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Abstract

The instability of a strip as a free-standing film and also a deposited film
on a substrate is studied in this work. The non-uniform thickness of the film
is assumed with a quadratic profile. The problem is categorized under the
topic of structural stability and the eigenvalue problem corresponding with
the ODE of the system is solved. For the free-standing film, the buckling loads
and mode shapes are derived analytically through a closed-form solution. For
the substrate-bonded film with a finite length, the uniaxial wrinkling of the
film is investigated by using a series solution and a finite difference method
and the wrinkling load and wrinkling pattern are characterized. Unlike
the wrinkling of thin films with uniform thickness in which the wrinkles
propagate along the entire span, it is shown that for the non-uniform film
wrinkles are localized near the location with a minimum thickness along the
length span; and the wrinkling accumulation is very sensitive to the thickness
variations. Therefore, this work is expected to increase the insight into the
localization of the wrinkles in thin film-substrate systems in engineering,
industry and medical science.
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1 Introduction

The mechanical instability of the beam/film structures categorized as buck-
ling and wrinkling has attracted great attention of many researchers in sheet
metal forming [1, 2], aeronautical systems and light-weight gossamer struc-
tures [3], semiconductor technology [4], stretchable electronics [5], woven
composite plies [6], skin aging and wound healing [7], material properties
metrology [8] and so on [9]. Amongst different patterns for wrinkling of
a film on a substrate [4, 10], the uniaxial wrinkling is one of the common
patterns in which wrinkles propagate uniaxially along the film length span
like a strip [8, 11, 12]. Wrinkles may appear on the free-standing films under
tension as studied analytically [13], experimentally and numerically [14]. On
the other hand, thin films deposited on the substrate may undergo wrinkling
due to compressive loading [15], thermal loading [16] and shrinking of the
substrate [4].

The instability problems (i.e. buckling and wrinkling) are considered
by many researchers using bifurcation theory [17] through the eigenvalue
problem of the system. Birman and Bert [11] considered the wrinkling of the
orthotropic films, Coman and Bassom [18] studied the wrinkling in the films
under shear loading, Damil and Potier-Ferry [19] investigated the coupling
between local and global instabilities of thin films using continuum models
as a beam on an elastic foundation and a 3D nonlinear elasticity problem,
and Chen and Hutchinson [4] determined the wrinkling parameters through
the principle of minimum potential energy of the system. However, in all of
these works, the effect of the non-uniformity of the film on the wrinkling
problem is neglected. In other words, most of the existing theoretical works
on the substrate-bonded films used the uniform assumption for the film
thickness with a uniform wrinkling pattern along the entire span, in which the
wrinkles propagate with a sinusoidal pattern all over the film with a uniform
amplitude. Contrarily, for thin-film structures with finite length, the effect of
the boundary conditions at the edges of the film is important on the pattern of
the wrinkling and violates the uniformity of the wrinkling along the span [19].

Furthermore, the assumption of the uniform thickness of thin films is
unreliable due to tiny thickness of the films, so the importance of the thickness
variations and the effects of these changes on the instability parameters (i.e.
load and pattern) need to be considered carefully. On the other hand, if the
thickness can be varied/engineered in a controlled manner, then its effect on
different desired buckling and wrinkling patterns and also other mechanical
behaviors of the system seems to be very interesting in developing new ideas
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on various applications of thin-film structures. In this regard, one may refer
to variable thickness superconducting thin films [20], optical systems and
mirrors [21–23], sensors and detectors [24, 25], micro electro- mechanical
systems [26, 27], etc. Besides, it is shown that the physical properties such
as coefficient of thermal expansion [28] are thickness-dependent in thin-film
structures, which highlights the importance of the thickness variations of thin
films. The study of the non-uniformity in material properties of the film [29]
and also the substrate [30] shows that the wrinkling pattern is very sensitive
to non- homogeneity and the pattern is completely different from the results
of the uniform (i.e. homogeneous) system. The effect of the non-uniform
thickness of the film is investigated in this work for finite length film-substrate
systems to discover more about the geometrical non-uniformity of the film.

In this study, the buckling and uniaxial wrinkling problem of a vari-
able thickness film with finite length are investigated. The thickness profile
is modeled with a quadratic pattern and the eigenvalue problem of the
differential equation of the system is solved. In the buckling problem of
the free-standing film, an analytical closed-form solution is proposed for
the buckling loads and mode shapes. For the substrate-bonded film, the
wrinkling load and wrinkling pattern are determined numerically by using
a finite difference method and the results are compared with those from
a series solution. In contrast with the other studies with uniform thickness
assumption, the current work shows that the thickness non-uniformity along
the domain is very effective in wrinkling localization, such that wrinkles
accumulate around the thinnest location of the film. The tiny thickness of
the film increases the significance of this study in thin film technology where
the uniformity of the film thickness is not perfectly controllable. The results
of the analysis are expected to increase the insight into the physics of the
instability problem of thin-film structures and to provide more applications
in science and technology of thin film systems.

2 Modeling

In order to characterize the buckling of a free-standing film and the uniaxial
wrinkling of a substrate-bonded thin film, the instability problem of the
system is studied in this work. The classical beam/strip theory with small
deformation is used to model a rectangular thin film with thickness t, width
b and length L (Figure 1). The substrate is modeled by using a Winkler
foundation, in which the interaction between the film and the substrate is
modeled by using a spring system. In other words, the effect of the substrate
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is applied to the film as an external load corresponding with the stiffness of
the substrate and the deflection of the film. The Winkler modulus K depends
on the substrate stiffness (i.e. Young Modulus Es) and its characteristic depth
H as K = Es/H [8, 11, 12]. For the system under uniaxial in-plane loading
Nx in Figure 1, a uniaxial deformation strip-like pattern is developed in the
film [10, 11]. The governing equation of this system is derived as [31]

d2

dx2

[
D
d2w

dx2

]
+Nx

d2w

dx2
+ bKw = 0 (1)

in which w is the deflection and D is the bending rigidity of the film
defined by

D =
1

12
Efbt

3 (2)

where Ef=Ef/(1−v2f ), Ef is Young’s modulus and vf is the Poisson’s ratio
of the film. In the current work, the thickness is assumed to vary along the
length span as

t = t0(1 + ε f(x)) (3)

and t0 is the minimum thickness of the film, ε is thickness gradient denoting
the amplitude of the variation of the film thickness, and f (x) is the profile of
the thickness variation along the length span x such that Max [f(x)] = 1. By
substituting Equation (3) into Equation (2), the bending rigidity is derived as

D = D0D(x) = D0(1 + ε f(x))3 (4)

where D0 = 1
12Efbt0

3. Imposing Equation (4) into Equation (1) and intro-
ducing the dimensionless variable ξ defined by ξ = x/L and normalized
deflection w = w/wmax, the dimensionless governing equation is derived
as

[D(ξ)]
d4w

dξ4
+

[
2
d

dξ
D(ξ)

]
d3w

dξ3
+

[
d2

dξ2
D(ξ) +N

]
d2w

dξ2
+Kw = 0 (5)

in which D(ξ) = (1 + εf(ξ))3,

N =
Nx

D0
L2 (6a)

K =
KbL4

D0
(6b)
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Figure 1 Deposited film with variable thickness on the substrate.

Figure 2 The thickness profile of the film along the length span.

In this work, the thickness of the film is assumed with a quadratic profile
as illustrated in Figure 2 in which the film takes its minimum thickness at the
middle of the length span as

f(ξ) = 4ξ2 (7)

and −0.5 ≤ ξ ≤ 0.5. For this profile, the effect of the thickness variation
of the film is investigated on the buckling and wrinkling and the results are
compared with those of a film with uniform thickness.

3 Solution Approaches

In this section the buckling problem of a free-standing film and also the
uniaxial wrinkling of a film bonded to the substrate are studied. The buck-
ling problem is solved analytically by direct solution of the ODE problem
using well-known functions, where the analytical solution is available. For
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wrinkling of a film-substrate system, numerical methods are used to analyse
the problem in the lack of analytical solution.

3.1 Buckling Analysis of a Free-standing Film

For a free-standing film with variable thickness, the governing equation of
the system at the onset of instability is represented by

d2

dξ2

[
D(ξ)

d2w

dξ2

]
+N

d2w

dξ2
= 0 (8)

where D(ξ) = (1 + 4εξ2)3 is the bending rigidity of the film with quadratic
thickness profile in Figure 2. For a film with non-uniform thickness (i.e.
ε 6= 0), by using a change of variable as u = 1/

√
1 + εξ

2 and some mathe-
matical treatments of Equation (8), the algebraic form of Mathieu differential
equation [32] is obtained as

(1− u2)d
2w

du2
− udw

du
+ [a+ 2q(1− 2u2)]w = 0 (9a)

which is converted to the canonical form of Mathieu differential equation by
substituting u = cos(θ) as

d2w

dθ2
+ [a− 2 qcos(2θ)]w = 0 (9b)

and MathieuC (a, q, θ) and MathieuS (a, q, θ) are even and odd Mathieu
functions respectively, which are the solutions of the Mathieu differential
Equations (9a, b). Furthermore, MathieuC and MathieuS are even and odd
functions of θ, respectively, and they are normalized such that at θ = 0,
MathieuC (a, q, θ) = 1 and d/dθ [MathieuS (a, q, θ)] = 1 [32].

Therefore, the general solution of the governing equation of the film in
Equation (8) is derived for ε 6= 0 as

w(ξ) = m1C(ξ) +m2S(ξ) +m3ξ +m4 (10)

where mi (i = 1 . . . 4) are unknown constants and C(ξ) and S(ξ) is even and
odd functions of ξ as

C(ξ) =
√

1 + ε ξ2 MathieuC

[
1 +

N

2ε
,−N

4ε
, arctan(ξ

√
ε)

]
(11a)

S(ξ) =

√
1 + ε ξ2 MathieuS

[
1 +

N

2ε
,−N

4ε
, arctan(ξ

√
ε)

]
(11b)
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In order to find the unknown constants mi (i = 1 . . . 4) in Equation (10),
boundary conditions of the film are imposed. The clamped-clamped boundary
conditions at the edges are applied with zero deflection and zero slope as
w = 0 and dw

dξ = 0. By imposing the boundary conditions into Equation (10)
and after some mathematical treatments, the characteristic equations and
mode shapes of the buckling of the film are obtained from the corresponding
eigenvalue problem.

On the other hand, for a free-standing film with uniform thickness (i.e.
ε = 0), the solution of the governing Equation (8) is derived by replacing
S(ξ) and C(ξ) by sin(ξ

√
N) and cos(ξ

√
N) in Equation (10), respectively.

The characteristic equation of the buckling of the film with clamped-clamped
edges is represented by

sin(0.5
√
N)
[
tan

(
0.5
√
N
)
− 0.5

√
N
]

= 0 (12)

which leads to the symmetric and antisymmetric buckling modes with
buckling loads and mode shapes as follows:

• Symmetric mode:

N = 4π2 and w = 1 + cos(
√
Nξ) (13a)

• Antisymmetric mode:

N = 8.183π2 and w = sin(
√
Nξ)− 2ξsin(0.5

√
N) (13b)

3.2 Wrinkling Analysis of a Substrate Bonded Film

The governing Equation (5) of the system is a fourth-order linear ordinary
differential equation with variable coefficients. These types of equations
generally do not have a closed-form analytical solution. Therefore, we use
semi-analytical solutions as well as numerical solutions to characterize the
wrinkling behavior of the film-substrate system with non-uniform thickness.
In this work, a series solution and a finite difference approach are used to rep-
resent the corresponding eigenvalue problem of the differential Equation (5)
in the algebraic form. And by finding the eigenvalues and eigenvectors, one
may find the wrinkling loads and wrinkling patterns.

The series solution of the film deflection w(ξ) is constructed with
unknown coefficients in the form of

w(ξ) =

i→∞∑
i=0

ciξ
i (14)
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and by plugging w(ξ) from Equation (14) into Equation (5) and rearranging
terms, one may find the corresponding recurrence relation of the differential
equation. In addition, for clamped-clamped edges of the film, the boundary
conditions are represented as w = 0 and dw/dξ = 0 at ξ = ±0.5. Imposing
these conditions, the eigenvalue problem of the system is derived and the
wrinkling load and wrinkling pattern are determined.

On the other hand, a finite difference method is used to solve the Equa-
tion (5) numerically [33] as introduced in Appendix. By discretizing the
domain using nodes and adopting a central finite difference method, the
differential equation is replaced with a set of algebraic equations in the
following format,

[A]{w}+N [B]{w} = 0 (15)

in which {w} is the vector of the nodal displacement and [A] and [B] are
square matrices. For the clamped-clamped boundary conditions at the edges
of the film, a symmetric extension of the domain is adopted as explained by
Zhao and Wei [34, 35]. The general eigenvalue problem (15) with eigenvector
{w} and eigenvalue parameter N has a straight forward solution. The eigen-
values correspond with the wrinkling loads and the eigenvectors represent the
wrinkling pattern of the system.

4 Results and Discussion

In this section, the numerical results of the instability for a free-standing film
and a substrate-bonded film are presented based on the solution approaches
discussed in the previous sections including the closed-form solution, the
series solution and the numerical finite difference method. For the free-
standing film, the buckling loads and mode shapes are determined. For the
deposited film on the substrate, the critical wrinkling load is determined from
finite difference method and verified by series solution technique. The effect
of the thickness non-uniformity of the film on the instability parameters is
investigated.

4.1 Buckling of a Free-standing Film

The buckling load N and mode shapes of a free-standing film with variable
thickness for symmetric and antisymmetric buckling modes are studied from
Equations (10, 11). The variation of the normalized buckling load N/N0

B for
symmetric and antisymmetric buckling modes are plotted in Figure 3, where
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Figure 3 Normalized buckling load N/N0
B versus thickness gradient ε for the clamped-

clamped free-standing film from analytical and finite difference (F.D.) solution for the
symmetric (1st mode) and antisymmetric (2nd mode) buckling.

N0
B = 4π2 is the critical buckling load of a free-standing film with uniform

thickness in Equation (13a). The symmetric mode with smaller buckling
load corresponds with the first mode, while the antisymmetric mode is the
second buckling mode of the film. Both the symmetric and antisymmetric
buckling loads increase with the growth of the thickness gradient ε. When
the parameter ε approaches zero, the symmetric and antisymmetric buckling
loads approach the corresponding buckling load of the uniform thickness film
in Equations (13a, b) as expected.

In order to propose an explicit expression in terms of the thickness gra-
dient ε for the critical buckling load (i.e. the first mode) of the free-standing
film with non-uniform thickness, a regression analysis is performed on the
buckling load data. According to Figure 3, the critical buckling load NSymm.

B
changes linearly versus parameter ε as

NSymm.
B = N0

B(1 +m0ε) (16)

where m0 = 1.273 ± 0.008 is a constant parameter obtained from the
regression analysis [36] with R-Squared = 0.999 and standard error less
than 1%, which shows a high accuracy for the proposed linear relation in
Equation (16).

On the other hand, the symmetric buckling mode shapes are shown in
Figure 4 for different values of parameter ε. For the film with uniform
thickness (i.e. ε = 0), the results in Figure 4 correspond with the mode shape
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Figure 4 Symmetric buckling mode shapes of a free-standing film versus length span ξ.

in Equation (13a). By growing the thickness gradient ε, the edges of the film
get thicker. Increasing the bending rigidity of the film decreases the deflection
by squeezing the mode shapes as shown in Figure 4.

4.2 Wrinkling of a Substrate Bonded Film

For a film with uniform thickness (i.e. ε = 0) deposited on a substrate,
the governing equation (5) of the system with clamped-clamped edges is
solved analytically [37], and the critical compressive load of the instability is
represented versus the Euler buckling load (i.e.N0

B = 4π2 in Equation (13a))
and the substrate effect as N = N0

B + 2
√
K. Obviously, by increasing

the substrate parameter K defined in Equation (6b), especially for thin-film
structure with tiny thickness of the film, the effect of the substrate dominates
on the system for large parameters K compared with N0

B . Therefore, the
film undergoes a fine wavy pattern and the wrinkling load and wrinkling
wavenumber are given in terms of K as

N0
W = 2

√
K (17)

β0W =
4
√
K (18)

Same relations for the load and wavenumber of the wrinkling of a thin
film-substrate system are presented in the literature by other researchers
[11, 12, 38]. Also, the series solution method and finite difference analysis
introduced in this work lead to the same results for the load and wavenumber
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of the wrinkling in uniform thickness films. According to Equations (17) and
(18), the wrinkling load and wrinkling wavenumber are affected only by the
substrate parameter for big values of parameter K in Equation (6b). Unlike the
buckling of a free-standing film where the boundary conditions affect the load
and mode shapes, in the wrinkling problem, the boundary conditions only
change the wrinkling pattern. As shown in Figure 5-a, for a thin film with
uniform thickness deposited on a substrate with clamped-clamped edges,
the wrinkling amplitude decreases by approaching the edges. Same results
were presented by Damil and Potier-Ferry [19] when they considered a beam
with uniform thickness on a substrate with clamped boundaries. Also, the
wrinkling pattern of a uniform thickness film with infinite length is shown in
Figure 5-b in which the effect of the boundaries is completely vanished and
the wrinkles propagate uniformly all over the domain [4, 7, 12].

On the other hand, for a film with non-uniform thickness deposited on
a substrate, the critical load and wavenumber of the wrinkling are sought
in terms of substrate parameter K and thickness gradient ε. The normalized
wrinkling load Fn = N/N0

W is plotted in Figure 6 from finite difference
numerical results, where N0

W is the wrinkling load for the film with uniform
thickness in Equation (17), and Kn (Kn = 10−9 K) is the scaled substrate
parameter. It is observed that the variation of the normalized wrinkling load
Fn is too small for different values of parameters K and ε such that it
remains almost unchanged around the critical wrinkling load of the system
with uniform thickness. The small deviations from Fn = 1 is observed for
very soft substrates, where due to decreasing the substrate parameter K, the
magnitude of the critical load of the system with uniform thickness decreases
too, and therefore, the small deviations are amplified. By considering these

           
(a) Finite length film with clamped-clamped edges              (b) Infinite length film 

Figure 5 The wrinkling pattern of a film with uniform thickness (ε = 0) deposited on a
substrate similar to [12, 19].
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Table 1 The parameters of the Equation (19) for the normalized wrinkling load obtained
from regression analysis

Model summary R Squared = 0.99
95% Confidence Interval

Parameter Estimate Std. Error Lower Bound Upper Bound
m1 .024 .001 .022 .025

m2 .213 .004 .206 .220

m3 .775 .020 .736 .814

Figure 6 Normalized wrinkling load Fn versus substrate parameter Kn and thickness
gradient ε.

small deviations, a relation for normalized wrinkling load Fn is proposed as

Fn =
N

N0
W

= 1 + m1K
−m2
n εm3 (19)

where the constant parameters m1, m2 and m3 are obtained from a regression
analysis. The results of the regression analysis with 85 data-points for 0 ≤
ε ≤ 1 and 0.001 < Kn < 100 are shown in Table 1 with a high accuracy
as R-squared = 0.99 and a standard error less than ± %3 for the estimated
parameters [36]. Clearly, imposing ε = 0 in Equation (19) leads to Fn = 1
corresponding with the wrinkling load of the film with uniform thickness in
Equation (17).

Furthermore, the wrinkling pattern of the film-substrate system changes
effectively by the non-uniformity of the film thickness (Figure 7). For a



Buckling and Wrinkling of a Thin Solid Film with Non-uniform Thickness 267

film with uniform thickness, the wrinkles propagate all over the length
span; while for a film with non-uniform thickness, the wrinkles accumulate
locally on the film. The wrinkling pattern is characterized by introducing two
parameters, the footprint of the wrinkling and the wavenumber. The footprint
of the wrinkles indicates the effective length of the film influenced by the
wrinkles and the wavenumber of the wrinkling shows the number of the
wrinkles on the film [29]. More wavenumber on shorter footprint shows a
denser wrinkling region. Due to the non-uniformity of the thickness, wrinkles
accumulate around the location with minimum thickness on the film, and by
increasing the thickness gradient ε, the wrinkles are compressed even more
and the number of them decreases too as shown in Figure 7.

In order to consider the wavenumber and the footprint of the wrin-
kles quantitatively, the corresponding numerical results are interpreted by
a regression analysis. The normalized wavenumber βn = β/β0W of the
wrinkling for the film with variable thickness versus substrate parameter Kn
(Kn = 10−9 K) and thickness gradient ε is plotted in Fig. 8, where β0W is the
wrinkling wavenumber for a film with uniform thickness in Equation (18).
By increasing the thickness gradient ε, the wavenumber of the wrinkling
decreases effectively, clearly shown with a descending surface in Figure 8. On
the other hand, by increasing the substrate parameter, similar to the case of
the uniform thickness film in Equation (18), the wavenumber of the wrinkling
increases too, but with a slower rate. Therefore, the normalized wavenumber
βn decreases by increasing Kn as Figure 8 shows.

From the numerical results of the finite difference method for a film with
non-uniform thickness, an explicit expression of the normalized wavenumber
is proposed as

βn =
β

β0W
= EXP(−m1ε

m2)K−(m3εm4 )
n (20)

where mi (i = 1 . . . 4) are constant parameters. Clearly, imposing ε = 0 in
Equation (20) simplifies it to the case of the uniform thickness pattern with
β = β0W in Equation (18) as expected. By increasing the thickness gradient
ε, the number of the wrinkles decreases exponentially (Figure 8). The effect
of the parameter ε on the normalized wavenumber is more important than
the substrate parameter K; hence, the corresponding term with the power of
Kn in Equation (20) can be ignored for a simpler but rough approximation.
The best approximation of the normalized wavenumber in Equation (20) is
obtained for m4 = 1/3. By using a regression analysis with 68 data-points
for 0 ≤ ε ≤ 1 and 0.01 ≤ Kn ≤ 10, the constant parameters m1, m2
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Figure 7 Wrinkling pattern of a film with variable thickness and the effect of the thickness
gradient ε. (a) ε = 0; (b) ε = 0.2; (c) ε = 0.8.

and m3 in Equation (20) are determined [36]. The results of the regression
analysis presented in Table 2 show a high accuracy for the proposed relation
in Equation (20) with R-squared = 0.980 and a standard error about±%3 for
estimated parameters.

Also Figures 9 and 10 show the diagram of the normalized wavenum-
ber obtained from finite difference solution versus the predicted values
form Equation (20) and the histogram of the residual errors, respectively.
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Figure 8 Normalized wavenumber βn = β/β0
W versus substrate parameter Kn and

thickness gradient ε.

Table 2 The regression analysis results of the wavenumber parameters in Equation (20)
Model summary R Square = 0.980

95% Confidence Interval
Parameter Estimate Std. Error Lower Bound Upper Bound
m1 .841 .017 .808 .874

m2 .470 .015 .440 .500

m3 .122 .004 .114 .130

According to the figures, one may conclude that the presented relation
in Equation (20) estimates the wrinkling wavenumbers very well. On the
other hand, the finite difference results are compared with the results of the
series solution in Figure 11(a) and (b) for normalized load and normalized
wavenumber, respectively. The wrinkling loads from both methods agree
very well with each other; however, the wrinkling wavenumber of the series
solution is estimated more than that of the finite difference method. This may
happen due to the fact that the finite difference method proposes a stiffer
system due to discretization of the continuous model and truncation errors.

The change of the substrate parameter K and thickness gradient ε not only
alters the number of wrinkles on the film, but also changes the effective length
along the span which undergoes wrinkling. As shown in Figure 7, wrinkles
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Figure 9 Normalized wavenumber compared with the predicted values of the proposed
relation in Equation (20).

Figure 10 Histogram of the residual errors of the Equation (20) for predicting the
wavenumber.

accumulate at the location with minimum thickness (here, at the middle
of the film). Introducing the footprint of the wrinkling as a dimensionless
parameter, one may study the localization of the wrinkles along the length
span. The footprint of the wrinkling is defined as the ratio of the length
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(a) Normalized wrinkling load                 (b) Normalized wrinkling wavenumber 

Figure 11 Comparison of the finite difference and series solution results.

of the film subjected by the wrinkles to the entire length of the film [29]
and indicates the effective length of the film influenced by the wrinkles. The
footprint varies between zero and one. When the footprint equals to one, the
wrinkles propagate along the entire length span of the film corresponding to
the wrinkling of the uniform thickness film (i.e. ε = 0).

A regression analysis between the footprint and the normalized wavenum-
ber of the wrinkling shows that these parameters are linearly dependent
(Figure 12) as

Footprint = m0βn (21)

and m0 = 1.012± 0.007 with R-squared = 0.989 for 45 data-points obtained
from finite difference solution. Therefore, by increasing the number of the
wrinkles on the film, the effective length of the film subjected by the wrinkles
increases too.

The high sensitivity of the footprint parameter (as well as wrinkling
wavenumber) with respect to the thickness gradient ε indicates that even
with small disturbances of the uniformity of the film thickness, wrinkles
accumulate densely at the thinnest location of the film as shown in Figure 13.
The tiny thickness of thin film intensifies the importance of the variation of
the thickness as well as the above-mentioned accumulative effect. Any small
non-uniformity of the thickness of the film which may unavoidably exist on
the film leads to the accumulation of the wrinkles around a region; hence, the
wrinkling behavior of a substrate-bonded film with non-uniform thickness
may significantly differ from the uniform thickness film. Therefore, this work
is expected to increase the insight into the wrinkling of a non-uniform film
bonded substrate system.
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Figure 12 The linear relation between footprint and normalized wavenumber βn of the
wrinkling.

Figure 13 Footprint of the wrinkles versus thickness gradient ε.

5 Conclusion

The instability problem of a thin solid film with non-uniform thickness along
the span is considered by solving the eigenvalue problem of the differential
equation of the system. The buckling problem of the free-standing film is
solved analytically, and symmetric and antisymmetric modes are compared
for uniform and non-uniform films. For a deposited film on a Winkler
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substrate, the uniaxial wrinkling pattern is investigated and the effect of the
substrate stiffness and thickness non-uniformity on the load and pattern of the
wrinkling is studied. Characterizing the localization of the wrinkling shows
that for a film with uniform thickness, the wrinkles propagate along the entire
length span, while for a film with variable thickness the wrinkles accumulate
around the thinnest location of the film. By increasing the gradient of the
film thickness, the wrinkles shrink more around the thinnest location of the
film. The results of the analysis are promising in predicting and controlling
the wrinkling pattern in science and technology of thin-film structures. By
controlling the thickness profile of the film, desired instability modes appear
which can be employed in design and developing various systems including
superconducting films, optical systems, sensors, MEMS and NEMS devices.

Appendix

The finite difference formulation used in this work is a central difference
approach with second-order accuracy [33]. The differential Equation (5) is
casted into an algebraic form as

R
(i)
i−2wi−2 +R

(i)
i−1wi−1 +R

(i)
i wi +R

(i)
i+1wi+1 +R

(i)
i+2wi+2 = 0 (A.1)

represented in matrix form by Equation (15), where the matrices [A] and [B]
are given by

[A] =



i = 0 = 1 = 2 . . . = i . . . = n = n+ 1

i = 0 1 0 −1 0 0 0 0 0 0

= 1 0 1 0 0 0 0 0 0 0

= 2 R
(2)
0 R

(2)
1 R

(2)
2 R

(2)
3 R

(2)
4 0 0 0 0

= 3 0 R
(3)
0 R

(3)
1 R

(3)
2 R

(3)
3 R

(3)
4 0 0 0

...
...

...
...

...
...

...
...

...
...

= i 0 . . . R
(i)
0 R

(i)
1 R

(i)
2 R

(i)
3 R

(i)
4 . . . 0

...
...

...
...

...
...

...
...

...
...

= n 0 0 0 0 0 0 0 1 0

= n+ 1 0 0 0 0 0 0 −1 0 1


(A.2)
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[B] =



i = 0 = 1 = 2 . . . i . . . = n = n+ 1

i = 0 1 0 −1 0 0 0 0 0 0

= 1 0 1 0 0 0 0 0 0 0

= 2

... For 1 < i < n

i B(i− 1, i) = B(i+ 1, i) = 1;B(i, i) = −2

... else B(i, j) = 0

= n 0 0 0 0 0 0 0 1 0

= n+ 1 0 0 0 0 0 0 −1 0 1



1
h2

(A.3)

and the corresponding coefficients are introduced as (i = 2, 3, . . . , n-1)

R
(i)
i−2 =

Γ
(i)
4

h4
− Γ

(i)
3

2h3

R
(i)
i−1 =

Γ
(i)
2

h2
+

Γ
(i)
3

h3
− 4

Γ
(i)
4

h4

R
(i)
i = Γ

(i)
1 − 2

Γ
(i)
2

h2
+ 6

Γ
(i)
4

h4

R
(i)
i+1 =

Γ
(i)
2

h2
− Γ

(i)
3

h3
− 4

Γ
(i)
4

h4

R
(i)
i+2 =

Γ
(i)
3

2h3
+

Γ
(i)
4

h4
(A.4)

where;

Γ
(i)
1 = K

Γ
(i)
2 = 3εf ′′i + 6ε2

(
fif
′′
i + f ′i

2
)

+ 3ε3
(
fi

2f ′′i + 2fif
′
i
2
)

+N

Γ
(i)
3 = 6εf ′i(1 + εfi)

2

Γ
(i)
4 = (1 + εfi)

3 (A.5)

and fi, fi’ and f ′′i are evaluated at ξ = ξi for f(ξ), its first and second
derivatives at each nodes. The corresponding parameters for Γ(i) and R(i) are
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obtained from relations (A.4,5) and the matrices [A] and [B] are constructed
row by row. Finally, the eigenvalues and eigenvectors of Equation (15) are
easily computed using commercial software.

Nomenclature

Symbol Description
D Bending stiffness of the film
E Young’s Modulus
F Dimensionless loading parameters
H, t Thickness
K Substrate Winkler modulus
L Length
N In-plane force parameter
b Width of the system
f ( ) Profile of the film thickness
x, ξ length span coordinate
w Deflection
β Wavenumber of wrinkles
ε Thickness gradient parameter
G, θ, A, B, C, R, S, a, c, h, i, m, q, u Mathematical dummy variables
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