 5.6076
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Furthermore, as can be seen in Tables 3 and 4, the strain gradient results
are stiffer than the classical ones for small values of t/l and by growing the
size of the structure the inconsistency between the classical and strain-gradient
results is gradually disappears.

5.3 Mixed-boundary Square Plates

In this example, the deformation of square plates in which two opposite
sides are simply supported and others are clamped is taken into account (see
Figure 6). Tables 5 and 6 provide us with tabular data on the nondimensional
displacement of plates in various meshes under uniformly distributed loading
and central point force, respectively, given various values of the fraction t/l.
Four figures have been chosen for the fraction involving 1, 2, 8 and 128,
so that the size-dependent behavior of plates can be seen. Let us focus on
the performance of the plate elements developed in the present study for this
case. We base our analysis on the results of the element P9 which in not only
compatible but also complete. For both loadings, the absolute value of the
error of the P3 element is around 3%. Quite like the previous example, the
P4 element has the same result as the P9 element for the distributed loading,
whereas for the terminal loading the error is −0.04 per cent approximately.
Based on the results available in the Tables 5 and 6, it is deduced that the error
of the P6 element is −0.01% and −0.03% for the distributed and terminal
loadings, respectively.

Another important conclusion that can be drawn from the Tables 5 and
6 is that for the small values of t/l the strain-gradient results are stiffer than
the classical results and the by augmenting the fraction t/l, consequently an
increase in the size of the plate, the difference between the strain-gradient and
the classical results decreases gradually.

0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

 
(a) 

0.01370
0.01175
0.00981
0.00787
0.00592
0.00398
0.00204
9.71745

 
(b) 

Figure 6 Deformed shape of a mixed-boundary plate under (a) pressure (b) point load.
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Table 5 The nondimensional deflection of the plate at the center for mixed-boundary plates
under pressure

Element Number of Elements w̄C

t/l Type 4×4 8×8 12×12 16×16 20×20 24×24 (Ugural, 1981)
1 P3 0.1401 0.1423 0.1427 0.1428 0.1427 0.1425 1.92

P4 0.1474 0.1474 0.1474 0.1474 0.1474 0.1474
P6 0.1468 0.1473 0.1473 0.1474 0.1474 0.1474
P9 0.1474 0.1474 0.1474 0.1474 0.1474 0.1474

2 P3 0.4553 0.4625 0.4640 0.4642 0.4641 0.4637 1.92
P4 0.4790 0.4791 0.4791 0.4791 0.4791 0.4791
P6 0.4771 0.4786 0.4789 0.4790 0.4790 0.4791
P9 0.4791 0.4791 0.4791 0.4791 0.4791 0.4791

8 P3 1.5343 1.5588 1.5646 1.5665 1.5671 1.5672 1.92
P4 1.6140 1.6143 1.6143 1.6143 1.6143 1.6143
P6 1.6075 1.6126 1.6136 1.6139 1.6141 1.6141
P9 1.6143 1.6143 1.6143 1.6143 1.6143 1.6143

128 P3 1.8208 1.8500 1.8571 1.8596 1.8608 1.8614 1.92
P4 1.9153 1.9157 1.9157 1.9157 1.9157 1.9157
P6 1.9077 1.9137 1.9149 1.9152 1.9154 1.9155
P9 1.9157 1.9157 1.9157 1.9157 1.9157 1.9157

Table 6 The central nondimensional deflection of the mixed-boundary plates under point
force

Element Number of Elements w̄C

t/l Type 4×4 8×8 12×12 16×16 20×20 24×24 (Ugural, 1981)
1 P3 0.5057 0.5197 0.5227 0.5235 0.5234 0.5230 7

P4 0.5313 0.5387 0.5401 0.5405 0.5408 0.5409
P6 0.5359 0.5397 0.5404 0.5407 0.5408 0.5409
P9 0.5402 0.5409 0.5410 0.5410 0.5410 0.5410

2 P3 1.6437 1.6895 1.6994 1.7022 1.7024 1.7015 7
P4 1.7270 1.7511 1.7555 1.7570 1.7577 1.7581
P6 1.7418 1.7542 1.7567 1.7575 1.7579 1.7581
P9 1.7559 1.7581 1.7585 1.7586 1.7586 1.7587

8 P3 5.5389 5.6954 5.7314 5.7444 5.7499 5.7523 7
P4 5.8192 5.9007 5.9157 5.9209 5.9233 5.9246
P6 5.8696 5.9117 5.9201 5.9232 5.9247 5.9255
P9 5.9170 5.9249 5.9264 5.9268 5.9271 5.9272

128 P3 6.5733 6.7597 6.8034 6.8199 6.8279 6.8325 7
P4 6.9058 7.0027 7.0205 7.0268 7.0297 7.0312
P6 6.9658 7.0159 7.0260 7.0297 7.0314 7.0324
P9 7.0221 7.0316 7.0334 7.0340 7.0343 7.0344
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6 Conclusion

In the present contribution, the finite element analysis of small deformation
of strain-gradient plates was presented. Building upon the Kirchhoff plate
model, the strains and then the stresses were derived by making use of
constitutive equations in the strain-gradient elasticity. To extract the weak form
of the plate, the principle of virtual work was used. Afterwards, four four-node
rectangular plate elements were presented with emphasis on the convergence
requirements involving compatibility and completeness. Among all elements,
just one element with nine DoF fulfills the requirements. To investigate the
credibility of the presented elements, some problems were solved. There were
also some comparisons with analytical strain-gradient and classical solutions
so that not only the convergence of the elements was explored but also the size-
dependent behavior of the plate was seen. The numerical results exhibited that
the P9 element is most accurate element, whereas P4 and P6 elements provide
us with a good approximation. Further, the P3 element is by no means reliable.

Appendix

Let us here derive the differential equation of the strain-gradient plate that
can be used to obtain the analytical solution of the simply supported plates
under distributed and terminal loads. To this aim, the following strong form
of the governing equations for a strain-gradient plate may be obtained from
the PVW (Lazopoulos, 2009):

M11,11 + M22,22 + 2M12,12 + P311,11 + P322,22 + 2P312,12 − S111,111

−S122,122 − S211,112 − S222,222 − 2S112,112 − 2S212,122 + p(x1, x2) = 0
(35)

where p is the distributed applied external load in the middle surface of the
plate.

By inserting the resultants defined in Equation (10) in the above relation,
the governing differential equation can be defined fully in accordance with
displacement, w. Accordingly, we have

D

(
1 + 12

l2

h2

)
∇4w − Dl2∇6w = p(x1, x2) (36)
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with

∇4w = w,1111 + 2w,1122 + w,2222

∇6w = w,111111 + 3w,111122 + 3w,112222 + w,222222
(37)

where the aforementioned differential equation is identical to one obtained
by Lazopoulos (2009). By solving the sixth-order differential equation, the
solution of the problem can be plainly derived.

Now, let us provide the analytical solution to the simply supported plates
under two types of load. The former is point force at the center and the latter
is the uniform pressure. To this aim, it is supposed that the length and the
width of the plate are a and b, respectively and the coordinate system has been
located in the corner of the plate.

Similar to the classical simply supported plate, the following series
satisfying the boundary conditions of the simply supported strain-gradient
plates is proposed for the deflection of the plate (Lazopoulos, 2009):

w =
∞∑

m=1

∞∑
n=1

Wmn sin
(mπ

a
x1

)
sin

(nπ

b
x2

)
(38)

Additionally, the applied load on the midplane must be expressed using the
Fourier series as well as follows:

p(x1, x2) =
∞∑

m=1

∞∑
n=1

Pmn sin
(mπ

a
x1

)
sin

(nπ

b
x2

)
(39)

with

Pmn =
4
ab

∫ a

0

∫ b

0
p(x1, x2) sin

(mπ

a
x1

)
sin

(nπ

b
x2

)
dx1dx2 (40)

where Pmn for point force, P0, and uniform pressure, p0, is

Pmn =
4
ab

P0 sin
(mπ

2

)
sin

(nπ

2

)
(41)

and

Pmn =
4

mnπ2 p0[(−1)m − 1][(−1)n − 1] (42)

respectively.
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By inserting Equations (38) and (39) in Equation (36), Wmn can be
accomplished by some simple calculations. It is

Wmn = Pmn/D[(
1 + 12

l2

t2

) (
m2π2

a2 +
n2π2

b2

)2

+ l2
(

m2π2

a2 +
n2π2

b2

)3
]

(43)

Finally, by substituting the above relation in Equation (38) the displacement
field of simply supported plates is extracted.
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