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Abstract

This paper presents the linear and nonlinear analyses of functionally graded
carbon nanotube- reinforced composite (FG-CNTRC) plates using a four-
node quadrilateral element based on the C0-type of Shi’s third-order shear
deformation theory (C0-STSDT). Shi’s theory is taking the advantages and
desirable properties of the third-order shear deformation theory. Besides,
material properties of FG-CNTRC plates are changed from the bottom to top
surface and based on the rule of mixture. Numerical results and comparison
with other reference solutions suggest that the advantages of the present
element are accuracy and efficiency in analysis of FG-CNTRC plates. Some
nonlinear numerical results of FG-CNTRC plates are also given in this paper
and this contributes to providing additional data for future research work.
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1 Introduction

In the references [1, 2], we can see that carbon nanotubes (CNTs) with their
outstanding features have made a big step forward for materials science.
Carbon nanotubes (CNTs) have attracted great attention for their remark-
able electrical, thermal and mechanical properties [3–6]. From the structural
review, their material properties are listed as high strength, low density, stiff-
ness, and so on. And they become a good candidate for composite structures.
For this reason, linear and nonlinear behaviors of FG-CNTRC plates need to
be studied particularly.

Besides developing and manufacturing novel advanced engineering mate-
rials, many theories have been introduced into linear and nonlinear analyses
from thin to thick plates such as the classical plate theory (CPT), the first-
order shear deformation theory (FSDT), the higher-order shear deformation
theory (HSDT), the layer-wise theory (LWT) and variable kinematics models.
The first-order shear deformation theory (FSDT) is commonly used because
of its low computational cost and simplicity [7–9]. But we may easily rec-
ognize that the third-order shear deformation plate theories are the accurate
theories and effective due to the quadratic variation of the transverse shear
strains and stresses along the thickness of plate as well as the shear locking
free. In the other hand, numerical methods have been expanded for the
analysis of composite plate structures as given by Yang et al. [9], Leissa
[10], Aydogu [11], Liew et al. [12, 13], Lee et al. [14], Nguyen-Xuan et al.
[15–17], Ton-That et al. [18–23], etc. Specifically, we can mention a survey
of recent finite elements by Yang et al. [9] which includes the degenerated
approach [24-26], stress-resultant-based formulations [27, 28] and Cosserat
surface approach [29], reduced integration with stabilization [30–32], incom-
patible modes approach [33, 34], enhanced strain formulations [35–37], 3-D
elasticity elements [38, 39], drilling degree of freedom elements [18, 40–
42], co-rotational approach [43, 44] and higher-order theories for composites
[45, 46]. Besides the standard finite element methods, the smoothed finite ele-
ment formulation for static, free vibration and buckling analyses of composite
plates was based on a combination of node-based smoothing discrete shear
gap method with the higher-order shear deformation plate theory [16]. The
formulation had used only linear approximations and its implementation into
finite element programs was quite simple and efficient. With an alternative
alpha finite element method under discrete shear gap technique, Nguyen-
Xuan et al. [17] presented a new approach for analysis of composite plates.
The improved four-node element for analysis of composite plate structures
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based on twice interpolation strategy was given by Ton-That et al. [20, 21].
Many desirable characteristics of these efficient numerical methods were
shown as continuous nodal gradients, higher-order polynomial basis, no
increase in number of the degree of freedom of the system and so on.

Going back to FSDT with clear mentions, finite element formulation only
requires C0 continuous shape functions as well as the weak-form equations
only require the first derivative of displacement field. However, shear locking
phenomenon occurs when the thickness-to-length ratio of plate gradually
approaches zero and it can be handled using reduced integration. The series
of the sort of elements based on mixed interpolation of tensorial components
[14], twice interpolation strategy [20, 21], discrete shear gap [16], etc. have
been developed to overcome shear locking, respectively.

With the higher-order shear deformation theory (HSDT), we recognize
that it is widely used because it does not need shear correction factors and
gives accurate transverse shear stresses. But with low-order finite elements
such as four-node quadrilateral element, the need of C1-continuous approx-
imation for the displacement fields in the higher-order shear deformation
theory causes some impediments. To overcome these shortcomings, the
HSDT is revised form in which only requires C0 continuity for displacement
fields (C0-HSDT). In the C0-HSDT, two additional variables are joined,
and thence the first derivative of transverse displacements is only required.
Besides, Shi [19, 47] recently gave a simple third-order shear deforma-
tion theory that was applied to static analysis of isotropic and orthotropic
structures. The solutions achieved by this theory have shown to be highly
accurate and more reliable than others. From these reasons, a novel four-
node quadrilateral element with seven degrees-of-freedom per node related
to C0-type of Shi’s third-order shear deformation theory (C0-STSDT), is
firstly introduced for linear and nonlinear analyses of the FG-CNTRC plates.
Based on the idea of using the high-order shear deformation theory through
the C0-type, the achieved results are given completely reliable without any
regrettable phenomena.

On the other hand, the paper of Yengejeh et al. [48] was given to highlight
and categorize the most important and novel studies conducted to explore the
mechanical behavior of nano-composites reinforced with carbon nanotubes
(CNTs). The existing papers cover the mechanical performance of reinforced
composites, both theoretically and experimentally, which allows an accurate
estimate of the mechanical performance of these nano-structures. It was
addressed that the predictive methods can be categorized as models based
on unit cells with a single fiber, models considering a unit cell with a larger
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number of fibers, and how the fibers are modeled: as a 1D, 2D, or 3D con-
figuration. Furthermore, they reviewed two different experimental methods
(destructive and non-destructive) in order to highlight more knowledge in
this field of research. Fisher et al. [49] established a model joining micro
mechanical approaches and finite element outputs to predict the operational
reinforcing modulus of a curvy inserted CNT. Such a modulus was then
applied within a micro mechanics case in order to determine the modulus
of a polymer reinforced distributed with curvy CNTs. They figured out that
even minor CNT curvature considerably lessens the reinforcement compared
to conventional CNTs, and so on.

This paper is organized as follows. The properties of functionally graded
carbon nanotube-reinforced composite (FG-CNTRC) plate is given in Section
2. Based on C0-type of Shi’s third-order shear deformation theory (C0-
STSDT), the finite element formulation for plate is briefly introduced in
Section 3. To highlight the effectiveness of this element in analyzing the
linear and nonlinear behaviors of FG-CNTRC plate structures, several numer-
ical examples are thoroughly explored in Section 4. Finally, conclusions are
drawn in Section 5.

2 Properties of Functionally Graded Carbon
Nanotube-Reinforced Composite (FG-CNTRC) Plate

Four types UD, FGV, FGO and FGX of CNTs are shown in Figure 1, which
can be expressed as

VCNT =


V ∗
CNT (UD)

(1 + 2z/h)V ∗
CNT (FGV)

2(1− 2|z|/h)V ∗
CNT (FGO)

2(2|z|/h)V ∗
CNT (FGX)

(1)

in which

V ∗
CNT =

ωCNT

ωCNT + (ρCNT/ρm)− (ρCNT/ρm)ωCNT
(2)

Where ρCNT and ρm are the density of CNTs and the matrix, ωCNT is
the mass fraction of the CNTs. Based on the rule of extended mixtures, the
material properties of CNTs are written as [50]

E11 = η1VCNTE
CNT
11 + VmEm (3)
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Figure 1 Configuration of carbon nanotube reinforced composite plate.

Table 1 The efficiency parameters of CNTs [50]
V ∗
CNT η1 η2 η3

0.11 0.149 0.934 0.934

0.14 0.150 0.941 0.941

0.17 0.140 1.381 1.381

η2/E22 = VCNT/E
CNT
22 + Vm/Em (4)

η3/G12 = VCNT/G
CNT
12 + Vm/Gm (5)

with Gm and Em recall the shear modulus and Young’s modulus of the
isotropic matrix; GCNT

12 and ECNT
11 , ECNT

22 are called the shear modulus and
Young’s modulus of CNTs, η1, η2 and η3 are efficiency parameters of CNTs
as introduced in Table 1 [50]. Vm and VCNT are called the matrix and CNT
volume fractions and note that VCNT + Vm = 1.
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Similarly, Poisson’s ratio ν12 is given as follows

ν12 = V ∗
CNTν

CNT
12 + Vmνm (6)

3 Finite Element Formulation Based on C0-STSDT for Plate

According to the theory of Shi [47], the displacement field can be described
in terms of C0-higher-order shear deformation theory and seven unknown
variables as follows

u(x, y, z) = u0(x, y) +

(
1

4
z − 5

3h2
z3

)
φbx +

5

4

(
z − 4

3h2
z3

)
φsx(x, y)

(7)

v(x, y, z) = v0(x, y) +

(
1

4
z − 5

3h2
z3

)
φby +

5

4

(
z − 4

3h2
z3

)
φsy(x, y)

(8)

w(x, y, z) = w0(x, y) (9)

It can be seen that the present theory is composed of seven unknowns
including three axial and transverse displacements, four rotations due to
the bending and shear effects as shown in Figure 2. The vector of Green-
Lagrangian strain can be given as follows


εx
εy
εxy
γyz
γxz

 =



∂u

∂x
+

1

2

(
∂u

∂x

)2
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1

2

(
∂v
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)2
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2
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(10)

By using the Von Karman assumptions which imply that derivatives of u
and v with respect to x, y and z are small and noting that w is independent of
z, the above Green-Lagrangian’s strain can be rewritten into a summation of
nonlinear strains in plain and linear transverse shear strains in terms of the
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Figure 2 The positive directions of the displacement components.

mid-plane deformations. Specifically, the nonlinear strains in plain and the
linear transverse shear strains are expressed in matrix form{

ε
γ

}
=

{
ε(0)

γ(0)

}
+ z

{
ε(1)

0

}
+ z2

{
0

γ(2)

}
+ z3

{
ε(3)

0

}
(11)

with

ε(0) = ε
(0)
L + ε

(0)
NL =

 u0,x

v0,y

u0,y + v0,x

︸ ︷︷ ︸
linear part

+


1

2
w2
,x

1

2
w2
,y

w,yw,x

︸ ︷︷ ︸
nonlinear part

;

ε(1) =
1

4


(
5φsx,x + φbx,x

)(
5φsy,y + φby,y

)(
5φsx,y + 5φsy,x + φbx,y + φby,x

)
 ;

ε(3) =
−5

3h2


φsx,x + φbx,x
φsy,y + φby,y

φsx,y + φbx,y + φsy,x + φby,x

 (12)

γ(0) =


5

4
φsy +

1

4
φby + w,y

5

4
φsx +

1

4
φbx + w,x

 ; γ(2) =
−5

h2

{
φsy + φby
φsx + φbx

}
(13)

Note that ε(0) is called the membrane strains; ε(1), ε(3) are called the
bending strains as well as γ(0), γ(2) are also called as two components of
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transverse shear strains in this study. It must be also noted in all equations
that author has denoted L or NL to indicate the linear or nonlinear part.

The constitutive relation for functionally graded plate can be defined as
below 

σxx
σyy
σxy
τxz
τyz

 =


Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44



εxx
εyy
εxy
γxz
γyz

 (14)

with the material constants are given by

Q11 = Q22 = E(z)/[1− ν2(z)], Q12 = Q21 = ν(z)E(z)/[1− ν2(z)],

Q44 = Q55 = Q66 = E(z)/2[1 + ν(z)] (15)

Through the thickness of plate, the constitutive relation as above can be
rewritten

σ∗ = D∗ε∗ (16)

in which

D∗ =

[
D∗

b 0
0 D∗

s

]
, with D∗

b =

A B E
B D F
E F H

, D∗
s =

[
As Bs

Bs Ds

]
(17)

and

σ∗ =


N
M
T
S
R

 , ε∗ =


ε(0)

ε(1)

ε(3)

γ(0)

γ(2)

 (18)

N is the normal forces, M is bending moments, T is higher-order
moments, S and R are related to shear forces, respectively.

(A,B,D,E,F,H) =

∫ h/2

−h/2
(1, z, z2, z3, z4, z6)

Q11 Q12 0
Q21 Q22 0

0 0 Q66

 dz
(19)

(As,Bs,Ds) =

∫ h/2

−h/2

(
1, z2, z4

) [Q55 0
0 Q44

]
dz (20)
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From the C0-STSDT, the strains can be approximated by

ε
(0)
L = BL

1 d; ε
(0)
NL = BNL

1 d; ε(1) = B2d; ε(3) = B3d (21)

γ(0) = B4d; γ(2) = B5d (22)

In which

d =
[
d1 d2 d3 d4

]T
; di =

[
u0i v0i wi φsxi φsyi φbxi φbyi

]T
(23)

These two quantities di and d provide information about the number of
degrees of freedom for each node as well as that of each element. All matrices
BL

1 , BNL
1 , B2, B3, B4 and B5 can be described as below

BL
1 =

4∑
i=1

Ni,x 0 0 0 0 0 0
0 Ni,y 0 0 0 0 0

Ni,y Ni,x 0 0 0 0 0

;

BNL
1 = HgeoG =

4∑
i=1

Hgeo iGi (24)

Hgeo i =

Ni,xwi 0
0 Ni,ywi

Ni,ywi Ni,xwi

, Gi =

[
0 0 Ni,x 0 0 0 0
0 0 Ni,y 0 0 0 0

]
(25)

B2 =
1

4

4∑
i=1

0 0 0 5Ni,x 0 Ni,x 0
0 0 0 0 5Ni,y 0 Ni,y

0 0 0 5Ni,y 5Ni,x Ni,y Ni,x

 (26)

B3 = − 5

3h2

4∑
i=1

0 0 0 Ni,x 0 Ni,x 0
0 0 0 0 Ni,y 0 Ni,y

0 0 0 Ni,y Ni,x Ni,y Ni,x

 (27)

B4 =
4∑

i=1

0 0 Ni,y 0
5

4
0

1

4

0 0 Ni,x
5

4
0

1

4
0

 ;

B5 = − 5

h2

4∑
i=1

[
0 0 0 0 1 0 1
0 0 0 1 0 1 0

]
(28)

N =
[
N1 N2 N3 N4

]
is clearly shape function vector (29)

The tangent stiffness matrix is introduced

K = KL + KNL + Kg (30)
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where KL and KNL present the linear and nonlinear stiffness matrices and
Kg is the geometric stiffness matrix. They are obtained as follows

KL = BT
LD

∗BL (31)

KNL = BT
NLD

∗BNL (32)

Kg = GT ÑG (33)

with

BL =


BL

1

B2

B3

B4

B5

, BNL =


BNL

1

0
0
0
0

, Ñ =

[
Nx Nxy

Nxy Ny

]
(34)

Based on the Total Lagrangian approach, the internal forces at the loop t
computed from the stress state in the structures can be rewritten as

tF =

∫
Ω

(BL + BNL)tσ∗dΩ (35)

where the result of stress after the ith iteration is
tσ∗

i+1 = tσ∗
i + t∆σ∗ (36)

Finally, the nonlinear equations can be given as
tKT∆d = t+∆tP− tF (37)

where t+∆tP is the external force at time t+ ∆t.

4 Numerical Results

We verify the reliability of the proposed element through various examples
related to FG-CNTRC plate structures. Unless stated otherwise, material
properties of matrix, PmPV, are expressed to beEm = 2.1 Gpa, νm = 0.34 at
the room temperature [3, 51], and the reinforcements (10,10) SWCNTs [52]
are given byECNT

11 = 5.6466 Tpa,ECNT
22 = 7.08 Tpa,GCNT

12 = 1.9445 Tpa,
νCNT

12 = 0.175. In addition, G12 = G13 = G23 is assumed in this study.
Furthermore, the boundary conditions are defined as follows:

Clamped (C): uo = vo = wo = φsx = φbx = φsy = φby = 0

Simply supported (S): for upper and lower edges: uo = wo = φsy = φby = 0,
for left and right edges: vo = wo = φsx = φbx = 0.
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Table 2 Comparison of normalized central deflection for the simply supported FG-CNTRC
square plate with V ∗

CNT = 0.17

Types Ansys [52] FEM [52] CS-DSG3 [53] IGA [54] Analytical [55] Present
FG-X 0.5141 0.5132 0.5144 0.5126 0.5156 0.5148

FG-O 1.4110 1.4160 1.4153 1.4426 1.4120 1.4152

FG-V 1.0810 1.0820 1.0834 1.1010 1.0820 1.0830

UD 0.7521 0.7515 0.7524 0.7588 0.7523 0.7532

4.1 Linear Bending Analysis

The static behavior of an FG-CNTRC plate under uniformly distributed load
q = 105(N/m2) with three values of CNTs volume fraction (V ∗

CNT =
0.11/0.14/0.17) is studied in this example. Table 2 compares the normalized
central deflection of the (SSSS) FG-CNTRC square plates with the volume
fraction of CNTs V ∗

CNT = 0.17 and the length-to-thickness ratio a/h = 50
by six different methods, including commercial software package Ansys [52],
standard finite element method [52], CS-DSG3 [53], IGA [54], analytical [55]
and C0-STSDT. In this study, this element related to Shi’s theory (STSDT)
under C0-type with seven degrees-of-freedom per node while IGA [54]
with the same degrees-of-freedom per node used the other third-order shear
deformation theory. It can be observed that the paper’s results agree well with
other solutions.

Table 3 also presents the normalized central deflection for the FG-
CNTRC square plates with the length-to-thickness ratio a/h = 20 and three
values of the volume fraction of CNTs under two boundary conditions (SSSS)
& (CCCC) in comparison with those of the CS-DSG3 [53] and the IGA’s
results [54]. It is observed that the present results match well with other
solutions. It is also found that an increase in the volume fraction V ∗

CNTof
CNTs leads a decrease in the normalized central deflection of FG-CNTRC
plates. With types FG-O and FG-X, the FG-CNTRC plate have the smallest
and greatest stiffness because of the greatest and smallest deflections of them.

The effects of CNT volume fraction and length-to-thickness ratio a/h on
the normalized central deflection for full types of FG-CNTRC square plates
are presented in Table 4. The results of the proposed element are compared
with other results related to the commercial software package Ansys [52] as
well as the standard finite element method in [52]. It can be seen that three
groups of results match very well. Once again, It can be found that the central
deflection of the plates is greatly influenced by the change in volume fraction
of CNT. Specifically, this deflection will decrease to 30% when only 6% of
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Table 3 Comparison of normalized central deflection for the FG-CNTRC square plates with
two boundary conditions (SSSS) & (CCCC) and three values of V ∗

CNT

V ∗
CNT Types SSSS CCCC

CS-DSG3 IGA Present CS-DSG3 IGA Present
0.11 FG-X 0.02664 0.02594 0.02704 0.01114 0.01016 0.01149

FG-O 0.06116 0.06179 0.06153 0.01824 0.01747 0.01860

FG-V 0.04846 0.04854 0.04881 0.01557 0.01472 0.01592

UD 0.03589 0.03551 0.03631 0.01302 0.01205 0.01338

0.14 FG-X 0.02214 0.02140 0.02252 0.00999 0.00910 0.01033

FG-O 0.05013 0.05040 0.05051 0.01565 0.01490 0.01600

FG-V 0.03976 0.03962 0.04013 0.01352 0.01270 0.01386

UD 0.02955 0.02900 0.02994 0.01150 0.01056 0.01185

0.17 FG-X 0.01715 0.01675 0.01740 0.00707 0.00749 0.00729

FG-O 0.03995 0.04031 0.04017 0.01175 0.01131 0.01198

FG-V 0.03153 0.03166 0.03175 0.00999 0.00951 0.01021

UD 0.02324 0.02300 0.02351 0.00833 0.00873 0.00856

the volume fraction of CNT is increased. Note that the central deflections of
two types FG-V and FG-O plates are larger than those of two types UD and
FG-X though all types of plates have the same mass fraction of the CNT.
By changing the distribution of reinforcements, the stiffness of plates can
be affected, and this action is expected to get the desired stiffness of these
structures in reality. Furthermore, if these reinforcements are distributed on
the bottom or top surface, the plates will achieve better stiffness than in other
cases.

According to Figure 3, the normalized central axial stresses σ̄xx =
σxxh

2/(|q|a2) of FG-CNTRC square plates along thickness direction with
length-to-thickness ratio a/h = 50 and CNT volume fraction V ∗

CNT = 0.17
based on the proposed element are compared with the results of [52]. Fig-
ure 3(a) under boundary condition (CCCC) as well as Figure 3(b) under
boundary condition (SSSS) show that the paper’s results match well with
other results [52]. The central axial stress distribution in four types UD,
FG-O, FG-V and FG-X CNTRC plates will differ as shown throughout the
thickness. The axial stress equals zero at the bottom of FG-V CNTRC plate
as well as the value of this quantity equals zero on both the top and bottom
surface of the FG-O CNTRC plate.
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Table 4 The effects of length-to-thickness ratio a/h and volume fraction of CNT on the
normalized central deflection for full types of FG-CNTRC square plates with two boundary
conditions (SSSS) & (CCCC)
V ∗
CNT Types SSSS CCCC

Ansys FEM Present Ansys FEM Present
0.11 10 FG-X 0.00318 0.00318 0.00318 0.00210 0.00211 0.00210

FG-O 0.00522 0.00523 0.00522 0.00251 0.00251 0.00251

FG-V 0.00446 0.00446 0.00446 0.00235 0.00235 0.00235

UD 0.00374 0.00374 0.00374 0.00223 0.00223 0.00222

20 FG-X 0.02703 0.02701 0.02705 0.01150 0.01150 0.01150

FG-O 0.06136 0.06155 0.06153 0.01856 0.01860 0.01861

FG-V 0.04876 0.04879 0.04882 0.01591 0.01593 0.01593

UD 0.03629 0.03628 0.03632 0.01338 0.01339 0.01338

50 FG-X 0.79150 0.79000 0.79187 0.19000 0.18940 0.19079

FG-O 2.15000 2.15700 2.15704 0.47050 0.47190 0.47303

FG-V 1.65200 1.65300 1.65409 0.36530 0.36490 0.36589

UD 1.15500 1.15500 1.15639 0.26180 0.26180 0.26271

0.14 10 FG-X 0.00284 0.00284 0.00284 0.00198 0.00198 0.00197

FG-O 0.00451 0.00453 0.00451 0.00231 0.00231 0.00231

FG-V 0.00389 0.00389 0.00388 0.00218 0.00218 0.00217

UD 0.00331 0.00330 0.00330 0.00209 0.00209 0.00208

20 FG-X 0.02258 0.02256 0.02253 0.01035 0.01036 0.01033

FG-O 0.05053 0.05070 0.05051 0.01600 0.01604 0.01600

FG-V 0.04021 0.04025 0.04013 0.01388 0.01390 0.01387

UD 0.03002 0.03001 0.02995 0.01188 0.01188 0.01185

50 FG-X 0.62840 0.62710 0.62618 0.15660 0.15600 0.15743

FG-O 1.73200 1.73800 1.73178 0.37970 0.38050 0.38005

FG-V 1.32500 1.32600 1.32174 0.29580 0.29550 0.29527

UD 0.91820 0.91750 0.91573 0.21310 0.21310 0.21353

0.17 10 FG-X 0.00201 0.00201 0.00201 0.00132 0.00132 0.00132

FG-O 0.00337 0.00338 0.00337 0.00159 0.00160 0.00159

FG-V 0.00286 0.00286 0.00286 0.00148 0.00149 0.00148

UD 0.00239 0.00239 0.00239 0.00141 0.00141 0.00141
(Continued)
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Table 4 Continued
V ∗
CNT Types SSSS CCCC

Ansys FEM Present Ansys FEM Present
20 FG-X 0.01738 0.01737 0.01741 0.00729 0.00729 0.00729

FG-O 0.04007 0.04020 0.04017 0.01195 0.01198 0.01198

FG-V 0.03171 0.03174 0.03175 0.01020 0.01021 0.01021

UD 0.02349 0.02348 0.02351 0.00856 0.00856 0.00856

50 FG-X 0.51410 0.51320 0.51486 0.12270 0.12230 0.12313

FG-O 1.41100 1.41600 1.41521 0.30790 0.30850 0.30930

FG-V 1.08100 1.08200 1.08301 0.23860 0.23840 0.23910

UD 0.75210 0.75150 0.75324 0.16990 0.16980 0.17048

With four values (5, 10, 50 & 100) of length-to-thickness ratio a/h, the
effect of them on the normalized central axial stresses in two types FG-V and
FG-O CNTRC square plates with CNT volume fraction V ∗

CNT = 0.17 under
two boundary conditions (CCCC) & (SSSS) are also presented in Figures 4(a)
and 4(b) respectively.

Next, the UD, FG-V, FG-O and FG-X CNTRC skew plates (a/b = 1)
with three values of skew angle 30◦, 45◦ and 60◦ are studied in this section.
By changing the value of skew angle and the value of length-to-thickness
ratio a/h, the normalized central deflection for the FG-CNTRC skew plates
with three values of the volume fraction of CNTs (V ∗

CNT = 0.11/0.14/0.17)
under two boundary conditions (SSSS) & (CCCC) are given as Table 5.

On the other hand, based on the stability of the proposed element, the
normalized central axial stresses σ̄xx = σxxh

2/(|q|a2) of FG-CNTRC skew
plates along thickness direction with two values of length-to-thickness ratio
a/h = 10 & 50; three values of skew angle 30◦, 45◦ & 60◦; two types FG-V
& FG-O under CNT volume fraction V ∗

CNT = 0.11 are shown in Figures 5(a)
and 5(b) for boundary condition (SSSS) and in Figures 5(c) and 5(d) for
boundary condition (CCCC) with expectations as a further reference data in
the future.

4.2 Nonlinear Bending Analysis

In this section, the nonlinear bending analysis of FG-CNTRC square plates
are presented in details with the expectation of the efficiency based on this
proposed element. Two types UD and FG-V CNTRC are used to study the



The Linear and Nonlinear Bending Analyses 153

(a) a/h = 50, V ∗
CNT = 0.17, (CCCC)

(b) a/h = 50, V ∗
CNT = 0.17, (SSSS)

Figure 3 The normalized central axial stresses in the FG-CNTRC plates under a uniform
load.

values of nonlinear deflection. Under three values of CNT volume fraction
(V ∗

CNT = 0.11/0.14/0.17), the load-deflection curves for UD and FG-V
CNTRC square plates with length-to-thickness ratio a/h = 10 are shown as
Figures 6(a)–6(c). It can be seen that the results achieved by paper’s elements
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(a) V ∗
CNT = 0.17, (CCCC)

(b) V ∗
CNT = 0.17, (SSSS)

Figure 4 The effect of length-to-thickness ratio a/h on the normalized central axial stresses.

match well with the results of Shen in [50]. The results obtained by us are
slightly smaller than those of Shen [50] and the difference is negligible.

Now, the nonlinear bending analysis of FG-CNTRC skew plates are
presented in this paper related to C0-STSDT. Three values of skew angle 30◦,
45◦ & 60◦; full types of FG-CNTRC; three values 0.11, 0.14 & 0.17 of CNT
volume fraction; three values 10, 15 & 20 of length-to-thickness ratio a/h;
three values width-to-length ratio b/a = 0.5, 1 & 2 as well as two types of
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Table 5 The effects of CNT volume fraction, length-to-thickness ratio a/h and skew angle
on the normalized central deflection for full types of FG-CNTRC skew plates (a/b = 1) with
two boundary conditions (SSSS) & (CCCC)
V ∗
CNT Types SSSS CCCC

30◦ 45◦ 60◦ 30◦ 45◦ 60◦

0.11 10 FG-X 0.00315 0.00281 0.00191 0.00210 0.00189 0.00132

FG-O 0.00475 0.00379 0.00227 0.00246 0.00217 0.00146

FG-V 0.00416 0.00343 0.00213 0.00232 0.00206 0.00140

UD 0.00362 0.00313 0.00205 0.00221 0.00199 0.00138

20 FG-X 0.02745 0.02512 0.01730 0.01259 0.01300 0.01048

FG-O 0.05398 0.04124 0.02327 0.01955 0.01883 0.01346

FG-V 0.04470 0.03579 0.02115 0.01695 0.01665 0.01231

UD 0.03536 0.03054 0.01958 0.01453 0.01476 0.01154

50 FG-X 0.74358 0.64711 0.43835 0.21832 0.24817 0.23643

FG-O 1.56392 1.12454 0.65014 0.51262 0.51736 0.39028

FG-V 1.29370 0.96893 0.57617 0.40400 0.42144 0.33702

UD 1.00266 0.81223 0.51600 0.29763 0.32719 0.28945

0.14 10 FG-X 0.00284 0.00257 0.00178 0.00197 0.00178 0.00125

FG-O 0.00420 0.00346 0.00214 0.00228 0.00204 0.00139

FG-V 0.00369 0.00312 0.00199 0.00215 0.00193 0.00132

UD 0.00324 0.00287 0.00193 0.00208 0.00188 0.00132

20 FG-X 0.02329 0.02191 0.01565 0.01136 0.01181 0.00966

FG-O 0.04604 0.03669 0.02157 0.01707 0.01683 0.01249

FG-V 0.03792 0.03154 0.01939 0.01491 0.01491 0.01134

UD 0.02993 0.02678 0.01792 0.01296 0.01334 0.01069

50 FG-X 0.60906 0.55049 0.38792 0.18023 0.20794 0.20546

FG-O 1.33280 0.99462 0.59336 0.41953 0.43757 0.34957

FG-V 1.08966 0.84734 0.51964 0.33058 0.35425 0.29788

UD 0.83151 0.70230 0.46366 0.24368 0.27385 0.25408

0.17 10 FG-X 0.00198 0.00175 0.00118 0.00131 0.00117 0.00082

FG-O 0.00306 0.00244 0.00146 0.00157 0.00139 0.00093

FG-V 0.00266 0.00218 0.00134 0.00146 0.00129 0.00088

UD 0.00231 0.00199 0.00130 0.00140 0.00126 0.00087

(Continued)



156 H. L. Ton-That

Table 5 Continued
V ∗
CNT Types SSSS CCCC

30◦ 45◦ 60◦ 30◦ 45◦ 60◦

20 FG-X 0.01752 0.01583 0.01073 0.00795 0.00814 0.00649

FG-O 0.03511 0.02673 0.01504 0.01260 0.01214 0.00869

FG-V 0.02883 0.02286 0.01337 0.01084 0.0106 0.00777

UD 0.02279 0.01956 0.01245 0.00928 0.00941 0.00733

50 FG-X 0.47777 0.40972 0.27273 0.14067 0.15864 0.14829

FG-O 1.01566 0.72908 0.42226 0.33503 0.33782 0.25439

FG-V 0.83531 0.61991 0.36592 0.26303 0.27248 0.21513

UD 0.64789 0.52129 0.32919 0.19286 0.21124 0.18539

boundary condition (SSSS) & (CCCC) are used to achieve the load-deflection
curves under uniform load as shown in Figures 7–9. In details, Figure 7a
depicts four curves for four types UD, FG-V, FG-O & FG-X with skew angle
30◦, V ∗

CNT = 0.11, a/h = 10, b/a = 1 and boundary condition (SSSS).
As linear bending, with types FG-X and FG-O, the FG-CNTRC skew plates
have the greatest and smallest stiffness because of the smallest and greatest
deflections of them. Figure 7b presents the effect of CNT volume fraction
on the load-deflection curve for (SSSS) UD-CNTRC skew plate with skew
angle 30◦, length-to-thickness ratio a/h = 10. Obviously, when CNT volume
fraction is increased, the stiffness of the structure also increases, leading to
a decrease in the deflection. By changing the length-to-thickness ratio a/h
or the width-to-length ratio b/a, the deflection-load curves of FGO-CNTRC
skew plate with CNT volume fraction V ∗

CNT = 0.17 and boundary condition
(SSSS) are also plotted in Figures 7(c) and 7(d).

Furthermore, the effect of skew angle on the nonlinear bending behav-
ior of FG-CNTRC skew plates are studied in details. With CNT volume
fraction 0.11 and boundary condition (SSSS), the load-deflection curve of
UD-CNTRC skew plate gradually decreases with increasing skew angle
value as depicted in Figure 8(a). This comment is also repeated for FGX-
CNTRC skew plate as shown in Figure 8(b), and obviously Figure 8(c) is a
combination of them.

Similarly, by changing the boundary condition from (SSSS) to (CCCC),
the effect of skew angle on the nonlinear bending behavior of FG-CNTRC
skew plates are also presented in last research. The difference between type
UD and type FGX of CNTRC skew plate is not significant as shown in
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(a) V ∗
CNT = 0.11, a/h = 50, (SSSS)

(b) V ∗
CNT = 0.11, a/h = 10, (SSSS)

Figure 5 Continued
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(c) V ∗
CNT = 0.11, a/h = 50, (CCCC)

(d) V ∗
CNT = 0.11, a/h = 10, (CCCC)

Figure 5 The effects of length-to-thickness ratio a/h, skew angle, type of FG and boundary
condition on the normalized central axial stresses.
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(a)

(b)

Figure 6 Continued
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(c)

Figure 6 (a) Comparison for UD-CNTRC square plates, (b) comparison for FGV-CNTRC
square plates and (c) six load-deflection curves for both UD and FGV-CNTRC square plates
with a/h = 10.

(a) Skew angle 30◦, a/h = 10, SSSS

(b) Skew angle 30◦, a/h = 10, type UD, SSSS

Figure 7 Continued
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(b) Skew angle 30◦, a/h = 10, type UD, SSSS

(c) Skew angle 30◦, type FG-O, a/b = 1, SSSS

(d) Skew angle 30◦, a/h = 10, type FG-O, SSSS

Figure 7 Continued
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(c) Skew angle 30◦, type FG-O, a/b = 1, SSSS

(d) Skew angle 30◦, a/h = 10, type FG-O, SSSS
Figure 7 The deflection-load curves with several kind of properties.

(a) b/a = 1, a/h = 10, type UD

(b) b/a = 1, a/h = 10, type FG-X

Figure 8 Continued
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(b) b/a = 1, a/h = 10, type FG-X

(c) Combination of two types UD and FG-X with (SSSS)

Figure 8 The effect of skew angle on the nonlinear bending behavior of (SSSS) FG-CNTRC
skew plates.
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(a) b/a = 1, a/h = 10, type UD

(b) b/a = 1, a/h = 10, type FG-X

Figure 9 Continued
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(c) Combination of two types UD and FG-X with (CCCC)

Figure 9 The effect of skew angle on the nonlinear bending behavior of (CCCC) FG-
CNTRC skew plates.
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Figures 9(a) and 9(b), but still complies with the previous comments as
zoomed in Figure 9(c).

5 Conclusion

An efficient element based on the C0-type of Shi’s third-order shear defor-
mation theory (C0-STSDT) is employed to examine the linear and nonlinear
behaviors of FG-CNTRC plates. The idea behind the present study is firstly
introduced an alternative approach to the problems related to FG-CNTRC
plate structures. Based on the C0-type of Shi theory, all finite element matri-
ces for linear as well as nonlinear analysis are established. Various numerical
investigations are conducted to verify that the results of the proposed element
are completely reliable with no regrettable phenomena.
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