
A Cylindrical Superelement for
Thermo-Mechanical Analysis of Thin

Composite Vessels

A. Jafarzadeh, A. Taghvaeipour∗ and M. R. Eslami

Department of Mechanical Engineering, Amirkabir University of Technology
(Tehran Polytechnic), Hafez Ave., Tehran, Iran
E-mail: afshin.taghvaeipour@gmail.com
∗Corresponding Author

Received 31 July 2020; Accepted 02 November 2020;
Publication 04 January 2021

Abstract

In this study, a new cylindrical shell superelement with trigonometric shape
functions is developed. This element is formulated based on the classical
theory of shells, and it is especially designed for coupled-field analysis of thin
cylindrical vessels or tubes made of composite materials. As a case study, a
thermo-mechanical analysis of a thin composite cylinder is conducted. By
invoking to the uniform and non-uniform meshing, the deformation and the
stress results are calculated and compared with the analytical solutions. At
the end, the efficiency and accuracy of the proposed superelement is also
depicted via comparison of the corresponding results with the ones which
are calculated by means of shell elements and via a commercial software
package.
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1 Introduction

During the last decades, many researchers have studied mechanical and
thermal behavior of the composite cylinders, which may be used in pressure
vessels and tubes. In this regard, Xia et al. [1] used the three-dimensional
anisotropic elasticity theory to investigate the influence of stacking sequence
on the mechanical properties of a multi-layered filament-wound composite
pipe with three different angle-ply and in the presence of an internal pressure.
The authors also investigated the shear twisting coupling characteristic. The
same authors used the classical laminated-plate theory and calculated the
stress and deformation of laminated sandwich pipes with different winding
angles and under combined internal pressure and temperature differences [2].
By resorting to the three-dimensional anisotropic elasticity theory, Bakayan
et al. [3] conducted the thermal analysis of a composite pipe under the
combined internal pressure and temperature gradient loadings. Xu et al. [4]
predicted the failure strength of composite pipes by incorporating different
failure criteria such as the maximum stress, Tsai-Hill, and etc. In fact, they
used a three dimensional parametric FE model of the cylindrical part to
explore the non-linear stress–strain relationship, and accordingly, the final
failure pressure. Pagans et al. [5] used the classical lamination theory and
generalized plane strain model to design and predict the behavior of fiber rein-
forced composite pressure vessels. The authors applied mechanical, thermal,
and moisture loadings on the body, and finally, they obtained the optimum
values for the winding angle, burst pressure, maximum axial force, and the
maximum angular speed of the pressure vessel. Numerical and experimental
studies on the filament wound composite tubes subjected to an internal pres-
sure was also conducted by Martins et al. [6]. The numerical and experimental
results were properly compatible for all fiber directions. While most of the
reported researches were focused on the stress analysis of thick hollow
cylinders, Sayman [7] developed a general stress analysis of thick and thin
multi-layered composite cylinders under hygrothermal loadings. The solution
was obtained for composite cylinders with symmetrical and antisymmetri-
cal layers and for open and closed end conditions. The thermo-mechanical
behavior of structures by analytical methods is, in general, complicated.
However, with some simplifications and for a number of classical problems,
the analytical solutions are available [8, 9]. Some researchers also developed
analytical methods to cope with the thermo-mechanical analysis of cylindri-
cal vessels made of functionally graded materials (FGM) [10, 11]. However,
these works are mostly developed for thick vessels or tubes which are made
of orthotropic materials.
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The finite element method is proved to be a reliable and strong numerical
approach in modeling and analysis of complex structures. In this method,
a structure is discredited into many elements with simple geometries. Due
to recent developments of the computational geometry, fairly advanced dis-
cretization methods have been proposed, and hence, with some effort, any
complex geometry can be meshed. However, this usually leads to a bulk of
nodes with many degrees-of-freedom (dof) which can be problematic in large
systems. This can be even more severe when a nonlinear time-dependent
analysis should be conducted. Accordingly, the accuracy of the method is
mostly relied on the discritization quality. In the recent years, new type
of large elements with trigonometric shape functions are introduced which
are called superelements. These elements are especially designed for time-
consuming iterative analyses of which less number of dof is demanded.
These types of elements were first introduced by Koko et al., and called
superelements [12]. Koko and Olson first used the super plate and beam finite
elements to calculate the natural frequency and mode shapes of stiffened
rectangular plates [13]. They validated their results with other numerical
and experimental works. Jiang and Olson [14, 15] introduced three shell,
curved beam, and straight beam superelements for the free vibration anal-
ysis of stiffened cylindrical shells. Moreover, the superelements were also
incorporated in the static and dynamic analysis of orthogonally stiffened
cylindrical shells. In this work, the stiffeners were assumed to be in form of
curved and straight beams. In addition, the results including natural frequency
and mode shapes were compared with the ones which were obtained by the
conventional finite elements and experimental tests. As a result, high rate
of convergence and accuracy were reported. In [16, 17] Ahmadian et al.
employed a plate superelement to analyze the forced and free vibrations of
an orthotropic rectangular plate with different boundary conditions. They
considered bending and in-plane effects and assumed C0 continuity for in-
plane and C1 continuity for out-of plane displacements. In one of the recent
works, Ju and choo used a superelement to conduct static analysis of a cable
passing through multiple pulleys [18]. In this paper deformations and stresses
were calculated by superelements and compared with experimental tests;
the results showed a good agreement. Ahmadian et al. [19] introduced a
solid cylindrical superelement for the static and modal analyses of laminated
hollow cylinders. Accordingly, in [20], Taghvaeipour et al. incorporated the
foregoing element for the modal analysis of a thick hollow cylinder made
of FGM. The reported results show a good accuracy with those reported in
literature. Using the same concept, Ahmadian et al. [21, 22, 23] have defined
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the spherical and tapered super elements. With these new elements, they
conducted structural analysis of spherical components such as biologic cells,
nano bearings, pressure vessels, and fullerene. Recently, Pourhamid et al. [24]
employed the cylindrical superelement to conduct the stress analysis on a
cylinder-piston of a combustion engine which is made of FGM.

In this study, based on the classical theory of shell, a cylindrical superele-
ment for thin cylinders, made of composite materials, is introduced. Com-
paring with other superelements in the literature, the introduced element is
designed for shell structures in which one level of nodes exists through the
thickness. Moreover, the radial deformation slope is considered as a contin-
uous degree of freedom. In other words, this superelement is C1 continuous
in which the slop continuity condition results in a more accurate strain and
stress calculation. The superelements introduced in the literature are often
resorted on C0 Continuous shape functions in which only the displacements
are continuous, and thus, they demand higher number of elements for better
accuracy in the calculation of strains and stresses. As a case study, the
defined element is incorporated on a thin composite cylinder which is under
thermo-mechanical loadings. The obtained results are first compared with the
analytical solutions which were reported in the literature, and next with the
ones obtained by shell elements in a commercial software package.

2 Element Definition

2.1 Geometry and Coordinate System of Element

In general, shell structures are divided into two types: thin- and thick-walled.
Here, we consider the superelement for a thin shell with a cylindrical geome-
try. The element has a mid-surface radius of R, thickness of t, and the length
of 2L. The word ”thin-walled” means, that the ratio t/R is larger than 1/1000
and less than 1/20 [25]. The thickness t is considered constant all over the
element. To derive the corresponding equations, the cylindrical coordinate
system is used which is located at the center of the element. The nodes are
distributed uniformly along two edges of the element and at the mid-surface.
Geometrical properties, coordinates, and nodes are shown in Figure 1. The
cylindrical global coordinate system is selected with r, α, and z components,
namely [12], {

0 ≤ α ≤ 2π → −1 ≤ γ ≤ 1

−L ≤ z ≤ L→ −1 ≤ ζ ≤ 1
(1)
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Figure 1 Cylindrical Shell Superelement.

where
γ =

α

π
− 1, ζ =

z

L
(2)

2.2 Element Degrees of Freedom and Shape Functions

As it was mentioned, the element is defined based on the classical shell theory
in which the radial displacement component is independent of the radial
coordinate [25, 26]. In this regard, the displacements in an arbitrary point
of the shell are defined as [27],

w = w0,

ν = ν0 + (r −R)βα

u = u0 + (r −R)βz

(3)

where ν, u, and w are the tangential, axial, and radial displacements,
respectively, and ν0, u0, and w0 are the corresponding displacements at the
mid-surface of the shell. Also, βα and βz are rotations in the tangential and
axial directions, respectively. Equation 3 shows that ν and u depend on the
radial coordinate r, where w is independent of it. The rotations are also
defined as [27]:

βα =
ν0

R
− 1

R

∂w

∂α
, βz = −∂w

∂z
(4)

Since the rotations depend on the first derivative of w, it should be approxi-
mated byC1-continuous shape functions. However, other displacements need
C0-continuous shape functions [28, 29]. Therefore, the displacement vector
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at a point at the mid-surface is defined as

u =
[
w ∂w

∂z
∂w
∂α

∂2w
∂z∂α ν0 u0

]T
(5)

where the first four degrees of freedom need to be approximated by C1-
continuous shape functions. Hence, the corresponding shape function will
have 32 constants (four times the number of nodes). Therefore, the radial
displacement is approximated as [28, 29]:

w (z, α) = N1w1 +N ′1
∂w

∂z
|1 +N ′′1

∂w

∂α
|1 +N ′′′1

∂2w

∂α∂z
|1 + · · ·+N8w8

+N ′8
∂w

∂z
|8 +N ′′8

∂w

∂α
|8 +N ′′′8

∂2w

∂α∂z
|8 (6)

whereNi,N ′i ,N
′′
i , andN ′′′i are C1-continuous shape functions. Accordingly,

the approximation function is assumed as a combination of trigonometry and
polynomial functions, namely,

w(z, α) =
(
a1 + a2z + a3z

2 + a4z
3
)

× (b1 + b2 sinα+ b3 cosα+ b4 sin 2α+ b5 cos 2α+ b6 sin 3α

+ b7 cos 3α+ b8 cos 4α)
(7)

By invoking the necessary conditions on the approximation function, the con-
stants are calculated. For the sake of brevity, the shape functions are presented
in the appendix A. Moreover, the tangential and axial displacements at the
mid surface can be approximated with C0-continuous identical functions,
namely,

ν = u = (a1 + a2z) (b1 + b2 cosα+ b3 sinα+ b4 cos 2α) (8)

Likewise, the eight constants can be calculated by applying the necessary
conditions on the approximation function. As a result, the displacement
function can be written in terms of nodal displacements and shape functions
as

ν0 (z, α) = M1ν
0
1 +M2ν

0
2 + ...+M8ν

0
8

u0 (z, α) = M1u
0
1 +M2u

0
2 + ...+M8u

0
8

(9)

in which ν0i and u0i are tangential and axial nodal displacements, respectively.
The shape functions Mi are given in the appendix A. In total, this element
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has 32 + 8 = 40 shape functions. By resorting to the FEM notations, the
vector u, which is the vector of displacement components (Equation 5), can
be obtained as follows

u = Nuq (10)

where q =
[
q1 ... q8

]T
is the nodal displacement vector in which

qi =
[
wi

∂wi
∂z

∂wi
∂α

∂wi
∂α∂z ν0i u0i

]
(11)

Also, Nu is the matrix of shape functions which is defined as

Nu =

[
N1 O ... N8 O
OT M1 ... OT M8

]
(12)

where O is a 4× 2 zero matrix and

Ni =


Ni 0 0 0
0 N ′i 0 0
0 0 N ′′i 0
0 0 0 N ′′′i

 , Mi =

[
Mi 0
0 Mi

]
(13)

3 The FEM Formulations

3.1 Kinematic Relations

In the classical shell theory, the shear strains γrα and γrz and the radial strain
εrr are neglected. The remained strains are functions of strains at the mid-
surface and the curvatures, namely [27]:

εz = ε0z + (r −R)χz

εα = ε0α + (r −R)χα

γαz = γ0αz + 2 (r −R)χαz

(14)

where ε0z , ε
0
α, and γ0αz are strains at the mid-surface which are functions of

displacements [27]:

ε0z =
∂u0

∂z
, ε0α =

1

R

∂ν0

∂α
+
w

R
, γ0αz =

1

R

∂u0

∂α
+
∂ν0

∂z
(15)
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in which χz , χα, and χαz are components of the shell curvatures that are
defined below [27]:

χz =
∂βz
∂z

= −∂
2w

∂z2

χα =
1

R

∂βα
∂α

=
1

R

∂

∂α

(
ν0

R
− 1

R

∂w

∂α

)
χαz =

∂βα
∂z

+
1

R

∂βz
∂α

=
1

R

∂

∂z

(
ν0 − 2

∂w

∂α

) (16)

Finally, the strains and shell curvatures can be presented in terms of nodal
displacements, namely,[

ε0zz ε0αα γ0zα χzz χαα χzα
]T

= LNuq = Bq (17)

in which L is an 6× 6 operator matrix which is defined as

L =



0 0 0 0 0 ∂
∂z

1
R

1
R

1
R

1
R

1
R

∂
∂α 0

0 0 0 0 ∂
∂z

1
R

∂
∂α

− ∂2

∂z2
− ∂2

∂z2
− ∂2

∂z2
− ∂2

∂z2
0 0

− 1
R2

∂2

∂α2 − 1
R2

∂2

∂α2 − 1
R2

∂2

∂α2 − 1
R2

∂2

∂α2
1
R2

∂2

∂α2 0

− 1
R2

∂2

∂α∂z − 1
R2

∂2

∂α∂z − 1
R2

∂2

∂α∂z − 1
R2

∂2

∂α∂z
1
2R

∂
∂z 0


(18)

3.2 Stress-strain relations

The stress-strain relation for the kth layer of a composite cylindrical shell
with the thermo-mechanical effects is defined in [30] as:

σαα
σzz
τrα
τzr
ταz


k

= Qk



εαα − ααα∆T − βααc
εzz − αzz∆T − βzzc

γrα

γzr

γαz − 2ααz∆T − 2βαzc

 (19)

where σii are the normal stresses, τij are the shear stresses, αij are the
heat expansion coefficients, ∆T is the temperature gradient, and βij and c
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are the hygroscopic expansion and the moisture concentration coefficients,
respectively. The mechanical properties matrix is also expressed as [30]:

Qk =



Q11 Q12 0 0 Q16

Q12 Q22 0 0 Q26

0 0 Q44 Q45 0

0 0 Q45 Q55 0

Q16 Q26 0 0 Q66


k

(20)

The components of matrix Qk for each layer and with the specific angle ply
are given in [30].

3.3 Stiffness matrix and force vectors

Finally, a system of linear equations is obtained as follows

[Kuu]e ue = Fe (21)

where [Kuu]e yield from the membrane strain energy of shell and can be
obtained from the relation:

[Kuu]e = RLπ

∫ −1
1

∫ −1
1

[Bu (ζ, γ)]T [D] [Bu (ζ, γ)] dζdγ (22)

in which Bu (ζ, γ) is the nodal strain matrix-displacement matrix which is
equal to:

Bu = L×Nu (23)

The operator matrix L was defined in Equation 18. Also, Dc is the mechanical
properties matrix [30], namely,:

Dc =


A11 A12 A16 B11 B12 2B16

A12 A22 A26 B12 B22 2B26

A16 A26 A66 B16 B26 2B66

B11 B12 B16 D11 D12 2D16

B12 B22 B26 D12 D22 2D26

B16 B26 B66 D16 D26 2D66

 (24)
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where

Aij =

Nl∑
k=1

(
Qij
)
k

(hk − hk+1) i, j = 1, 2, 6

Bij =
1

2

Nl∑
k=1

(
Qij
)
k

(
h2k − h2k+1

)
i, j = 1, 2, 6

Dij =
1

3

Nl∑
k=1

(
Qij
)
k

(
h3k − h3k+1

)
i, j = 1, 2, 6

(25)

In Eqs. (18), (19), and (20), hi is the ith layer thickness, which is depicted in
Figure 2. The force vectors, including the thermal and moisture effects, yield
as [30]:

F eT = RLπ∆T

∫ −1
1

∫ −1
1

[Bu (ζ, γ)]T
[
N
T

M
T

]
dζdγ

F em = RLπ∆m

∫ −1
1

∫ −1
1

[Bu (ζ, γ)]T
[
N
m

M
m

]
dζdγ

(26)

in which

N
T

=

Nl∑
k=1

∫ R−hk+1

R−hk
Qk

 αz
αα

2ααz

 dr,
M

T
=

Nl∑
k=1

∫ R−hk

hk−1

Qk

 αz
αα

2ααz

 (r −R) dr

N
m

=

Nl∑
k=1

∫ R−hk+1

R−hk
Qk

 βz
βα

2βαz

 dr,
M

m
=

Nl∑
k=1

∫ R−hk

hk−1

Qk

 βz
βα

2βαz

 (r −R) dr

(27)

4 A Case Study

In this case study, a thin cylindrical vessel made of a laminated composite
material with a lay-up configuration of [0/±45/90]s is considered, as shown
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R

hN

Mid-surface

hk

h3

h2

h1

h

Figure 2 Layers in the laminate.

Figure 3 Schematic of the cylindrical composite shell.

in (Figure 3). Each layer is a unidirectional carbon/epoxy (T300/934) material
with a thickness of 0.5 mm; the corresponding mechanical properties are
given in Table 1. The cylindrical shell is assumed to have a inner radius
of 0.2 m and a length of 0.8 m, and both ends are assumed to be closed
with rigid caps. The internal pressure of 250 psi is applied inside the cylinder
while the inside and outside temperatures are 120◦C and 23◦C, respectively.
The caps rigidly hold both ends of the cylinder, therefore, except the axial
translation at one end, the other translational displacements are considered
fixed at both boundaries, while the rotational degrees-of-freedom are allowed.
The cylinder with the applied conditions is depicted in Figure 3. In this
problem, three types of force vectors are considered:
a) the radial force vector due to the internal pressure,

f e1 =

∫ ∫
A
NT
uPidA (28)

in which Pi is the vector of internal pressure, namely,

Pi =
[
1 0 0 0 0 0

]T
(MPa) (29)
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Table 1 Mechanical properties of the unidirectional carbon/epoxy (T300/934) [2]

E1(GPa) E2(GPa) G12, G13(GPa) G23(GPa)

141.6 10.7 3.88 3.58

ν12, ν13 ν23 α1(1/
oC) α2(1/

oC)

0.268 0.495 −0.006× 10−6 30.04× 10−6

b) The axial force vector due to the internal pressure whose total magnitude
equals to

Fs = Pi
(
πR2

i

)
(30)

Because there are four nodes at each end, the above magnitude is divided
by four and applied on each node. In this problem, one end is free to move
axially, hence, the axial forces are only applied to the nodes at the fixed end
(as it is shown in Figure 3). Therefore, the axial force vector is defined as

fn2 =
[
0 0 0 0 Fs

4
Fs
4

Fs
4

Fs
4

]T
(31)

It is noteworthy to mention that this axial force vector only exists for the nth

element (the last one), and for the remaining elements it equals to zero.

c) The last force vector is related to the thermal load, namely,

f e3 = RLπ∆T

∫ 1

−1

∫ 1

−1
BT
u (ζ, γ)

[
N
T

M
T

]
dζdγ (32)

The total force vector that is applied on the structure equals

f = f1 + f2 + f3 (33)

where f1, f2, and f3 are the assembled radial, axial, and thermal force vectors,
respectively.

4.1 Results

In the first attempt, the cylindrical shell is meshed longitudinally by 10
uniform superelements. Figure 5 shows the radial displacements obtained by
the superelements and an analytical method which was presented in [27]. As
it is apparent, at places where the bending is large, the superelement result
deviated from the analytical solution. The bending boundary layer of a shell
structure Lb can be calculated via the following formula [27]

Lb = 4
√
Rt(D11/D22)1/2 (34)
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(a) (b)

Figure 4 (a) Uniform superelements, (b) Non-uniform superelements.
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Figure 5 (a)–(d) The radial displacements obtained by 10 and 20 uniform and non-uniform
elements.

where in the current case Lb = 133.4mm. This means that the maximum
bending deformation occurs approximately 134 mm from each end. With
10 superelements, each element has a length of 80 mm, and hence, two
elements cannot accurately report the aggressive change of bending deforma-
tion. Thus, the number of elements should be elevated via a) decreasing the
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Figure 6 (a)–(d) The axial displacements obtained by 10 and 20 uniform and non-uniform
elements.

size of elements uniformly, b) using non-uniform superelements. In this case,
10 uniform and non-uniform superelements are incorporated. Figures 4(a)
and 4(b) show the meshing with 10 uniform and non-uniform superelements,
respectively. In Figures 5(a) and 5(b), the radial displacements which were
calculated by 10 uniform and non-uniform elements are compared with the
analytical results which were presented in [27]. The corresponding axial
displacements are also depicted in Figures 6(a) and 6(b). In order to conduct
a mesh independence analysis, the cylindrical shell is meshed with 20 and 30
uniform and non-uniform elements. The radial and axial displacements which
are calculated by 20 uniform and non-uniform elements are presented in
Figures 5(c), 5(d), 6(c), and 6(d), respectively. As it is apparent, the displace-
ments converged rapidly as the number of elements is increased. Moreover,
by comparing the results depicted in Figures 5 and 6, it is seen that proper
accuracy can be obtained if the superelements are properly concentrated
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Table 2 Maximum Relative error (MRE) for displacement results obtained by different
numbers of elements and the corresponding run time (CPU: 1.6 GHz Core i7, RAM: 8Gb.)

Number of Elements MRE (ur%) MRE (uz%) Run time (s)
10 5.76 12.86 0.55
10 N 2.41 6.41 0.43
20 0.23 1.87 1.28
20 N 0.09 0.64 1.28
30 0.20 0.38 3.27
30 N 0.07 0.12 3.27

at places with abrupt changes. The maximum relative error (MRE) for the
displacement results calculated with 10, 20, and 30 uniform and non-uniform
elements are presented in Table 2. The last column of Table 2 also shows
the computation run time corresponding to each number of elements. As
it is expected, the maximum error occurs at places with sudden bending
deformation changes. According to Table 2, non-uniform meshing leads to
better results.

4.1.1 Stress Results
After calculation of the nodal displacements, the stress results can be derived
at each element. Here, the stresses are calculated via the stress recovery
method which is extensively explained in [31]. For the case study at hand,
the stresses are calculated at each layer and at two different sections A and B,
which are shown in Figure 7. The stresses are derived from the displacements.
Hence, in order to keep accurate results, it is needed to use smaller elements,
especially at places with drastic changes. Figure 8 shows the axial, tangential,
and shear stresses at the plane A for 10 uniform and non-uniform and 20 non-
uniform elements. The corresponding error for 10, 20, and 30 uniform and
non-uniform elements are presented in Table 3. However, as it is depicted in
Figure 9, at the plane B even with 10 elements the result is accurate enough.
This is because the stress is constant over the central part of the composite
cylinder.

The maximum relative error (MRE) of the stress results at the section A
that are obtained by 10, 20, and 10 non-uniform elements are presented in
Table 3. As the stress results are recovered from the nodal displacements,
the errors are elevated, which is apparent from Table 1. However, in stress
analysis the non-uniform meshing still leads to better results.
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Figure 7 Sections A and B.
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Figure 8 (a), (b) and (c) The tangential stresses, (c), (d), and (e) the axial stresses, (e), (f),
and (g) the shear stresses calculated with 10 uniform, 10 non-uniform and 20 non-uniform
elements.
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Figure 9 (a)–(c) The tangential, axial and shear stresses at section B calculated with 10
uniform elements.

Table 3 Maximum Relative error (MRE) for stress results obtained by different number of
elements.

Number of Elements MRE (σαα%) MRE (σzz%) MRE (τzt%)

10 34.13 84.1 22.94
10 N 20.51 39.42 14.25
20 4.47 10.32 2.85
20 N 0.69 6.89 0.48
30 1.96 5.26 1.25
30 N 0.35 2.78 0.29

5 Comparison with the results of shell elements

In this section, the results of the mentioned case study, which were obtained
by means of uniform superelements, will be compared with the ones which
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Figure 10 The cylinder which is meshed by shell elements.

Figure 11 (a) The radial and (b) the axial displacement plots of the cylinder obtained by a
commercial software package.

are calculated by shell elements and via a commercial software package.
Figure 10 shows the cylinder understudy which is meshed by shell elements.
The boundary conditions, the applied internal pressure, temperature and the
caps effect are defined same as to what was mentioned in the case study
explanation. The obtained radial and axial displacement plots are depicted
in Figures 11(a) and 11(b), respectively. In this regard, Figure 12 compares
the radial and axial displacements which are obtained by superelements, shell
elements and an analytical method. In Figure 12(a), the radial displacements
which are estimated by 400 shell elements are compared with the ones
resulted from only 10 superelements. Apparently, the results with 400 shell
elements are compatible with the ones obtained by 10 superelements, how-
ever, both are deviated from the analytical solution close to the boundaries
where the cylinder deform significantly. This deviation is resolved when
the number of shell elements are decreased to 1632 and the superelements
to 20, as it is depicted in Figure 12(b). Likewise, the corresponding axial
displacements are also compared in Figures 12(c) and 12(d). In order to
quantitatively verify the results of superelements, the maximum value of
radial and axial displacements which are obtained by 1632 shell elements
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Figure 12 (a) The radial and (b) the axial displacement plots of the cylinder obtained by a
commercial software package.

and 20 superelements are compared with the analytical ones in Table 4. After
the comparison of displacement plots, now, the tangential, axial and shear
stresses at sections A and B of cylinder (Figure 7) which are obtained by all
three approaches are compared and depicted in Figures 13(a)–13(b). As it is
apparent, because the section A is closer to one of the boundaries, the finite
element results are deviated from the analytical ones; this can be resolved by
adding more elements in that region as previously discussed. Table 5 shows
the relative error of the stresses at section A in the layers where the maximum
deviations happen between the ones obtained by the superelements and the
analytical approach. As it can be seen, few cylindrical superelements can
properly estimate the displacements and stresses in the model, comparing
with the ones obtained by the analytical method and many shell elements.
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Table 4 The maximum radial and axial displacements obtained by superelements and shell
elements, and the corresponding relative errors with the analytical results.

Analytical Superelements Error% Shell Elements Error%
Radial Disp. 0.336 0.335 0.3 0.344 2.3
Axial Disp. -0.421 -0.429 1.9 -0.433 2.8
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Figure 13 The tangential, axial and shear stresses calculated with 20 uniform superelements,
1632 shell elements and the analytical method.

Table 5 The tangential, axial and shear stresses which are obtained at section A by 20
superelements and 1632 shell elements, and the corresponding relative errors with the ana-
lytical results.

Stress (MPa) Analytical Superelements Error% Shell Elements Error%
Tangential (Layer 1) -12.69 -12.86 1.34 -12.38 2.44
Axial (Layer 8) 69.94 71.23 1.84 72.67 3.9
Shear (Layer 2) -82.93 -82.45 0.24 -82.65 0.33

6 Conclusions

In this paper, a cylindrical thin superelement is formulated based on the
classical theory of shell and the trigonometric shape functions. The element
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targets the thermo-mechanical analysis of cylindrical thin structures made
of composite materials; however, its application can be extended to other
analyses such as coupled field or nonlinear analyses in which a large number
of degrees of freedom, and accordingly, large number of equations exist. As
a case study, a thermo-mechanical analysis of a thin cylindrical composite
vessel, under an internal pressure and a temperature gradient, was conducted.
In this example, a mesh independence analysis was performed by incorpo-
rating 10, 15, and 20 uniform elements. It is shown that as the number of
superelements is increased the deformations are rapidly converged to the ones
which were obtained in the literature analytically. Moreover, it is concluded
that the same number of non-uniform elements can lead to more accurate
results. After the calculation of displacements, the stress results are also
derived, and accordingly, compared with the analytical ones. Finally, for the
same case study, the displacement and stress plots which were obtained by
superelements were compared with the ones calculated by shell elements.
The comparison revealed that the incorporation of the superelements in the
mechanical analysis of cylindrical structures is accurate and efficient.

Appendix

The Shape Functions

The shape functions of the cylindrical thin superelement corresponding to the
C1-continuous approximation function of radial displacement are obtained as

Ni,j = fi(ζ)gj(γ), N ′i,j = Fi(ζ)gj(γ)

N ′′i,j = fi(ζ)Gj(γ), N ′′′i,j = Fi(ζ)Gj(γ)

i = 1, 2, j = 1, . . . , 4

in which

f1(ζ) =
1

4

(
ζ3 − 3ζ + 2

)
, f2(ζ) = −1

4

(
ζ3 − 3ζ − 2

)
F1(ζ) =

1

4

(
ζ3 − ζ2 − ζ + 1

)
, F2(ζ) =

1

4

(
ζ3 + ζ2 − ζ − 1

)
g1(γ) =

1

8
(−3 cosπγ + 2 cos 2πγ − cos 3πγ + 2)

g2(γ) =
1

8
(−3 sinπγ − 2 cos 2πγ + sin 3πγ + 2)
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g3(γ) =
1

8
(3 cosπγ + 2 cos 2πγ − cos 3πγ + 2)

g4(γ) =
1

8
(3 sinπγ − 2 cos 2πγ − sin 3πγ + 2)

G1(γ) =
1

8π
(− sinπγ + sin 2πγ − sin 3πγ + 0.5 sin 4πγ)

[2pt]G2(γ) =
1

8π
(− cosπγ − sin 2πγ − cos 3πγ + 0.5 sin 4πγ)

G3(γ) =
1

8π
(sinπγ + sin 2πγ + sin 3πγ + 0.5 sin 4πγ)

G4(γ) =
1

8π
(− cosπγ − sin 2πγ + cos 3πγ + 0.5 sin 4πγ)

Also, the shape functions corresponding to the C0-continuous approxi-
mation functions of tangential and axial displacements are presented as

Mi,j = hi(ζ)Ij(γ), i = 1, 2 j = 1, . . . , 4

h1(ζ) =
1

2
(1− ζ) , h2(ζ) =

1

2
(1 + ζ)

where,

I1(γ) =
1

4
(1− 2 cosπγ + cos 2πγ) , I2(γ) =

1

4
(1− 2 sinπγ − cos 2πγ)

I3(γ) =
1

4
(1 + 2 cosπγ + cos 2πγ) , I2(γ) =

1

4
(1 + 2 sinπγ − cos 2πγ)
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