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Abstract

Isogeometric analysis (IGA) is a mesh free technique which make use
of B-spline basis functions for geometry and field variable representation.
Parameterization of B-spline for IGA is the counterpart of meshing as in
finite element method (FEM). The objective of parameterization is to find
the optimum set of control points for B-spline modelling. The position of
control points of a B-spline model has huge effect on IGA results. In this
work, the effect of B-spline parameterization on IGA result is presented. One
dimensional case of bar with self-weight is solved and compared with exact
analytical solution. First fundamental matrix is used as evaluation metric to
check the quality of parameterization for 2-D domains. A heat conduction
problem of a square domain is presented to study the parameterization effect
for 2-D case.
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1 Introduction

Isogeometric analysis is a technique which unifies Computer Aided
Design (CAD) and Computer Aided Engineering (CAE) [1]. The idea of
isogeometric analysis is to use B-spline basis functions for representation
of both geometry and field variable (Ex: displacement in static structural
analysis). Since, same geometric model is used for both design and analysis,
meshing process in IGA is avoided. Meshing considered to be the biggest
bottleneck in finite element analysis, because development of analytical
model from CAD model is a time consuming task [2]. Use of B-spline model
for analysis also enables exact geometry representation, which outcomes in
more accurate results. The way quality of FEM mesh affects efficiency and
analysis result, in a similar way quality of B-spline parameterization has huge
influence on the IGA result [3].

Parameterization for IGA is determined by a set of control points, order
of basis functions and knot vector. The quality of parameterization depends
upon the positions of the control points. A B-spline model can be exactly
represented by infinite set of control points for a given degree of basis
function. Given a boundary curves, finding an optimal set of B-spline control
points which provides accurate results is an open problem [3].

The remainder of the paper is organized as follows. Related work is
discussed in Section 2 and conventional parameterization methods used in
this paper are given in Section 3. Section 4 includes result and discussion and
in last section concluding remarks and scope of future work are included.

2 Related Work

In a recent decade, lot of progress has been done in the area of isogeometric
analysis. The introductory paper on isogeometric analysis was presented in
the year 2005 by Hughes et al. [1], in which the detailed framework of
IGA is provided. Moreover, various refinement strategies and its effect on
isogeometric results are also mentioned in the paper. To validate isogeo-
metric methodology, various structural problems are solved using IGA. The
first paper pertaining to B-spline parameterization with regard to IGA was
published by Martin et al. [4]. Authors used discrete volumetric harmonic
function for B-spline volumetric parameterization method to fit a genus-0
mesh. A variational based approach for constructing Non Uniform Rational
B-splines (NURBS) parameterization of swept volume is presented by Aigner
et al. [5]. The idea of converting the problem of B-spline parameterization
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into an optimization problem was given by Gang Xu et al. [3]. The initial
parameterization of the domain is developed with the use of discrete Coon’s
method. The idea of breaking the problem of finding optimal control points
for a B-spline model into two stages is proposed by Gondegaon et al. [6].
The idea is to find parameter values and control points separately. Moreover,
the idea to use first fundamental matrix for the quality evaluation of B-spline
parameterization was proposed.

An idea of developing a 2D and 3D B-spline model by dividing the
geometrical domain into small Bezier surfaces is presented by Xia et al. [7].
Authors used Jacobian based optimization method to improve the parame-
terization quality. Pan et al. [8] highlighted that the B-spline model with
high rank parameterization increases the computational cost. Authors has
developed a low rank B-spline modelling technique by establishing a bijective
mapping between computational domain with the unit square. The same
methodology is extended for modelling B-spline volume with good quality
of tri-variate B-spline parameterization [9]. Adan et al. [10] proposed an
algorithm to develop a NURBS triangulation with equilateral triangles.

In this paper, one dimensional B-spline curve for different cases are mod-
elled using two conventional parameterization methods: uniformly spaced
method and chord length method. A heat conduction problem of a square
domain with two different parameterization is presented to study the param-
eterization effect for 2-D case. The effect of these parameterizations on
isogeometric analysis results are evaluated and compared with the analytical
solution.

3 Methodology

A B-spline model is a piece-wise combination of B-spline basis functions and
its control points. B-spline equation for a curve is given by [11]

C(u) =
n∑

i=0

Ni,p(u)Bi (1)

where Ni,p(u) is the B-spline basis function of degree p, n is the number of
control points and B is the co-ordinate of control points.

B-spline model are divided into sub-domains which are called knot-spans.
These knot-spans corresponds to elements as in the case of FEM. The points
at which B-spline are alienated are called knots and the vector containing
these knot values are called knot vector. A knot vector for parameter ξ is
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written as T = {ξ1, ξ2, . . . , ξn+p+1}. Usually for IGA geometric modelling,
open knot vector is used where it’s first and last knots repeats p+1 times. Use
of open knot vector guarantees that the B-spline curve is interpolated at first
and last control points. B-spline basis function for a given open knot vector
is defined recursively by the following equations [11],
For p=0,

Ni,0 =

{
1 if ξi ≤ ξ ≺ ξi+1

0 otherwise

}
(2)

For p = 1, 2, 3, . . .

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (3)

B-spline control points are calculated by solving B-spline equation men-
tioned in Equation (1). The input for the problem is the bunch of data points
on the B-spline curve/surface. The objective is to find B-spline control points
which will approximate all these data points, moreover the B-spline model
should have good quality of parameterization. The unknowns in the B-spline
equation are degree of B-spline basis functions, knot vector, number of con-
trol points and parameter values at the data points. Based on the corrugation
of data points, degree of the basis functions and number of control points are
chosen. An open knot vector is used for calculation. The parameter values
at each data point are calculated with the use of two conventional methods:
uniformly spaced method and chord length method.

3.1 Uniformly Spaced Method

In this method, the parameter values are uniformly assigned to the data points
regardless of their locations. The method produces satisfactory results for
the evenly distributed data points. This method gives bad quality of B-spline
parameterization when the data points are randomly distributed. The B-spline
model developed from uneven data points with the use of uniformly spaced
method will have wriggle and self-intersections. For this reason, uniformly
spaced parameterization method is used to assign parameters for the evenly
distributed data points.

3.2 Chord Length Method

This method make use of chord length distance of the polyline formed by
data points. The parameter values are assigned to data points proportionally
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to its chord length distance value. If the first parameter value corresponds to
data point c1 is u1, then the succeeding parameters ui corresponding to ci can
be given as [12]

ui = u1 +
i∑

k=2

|bk − bk−1|, i = 2, . . . , n (4)

Chord length method is the most commonly used parameterization
method. This method gives good quality of B-spline parameterization even
when the data points are randomly distributed.

3.3 Evaluation of Control Points

The parameter values for all data points are calculated using these conven-
tional methods. Upon substitution of these parameter values, each data point
is represented in the form of Equation (1). When all the data points are
considered, it gives a set of linear equations [11]

C =


c1
c2
. . .
. . .
cn

 =


Np,p(u1) Np,p+1(u1) . . . . . . Np,n+p(u1)
Np,p(u2) Np,p+1(u2) . . . . . . Np,n+p(u2)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

Np,p(un) Np,p+1(un) . . . . . . Np,n+p(un)



b1
b2
. . .
. . .
bn

 = NB (5)

The required B-spline control points are calculated by solving this system
of linear equations. A bunch of eight data points are considered for compari-
son of both parameterization methods. B-spline control points are calculated
with the use of both the methods. The B-spline model is approximated using
second order basis functions with eight B-spline control points. The resulting
B-spline curve for both the cases are presented in Figure 1.

From the Figure 1, it can be seen that both the B-spline curves are
passing through the data points. The B-spline curve developed using uni-
formly spaced method has self-intersection which results in singularity. The
B-spline curve developed using chord length method has no self-intersection
and results in relative better parameterization.
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        1.  (a)                                                           1. (b)                               

Figure 1 Comparison of parameterization methods: a) uniformly spaced method b) chord
length method.

3.4 First Fundamental Matrix

In this paper, first fundamental matrix is used to evaluate the quality of planar
B-spline surface. If C is the B-spline equation which maps parameter domain
onto physical domain, then the relation for Jacobian matrix is given by [6]

J =

(
Cx
u Cx

v

Cy
u Cy

v

)
=


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 (6)

From the Equation (6), the relation for first fundamental matrix is [6]

M = JTJ =

[
Cx
u .C

x
u Cx

v .C
y
u

Cx
v .C

y
u Cy

v .C
y
v

]
=

[
E F
F G

]
(7)

4 Results and Discussion

In this section, the effect of quality of B-spline parameterization on isogeo-
metric analysis result is analyzed. A bar under self-weight problem is solved
to analyze the effect of B-spline parameterization on isogeometric analysis
result. For this, a B-spline curve is developed with the use of two parameteri-
zation methods mentioned in the previous section. These two B-spline curves
are considered for analysis and the results are compared with the analytic
solution. Similarly, the B-spline parameterization effect on isogeometric
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Table 1 Control Points for Bar problem
Parameterization Method Control Points (xi, yi)

Uniformly spaced method [0,0], [0.193,0], [0.47,0], [0.73,0], [1,0]

Chord length method [0,0], [0.166,0], [0.5,0], [0.833,0], [1,0]

analysis for two dimensional is analyzed with the use of heat conduction
problem. A square domain with two different B-spline parameterizations is
considered and Poisson’s equation is solved on this domain. Isogeometric
analysis results for both the cases are compared with the analytical solution.

4.1 1D case: Bar Under Self-weight

A bar under self-weight problem is solved to analyze the effect of B-spline
parameterization on isogeometric analysis result. Modulus of elasticity, den-
sity of the material, acceleration due to gravity and cross sectional area is
considered. A quadratic B-spline curve with five B-spline control points is
considered. A B-spline curve is developed with the use of two parameter-
ization methods mentioned in the previous section. B-spline control points
evaluated using both the parameterization methods are mentioned in Table 1.

Isogeometric analysis results for both the B-spline models are compared
with the analytical solution for displacement and stress are given by

u(x) =
ρg

E

(
Lx− x2

2

)
(8)

σ(x) = ρg(L− x) (9)

Isogeometric analysis results of displacement and stress for both the cases
are plotted in Figures 2 and 3. It can be observed from Figure 2 that, the dis-
placement variation of uniformly spaced method differs from that analytical
solution. The small deviation of displacement variation results in more error
in the stress result which is evident in the Figure 2(b). From Figure 3, it can
be observed that displacement and stress results for chord length method are
in good agreement with the exact analytical solution. The numerical results
are given in Table 2. In the table, error between isogeometric analysis result
and exact solution is calculated with the use of L2 norm. The value of L2

norm for displacement using uniformly spaced method is 0.0062, which is
on higher side. Whereas the corresponding value for chord length method
is 3.0836e−07, which is in good agreement with analytical solution. Similar
trend is observed for the L2 norm for stress.



352 S. Gondegaon and H. K. Voruganti

      
               2. (a)                                                         2. (b)                                        

Figure 2 Uniformly spaced parameterization result: (a) displacement (b) stress.

Table 2 Comparative results
Method L2 Norm

Displacement Stress

Uniformly spaced parameterization 0.0062 0.1144

Chord length parameterization 3.0836e-07 1.3188e-05

4.2 2D case: Heat Conduction Problem

A heat conduction problem in the form of Poisson’s equation over a square
domain is shown in Figure 4. This problem is solved to evaluate the B-spline
parameterization effect on IGA result in two dimension. The heat conduction
problem is given by

∇(∇T (x)) = f(x)

T = To on ∂ΩD

∂T

∂n
= ϕ0(x) on ∂ΩN

(10)

Boundary conditions applied on the domain are To = 0 and φ0(x) = 0,
f(x) is a heat source term applied over the domain and is given by [13]

f(x, y) = −4

9
sin
(πx

3

)
sin
(πy

3

)
(11)
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  3. (a)                                                                          3. (b)                              

Figure 3 Chord length spaced parameterization result: (a) displacement (b) stress.

The analytical solution for the given Poisson’s equation subjected to
above boundary conditions solved over the square domain is given by [13]

T (x, y) =
1

5
sin
(πx

3

)
sin
(πy

3

)
(12)

Bi-cubic B-spline basis functions with eight control points in each para-
metric directions are used to develop a B-spline surface of square domain.
Two B-spline surface of square domain with dissimilar parameterizations
are taken as input for isogeometric analysis of Poisson’s equation. The IGA
results for both these B-spline surfaces are compared to evaluate the param-
eterization effect. For the first case, chord length parameterization method is
used to develop a bi-cubic B-spline surface. The developed B-spline surface
with its corresponding control points are shown in Figure 5. From the figure,
it can be seen that iso-parametric lines are distributed evenly, indicating in
good parameterization.

To evaluate the quality of B-spline parameterization, first fundamental
matrix at [ξ × η] = [100 × 100] points is calculated for the B-spline surface
shown in Figure 5. The determinant value of the first fundamental matrix
is plotted over the domain for the surface. Since the B-spline surface of
square domain does not have any self-intersections, the determinant of the
first fundamental matrix falls in the positive range as shown in Figure 6(a).
The determinant value at all the grid points is one for this ideal case.

Two iso-parametric curves intersect each other orthogonally if the product
of second and third term of the first fundamental matrix is zero and is given
by F = 0. The value of F ranges from 0 to 1. The perfect value of F at all
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Figure 4 Heat conduction: Problem definition parameterization.

Figure 5 B-spline surface with chord length.

the grid points over the domain is zero. Since in a B-spline surface of square
domain, all the curves of one parameter are orthogonal to curves of second
parameter, the value of F of the first fundamental matrix at all points over the
domain is zero as shown in Figure 6(b).

The iso-parametric curves are distributed evenly if the product of first
and last term of the first fundamental matrix is one and is given by E = 1
and G = 1 or EG = 1. The range of EG is in between 0 to 1. If curves
are uniformly spaced, then the product of E and G is one. For the B-spline
parameterization to be good, the EG value should be close to unity. Since the
iso-parametric structure of the B-spline surface of square domain is uniform,
the value of EG of the first fundamental matrix at all points over the domain
is one as shown in Figure 6(c).
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6. (a)           6. (b)                 6. (c) 

Figure 6 First fundamental matrix parameters for first B-spline surface: (a) bijectivity check,
(b) orthogonality check, (c) uniformity check.

Figure 7 Temperature variation using IGA.

To show the effect of B-spline parameterization on IGA, another B-
spline model with modified parameterization is considered. Second B-spline
surface is created by just moving one control point of first B-spline surface
as shown in Figure 9. It can be observed that there is lot of distortion in the
iso-parametric curves of B-spline surface. But this B-spline surface is also
a valid one since its capturing the domain exactly and does not have any
self-intersection.

The determinant value of the first fundamental matrix is plotted over the
domain for the surface. Since the B-spline surface does not have any self-
intersections, the determinant of the first fundamental matrix falls in the
positive range as shown in Figure 10(a). But the determinant values are less
than one in the distortion region, which indicates lower quality of B-spline
parameterization as compared to the previous B-spline surface.
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Figure 8 Error between IGA and analytical solution.

Figure 9 B-spline surface with second parameterization.

Since there is a distortion in the B-spline surface, the iso-parametric net
is not orthogonal throughout the domain. Blue region in the Figure 10(b)
which indicates value of F near zero is spread all over the domain except the
distorted area. The value of F above zero indicates bad quality of parameter-
ization. Similar pattern is observed in the Figure 10(c), the ideal value of EG
should be one for uniform distribution of iso-parametric lines. This value is
less than one in the distorted region. From these figures, it can be observed
that the second B-spline surface has lower parameterization quality than the
first B-spline surface.
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Figure 10 First fundamental matrix parameters for second B-spline surface: (a) bijectivity
check, (b) orthogonality check, (c) uniformity check.

Figure 11 Temperature variation using IGA.

IGA result for the second case of B-spline parameterization is shown in
Figure 11. The effect of distortion can be seen clearly in the temperature vari-
ation. Error plot between IGA and analytical solution is plotted in Figure 12
and can be observed that maximum error range is increased as compared to
the previous case. For the first case the error range was from −3 × 10−3

to 3 × 10−3, whereas for the second case the range is form −0.02 to 0.07.
Also, the effect of distortion is local one and the error is maximum at the
distorted region. It can be observed that by changing one control point there
is a significant change in the B-spline parameterization and which results in
increase in error.

From these comparative results, it is evident that parameterization of a
B-spline model plays a major role in the accuracy of IGA result. Finding an
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Figure 12 Error between IGA and analytical solution.

optimum set of B-spline control points which gives a B-spline surface with
good parameterization is a difficult task.

5 Conclusions

Isogeometric analysis is emerging as the future alternative to finite element
analysis. Since, it is a mesh-free method, IGA based structural shape opti-
mization results in better accuracy and less computational time as compared
to FEM. The only bottleneck in IGA is to find the optimum set of control
points which gives better IGA result. In this paper, the significance of quality
of B-spline parameterization on isogeometric results is shown. Parameteri-
zation effect for 1-D case is studied by solving a case of deflection of bar
under self-weight problem. It is observed that, chord length parameteriza-
tion method is effective as compared to uniformly spaced parameterization
method. To study the parameterization effect for 2-D case, a heat conduction
problem of a square domain with two different parameterizations is solved. It
is observed that, by changing the position of only one B-spline control point,
there is substantial increase in the error. It is established that the quality of
B-spline parameterization is having a significant effect on IGA results.

Developing a B-spline surface/volume with good parameterization for
a complex domains is difficult task. Different analysis aware modelling
techniques are presented, which are limited to certain geometries. Less work
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is reported in this field, future scope is to formulate B-spline modelling
technique for complex and intricate shapes.
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