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Abstract

Our current work is related to the study of vibrations induced by laser beams
on the behalf of distinct theories of magneto-thermo-elastic diffusion problem
in a semi-infinitely long, conducting isotropic elastic solid with cylindrical
hole in a uniform magnetic field acting on the surface of the cylindrical hole
of the solid in the direction of the axis of the cylindrical hole. The temporal
scheme of laser beam is considered as non-Gaussian and is acted on the
surface of the cylindrical hole. The problem is solved with the help of Laplace
transform domain and finally illustrated graphically.

Note: This article will be very useful in material science specially, in pow-
der metallurgy during sintering, hot pressing, wire and rods annealing are
examined from a unified physical point of view, in different branches of
engineering physics like plasma physics, nuclear physics, geophysics and
related topics and also in oil industry (Lyashenko and Hryhorova (2014),
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Long and Heng-Wei (2018), Fryxell and Aitken (1969), Nowinski (1978),
Legros et al. (1998), Galliero et al. (2019) etc.).

Keywords: Magneto-thermo-elasticity, thermo-elastic-diffusion, cylindrical
cavity, non-gaussian laser pulse, three phase lag.

1 Introduction

The theory of classical coupled thermo-elasticity is formulated by Biot
(1956). The heat conduction equations for the classical coupled thermo-
elasticity theories are of the diffusion type predicting “infinite speed of
propagation for heat wave” refers to paradox contrary to physical observation.
The classical coupled thermo-elasticity is generalized by Lord and Shulman
(1967), Green and Lindsay (1972), Hetnarski and Ignaczak (1996), Green
and Nagdhi (1991, 1992, 1993), Tzou (1995), Chandrasekhariah (1998), Roy
Choudhuri (2007) etc. one after another respectively to extract the para-
dox intrinsic in the classical coupled thermo-elasticity. Sherief and Hamza
represent an axisymmetric problem using spherical co-ordinate (1996) and
cylindrical co-ordinate (1994). Chandrasekharaiah and Keshavan (1992) also
show axisymmetric thermo-elastic interactions in presence of cylindrical
cavity in a free body. Youssef (2006) study a generalized thermo-elastic
problem of an infinite solid with cylindrical cavity restricted to different
thermal loading. Mukhopadhyay and Kumar (2008) also represent a similar
problem on thermo-elastic interactions without thermal loading.

The magneto-thermo-elastic interaction between magnetic fields and
strain in a thermo-elastic solid takes increasing attention virtue of its several
uses in different branches of physics such as geophysics, plasma physics,
nuclear physics and related topics. The interaction occurs inside nuclear
reactors among temperatures, temperature gradients and the magnetic fields
effects their models and actions (1978). A lot of works on generalized
thermo-elasticity are found to be present in the literature.

Among them Nayfeh and Nemat-Nasser (1972) are the two who consid-
ered the plane waves in a solid in presence of an electromagnetic field. Also,
Roy Choudhuri (1984) has extended these results to a problem using rotation.
Sherief et al. (1994, 2004) have solved some problems on that field. Othman
and Eraki (2016) solve a magnetothermoelastic half space problem using
diffusion. Sherief et al. (2020) solve a axisymmetric problem with cylindrical
heat source. Among the authors who worked on this field, a few of them
are given in the references like Shaw and Mukhopadhyay (2015), Said and



Transient Dynamic Response of a Semi-infinite Elastic Permeable Solid 519

Othman (2015), Abbas and Abd Elmaboud (2015), Khader and Khedr (2016),
Baksi et al. (2005), He an Cao (2009), Amin et al. (2020), Sur et al. (2019)
etc.

The idea of thermo-diffusion is applied to explain the procedure of
thermo-mechanical behavior of metals like carbonizing, nitriding steel, etc.
The thermal activation of these processes is due to deformation of solids and
their diffusing substances. Nowacki (1974a, 1974b, 1974c, 1976) formulated
the theory of coupled thermo-elastic diffusion in 1974. This theory bears
infinite speeds of thermo-elastic waves as well as thermo-diffusive waves.
Also, Sherief et al. (2004, 2005) developed this theory that contains finite
speeds for both waves and applied it on a half space problem for a permeating
substance. Aouadi (2006a, 2006b) solved a variable conductivity problem in
thermo-elastic diffusion and described thermo-elastic-diffusion interactions
in an infinite solid cylinder in presence of a thermal shock. Elhagary (2011)
studied a short time generalized thermo-elastic diffusion problem using an
infinite hollow cylinder. Recently, Paul and Mukhopadhyay (2019, 2020) rep-
resent some magneto thermo-elastic problem with diffusion theory on a thick
plate subject to laser pulse and on semi-infinite elastic solid. These studies
take a significant part in thermo-elastic diffusion system in oil extraction field.
Thermo-elastic-diffusion theory has been used practically with success in
recent times for the improvement of the mechanical characteristics of product
formed by powder metals for reference see, Lyashenko and Hryhorova (2014)
and Long and Heng-Wei (2018).

Recently, laser technology has achieved a significant role in physics spe-
cially in fast burst nuclear reactors and particle accelerators and now pierced
closely all scientific areas like medical science and industries. Vibrations
induced in micro-laser-beam resonators have importance because of their
technological applications in micro and nano-electro-mechanical systems.
There are diverse advantages of laser-based ultrasonic in non-destructive
testing and evaluation over many conventional transducers. For examples,
one can consider the ability to acquire a broad-banded exuberance with high
signal reproducibility. Application of laser pulse effects thermal expansion
and formulates thermal waves in solids. In pulse heating we have to mind the
non-Fourier effect of heat transmission and the dissipation of the stress wave
to eliminate infinite expansion of speed of thermal energy and consider the
effects of mean free time in the energy carrier’s collision process. McDonald
(1990) examines laser generated wave-front in metal. Tang and Araki (1999)
studied thermal responses of diffusive wave for finite rigid slab subject
to high speed laser-pulse heating. Wang and Xu (2001, 2002) also have
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studied on thermo-elastic wave produced by laser pulses. Sunet et al. (2008)
worked on same topic under different boundary conditions. Elhagary (2014)
considered a two-dimensional thermo-elastic diffusion problem for a thick
plate in presence of laser-induced thermal pulse. Recently, He and Li (2020)
study a half space problem under laser heating.

In our present work, we have considered the vibrations induced by laser
beams on the behalf of different theories of magneto-thermo-elastic diffusion
problem of a semi-infinitely long, conducting cylindrical solid. Non-Gaussian
transient scheme of laser beam whose temporal scheme is in non-Gaussian
form L(t) (Section 3.1) and whose pulse duration is transient or temporal
(pulse duration tp measured in picosecond) is considered here. The material
is assumed to be made of an isotropic homogeneous thermo-elastic solid
and put in a uniform magnetic field act in the direction of the axis of the
cylinder. The solution of the problem is done in Laplace transform domain.
Then, inversion process, based on Fourier expansion techniques is applied
to get the solution in hand in space time domain and finally illustrated
graphically.

2 Basic Equations in Magneto-Thermo-Elastic Diffusion

The electro-dynamical equations for homogeneous conducting elastic solid
due to Maxwell’s are given by

∇× h = J + Ḋ, (1)

∇× E = −Ḃ, (2)

∇ · B = 0, ∇ · E = ρe, (3)

B = µ0(H0 + h), D = ε0E, (4)

where, B is magnetic flux vector, J is current density vector, D is electric
displacement vector, ρe is charge density, µ0 is magnetic permeability, σ0
electric conductivity, ε0 electric permittivity, H0 is the applied magnetic field,
h is the perturbed magnetic field.

It can be easily shown from Maxwell’s equations that E and J have only
non-zero components in φ direction in the form

E = (0,E, 0), J = (0, J, 0). (5)
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Further, the linearized form of generalized Ohm’s law for moving media
of finite conductivity represents in the form

J = σ0(E + µ0u̇×H0), (6)

where, u is the displacement vector.
Now, equation of motion in terms of displacement components with the

existence of Lorentz force F with components Fi reads as

σij,j + Fi = ρüi, (7)

where, σij are stress components, ρ is mass density and the components of Fi

are as (Paul and Mukhopadhyay (2020))

Fi = (J×B)i = (Jµ0(H0 + h), 0, 0) (8)

Equation of heat conduction and diffusion with three phase lag effect can
be modeled as (Paul and Mukhopadhyay (2020))

k
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)
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)
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∂
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)
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(
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∗
P

∂
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)
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∂
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)
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Stress-displacement-temperature-chemical potential and mass concentra-
tion relations can also be represents in the form (Paul and Mukhopadhyay
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(2020))

σij = 2µeij + δij

[
λ0∆− γ1

(
1 + n1τT

∂

∂t

)
θ − γ2

(
1 + n1τP

∂

∂t

)
P

]
(11)

C = γ2e + nP + dθ (12)

In the above equations we have considered the following:

θ = T− T0, λ0 = λ− β22
b
, γ1 = β1 + dβ2, d =

a

b
, γ2 =

β2
b
,

n =
1

b
, ξ̇ = T, ζ̇ = P, l1 =

ρCE

T0
+

a2

b
, β1 = (3λ+ 2µ)αt,

β2 = (3λ+ 2µ)αc.

Here, a is measure of thermo-diffusion, b is measure of diffusive effect,
k is thermal conduction, k∗ is material characteristic of G-N model, D is
diffusion coefficient, D∗ is diffusive constant, λ, µ, Lame’s constants, CE,
specific heat at constant strain, αt is coefficient of linear thermal expansion,
αc is linear diffusion expansion, T0 is initial reference temperature, ρ is
mass density, T is absolute temperature, θ is temperature above the reference
temperature, ni(i = 1, 2, 3, 4, 5) are whole number, τq, τT, τξ(τξ < τT < τq)
are the phase-lag of heat flux, temperature gradient and thermal displace-
ment gradient, τη, τP, τ∗P are phase-lag of diffusion, chemical potential and
diffusive displacement gradient, ξ is temperature difference between two
considerable state, ζ is the difference of diffusive coefficient between to
considerable state, σij(i, j = r, φ, z) are components of the stress tensor, C
is mass concentration, P is chemical potential.

3 Formulation of the Problem

We consider a thermally and electrically conducting thermo-elastic semi-
infinite solid occupying the region 0 < z < ∞ with a cylindrical hole of
radius r = $ in this problem. In addition, we also consider the solid is
made of homogeneous material and the medium is assumed to be isotropic.
A magnetic field of strength H0 is then applied in the direction of the axis
of the cylindrical hole. It is assumed that there is no traction on the surface
of the cylindrical hole and is subjected to a laser pulse. We consider (r, φ, z)
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as cylindrical polar coordinates with the z-axis coinciding with the axis of
cylindrical cavity.

Geometry of the Problem:
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Figure 1 Geometric configuration of the problem ((a) for 3D and (b) for 2D).

The components of displacement vector u are in the form (u(r), 0, 0) and
this produces strain components in the form

err =
∂u

∂r
, eφφ =

u

r
, ezz = erz = eφz = erφ = 0. (13)

Thus, the expression of cubical dilatation ‘e’ is put the form

e =
∂u

∂r
+

u

r
=

1

r

∂(ru)

∂r
. (12)

Also, in cylindrical coordinate, the Laplace operator takes the form

∇2 ≡ ∂2

∂r2
+

1

r

∂

∂r
.
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Equations (1),(2) and (6) together give the following:

∂h

∂r
= −[J + ε0

∂E

∂t
], (13)

1

r

∂(rE)

∂r
= −µ0

∂h

∂t
, (14)

J = σ0

(
E− µ0H0

∂u

∂t

)
, (15)

Now one can easily eliminate J from Equations (13) and (15) and obtain
the following relation

∂h

∂r
= σ0µ0H0

∂u

∂t
−
[
σ0E + ε0

∂E

∂t

]
. (16)

Eliminating E between Equations (14) and (16), we get[
∇2 − σ0µ0

∂

∂t
− ε0µ0

∂2

∂t2

]
h = σ0µ0H0

∂e

∂t
. (17)

Equation (13) gives the form of Lorentz force component Fr in radial
direction in the form

Fr = Jµ0(H0 + h). (18)

Upon elimination of J from (13) and (16) and neglecting second degree
term of h and its products and small quantities of higher order, we obtain

Fr = −µ0H0

(
∂h

∂r
+ ε0

∂E

∂t

)
. (19)

Now, applying divergence operator in cylindrical co-ordinate to both sides
of (19) we obtain

∇ · Fr =
1

r

∂(rFr)

∂r
= −µ0H0∇2h + µ20ε0H0

∂2h

∂t2
. (20)

The stress components are follows from (11) and take the following form

σrr = 2µ
∂u

∂r
+ λ0e− γ1

(
1 + n1τT

∂

∂t

)
θ − γ2

(
1 + n1τP

∂

∂t

)
P (21a)
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σφφ = 2µ
u

r
+ λ0e− γ1

(
1 + n1τT

∂

∂t

)
θ − γ2

(
1 + n1τP

∂

∂t

)
P (21b)

σzz = λ0e− γ1
(

1 + n1τT
∂

∂t

)
θ − γ2

(
1 + n1τP

∂

∂t

)
P (21c)

We now write the equation of motion in terms of displacement in the
presence of magnetic force in cylindrical co-ordinates in the form

∂σrr
∂r

+
σrr − σφφ

r
+ Fr = ρü (22)

We now apply divergence operator to both sides of (22) and then use
Equations (20), (21) and finally arranging to put the equation of motion in
the form

(λ0 + 2µ)∇2e− γ1
(

1 + n1τT
∂

∂t

)
∇2θ − γ2

(
1 + n1τP

∂

∂t

)
∇2P

+

[
µ20ε0H0

∂2

∂t2
− µ0H0∇2

]
h = ρë (23)

3.1 Heat Source – Non-Gaussian Laser Pulse

The surface of cylindrical hole (r = $) is acted upon uniformly by the
pulses generated in laser beam with non-Gaussian temporal scheme L(t) and
the resulting heat energy source Q(r, t) (Tang and Araki (1999), Elhagary
(2014)) is simplified as

Q(r, t) =
Rae

− h′
2ς1

ς1
L(t) =

Ra

ς1

L0t

t2p
e
− h′

2ς1
− t

tp , (24)

where, Ra is surface reflectivity, ς1 is the optical penetration depth of heating
energy, L0 is the laser intensity, tp is laser pulse duration measured in
picosecond, h′ is length of the beam.

Special cases:

1. At n1 = n2 = n3 = n4 = n5 = D∗ = k∗ = 0 the equations reduce to
classical thermo-elasticity (CTE) with diffusion.

2. At n1 = n2 = D∗ = k∗ = 0, n3 = n4 = 1, n5 = 0 the equations lessen
to Lord-Shulman (L-S) model (ETE) with diffusion.

3. At n1 = n4 = 1,n2 = n3 = n5 = D∗ = k∗ = 0 the equations reduce to
Green-Lindsay (G-L) model (TRDTE) with diffusion.
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4. At n1 = D∗ = k∗ = 0,n2 = n3 = n4 = n5 = 1 the equations turn into
Dual-Phase-Lag (DPL) model with diffusion.

5. At n1 = n2 = n3 = n4 = n5 = 0 the equations lessen to Green-Nagdhi
(GNIII) model with diffusion.

6. At n1 = 0,n2 = n3 = n4 = n5 = 1 the equations reduce to Three-
Phase-Lag (TPL) model with diffusion.

We have considered the model with n1 = n2 = n3 = n4 = n5 = 1
by notating “PRESENT MODEL” in the numerical Section 6 and applied
to a problem of a semi-infinite elastic solid with a cylindrical cavity with
applied thermo-magnetic field and study the transient dynamic response on
the elastic solid and also compare the results with different existing model of
thermoelasticity.

3.2 Initial Conditions

We assume the system associated with the problem is initially at rest. So, the
initial conditions of the problem we have taken in the form

u = θ = P = h = E = 0 at t = 0, r ≥ $, (25a)

u̇ = θ̇ = Ṗ = ḣ = Ė = 0 at t = 0, r ≥ $. (25b)

3.3 Boundary Conditions

The problem is restricted to the following boundary conditions:

θ(r, t) = θ0, σrr(r, t) = 0,P(r, t) = P0,

h(r, t) = h0,E(r, t) = E0 at r = $. (26a)

4 Solution of the Problem

4.1 Non-dimensional Quantities

We now set the following non-dimensional quantities:

r∗ = cηr, u∗ = cηu, (τ∗T, τ
∗
P, τ

∗
q , τ
∗
η , τ
∗
ϑ) = c2η(τT, τP, τq, τη, τϑ),

t∗ = c2ηt, σ∗ij =
σij

(λ0 + 2µ)
, θ∗ =

γ1θ

(λ0 + 2µ)
,

E∗ =
η

µ20ε0H0c
E, h∗ =

η

µ0ε0H0
h,P∗ =

P

γ2
,C∗ =

γ2
(λ0 + 2µ)

C.
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After applying the above non-dimensional quantities to the governing
Equations (9–10, 12, 14, 17, 21, 23) and dropping asterisks for convenience
and arranging, we have the following set of equations:
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C = α1[e + nP + dαθ] (31)
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1
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Where,
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η
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4.2 Laplace Transformation

Applying Laplace transformation with respect to time of both sides of equa-
tions (24, 27–33) with parameter s and arranging we obtain the following
equations:

(∇2 − c1s
2)ē− (1 + n1τTs)∇2θ̄ − α1(1 + n1τPs)∇2P̄
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2

s2)[γ1ε1s
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2(1 + n4τq

∂
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+ n5

τ2q
2
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= s2

(
1 + n3τηs + n5

τ2η
2

s2

)
ē

+ s2

(
1 + n4τηs + n5

τ2η
2

s2

)
dαθ̄ (36)

σ̄rr = ē− 2

β2
ū

r
− (1 + n1τTs)θ̄ − α2

β2
(1 + n1τPs)P̄ (37a)

σ̄φφ = ē− 2

β2
∂ū
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− (1 + n1τTs)θ̄ − α2

β2
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σ̄zz = (1− 2
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)ē− (1 + n1τTs)θ̄ − α2

β2
(1 + n1τPs)P̄ (37c)

C̄ = α1[ē + nP̄ + dαθ̄] (38)

1

r

∂(rĒ)

∂r
= −sh̄ (39)

[∇2 − νs−V2s2]h̄ = sē (40)

Q̄(r, s) =
Ra

δ∗
L0

t2p

e−
h′
2δ∗(

s + 1
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)2 . (41)

Eliminating h̄ between (34) and (40) and arranging (35) and (36) we get
the following:

[∇4 − a1∇2 − a2]ē− [a3∇4 − a4∇2]θ̄ − [a5∇4 − a6∇2]P̄ = 0 (42)

−a7ē + [a8∇2 − a9]θ̄ − a10P̄ = −Q̄∗ (43)

−a13ē− a14θ̄ + [a11∇2 − a12]P̄ = 0 (44)

Now, Equations (42–44) can be represented in the following form:

[b1∇8 − b2∇6 + b3∇4 − b4∇2 + b5](ē, θ̄, P̄) = (0,−a2a12Q̄
∗, a2a14Q̄

∗)
(45a, 45b, 45c)
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Also if we eliminate ē from (34–36) by using (40), we obtain three
equations in three unknowns θ̄, P̄ and h̄. Then eliminating θ̄, P̄ from the three
equations we get,

[b1∇8 − b2∇6 + b3∇4 − b4∇2 + b5]h̄ = 0 (45d)

where,

b1 = a8a11,

b2 = a8a12 + (a9 + a8a1 + a3a7)a11 + a5a8a13,

b3 = (a9 + a3a7)a12 − a10(a14 + a3a13)− a11(a2a8 + a4a7)

+ a1(a8a12 + a9a11)− a5(a7a14 − a9a13)− a6a8a13,

b4 = a1(a9a12 − a10a14)− a2(a8a12 + a9a11)

− a4(a7a12 + a10a13) + a6(a7a14 − a9a13),

b5 = a2(a10a14 + a9a12),

with

a1 = c1s
2 + νs + V2s2 + ενs, a2 = s3(c1γ1 + c1V

2s− εν),

a3 = 1 + n1τTs, a4 = (1 + n1τTs)(νs + V2s2),

a5 = α1(1 + n1τPs), a6 = α1(1 + n1τPs)(νs + V2s2),

a7 = γ1ε1s
2

(
1 + n3τqs + n5

τ2q
2

s2

)
,

a8 = ks(1 + n2τTs) + δk∗(1 + n2τϑs),

a9 = ε2s
2

(
1 + n4τqs + n5

τ2q
2

s2

)
,

a10 = dγ2ε1s
2

(
1 + n4τqs + n5

τ2q
2

s2

)
,

a11 = Ds(1 + n2τPs) + D∗(1 + n2τ
∗
Ps),

a12 = ns2

(
1 + n4τηs + n5

τ2η
2

s2

)
,
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a13 = s2

(
1 + n3τηs + n5

τ2η
2

s2

)
,

a14 = dαs2

(
1 + n4τηs + n5

τ2η
2

s2

)
,

Q̄∗ = ρs

(
1 + n3τηs + n5

τ2η
2

s2

)
Q̄.

As all the quantities possess finite values within the medium, we can take
the solutions of the Equations (45a–45d) with rearrangement in the following
form:

ē =
4∑

i=1

AiK0(kir) (46a)

h̄ =
4∑

i=1

BiK0(kir) (46b)

P̄ =

4∑
i=1

CiK0(kir)−
ρdα

(
1 + n3τqs + n5

τ2q
2 s2
)

Q̄

[d2αγ2ε1 − nε2]
(

1 + n4τqs + n5
τ2q
2 s2
) (46c)

θ̄ =
4∑

i=1

DiK0(kir) +
ρn
(

1 + n3τqs + n5
τ2q
2 s2
)

Q̄

s[d2αγ2ε1 − nε2]
(

1 + n4τqs + n5
τ2q
2 s2
) (46d)

where, k2
i (i = 1, 2, 3, 4) are the roots containing positive real parts of the

characteristic equation:

b1k
8 − b2k

6 + b3k
4 − b4k

2 + b5 = 0 (47)

and K0 is the modified Bessel’s function of second kind of order zero.
Now, using the Equations (46a, 46b, 46c and 46d) into the Equations (34–

36, 40) we obtain the following relations among Ai,Bi,Ci and Di:

Bi = δiAi (48a)

Ci = µiAi (48b)

Di = νiAi (48c)
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Where,

δi =
s

k2
i − ς

, µi = ζi + a14νi, νi = ξiδi,

ζi =
a13

a11k2
i − a12

, ς = νs + V2s2,

ξi =
a10
a13

[(k2
i − ς)(k2

i − s2)− ενs(k2
i −V2s2)] + a9k

2
i (k

2
i − ς)

k2
i [a7k

2
i − a8 − a3a10

a5
]

.

Now substituting the values of Bi,Ci,Di in terms of Ai from Equa-
tions (48a, 48b and 48c) into the Equations (46b, 46c and 46d) we obtain:

h̄ =

4∑
i=1

δiAiK0(kir), (49a)

P̄ =
4∑

i=1

µiAiK0(kir)−
ρdα

(
1 + n3τqs + n5

τ2q
2 s2
)

Q̄

[d2αγ2ε1 − nε2]
(

1 + n4τqs + n5
τ2q
2 s2
) ,

(49b)

θ̄ =
4∑

i=1

νiAiK0(kir) +
ρn
(

1 + n3τqs + n5
τ2q
2 s2
)

Q̄

s[d2αγ2ε1 − nε2]
(

1 + n4τqs + n5
τ2q
2 s2
) .

(49c)

Using Equation (49a) in Equation (39) we obtain Ē in the following form:

Ē =
4∑

i=1

s

ki
δiAiK1(kir). (49d)

Using Equation (46a) in Equation (12) we obtain ūin the following form:

ū =
4∑

i=1

1

ki
δiAiK1(kir). (49e)
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Applying Equations (12, 46a, 49b, 49c and 49e) in Equation (37a) the
radial stress can be represented as:

σ̄rr =
4∑

i=1

[{
1− a3νi −

a5α2

α1β2
(ζi + a14δiµi)

}
K0(kir)−

2

kiβ2r
K1(kir)

]
Ai + Q̄∗, (49f)

where,

Q̄∗ =
ρ(n− dα)

(
1 + n3τqs+ n5

τ2q
2 s

2
)
Q̄

[d2αγ2ε1 − nε2]
(

1 + n4τqs+ n5
τ2q
2 s

2
) .

Now, the perturbed fields E0, h0 in the free space surrounding the
cylindrical holes’ surface fulfill the following equations:

∂h̄0

∂r
= −V2sĒ0, (50a)

1

r

∂(rĒ0)

∂r
= −sh̄0. (50b)

Eliminating Ē0 between Equations (50a) and (50b) we have

[∇2 −V2s2]h̄0 = 0. (50c)

The solution of the equation (50c) bounded at infinity is written as

h̄0 = A5(s)K0(sVr). (50d)

Substituting the value of h̄0 from (50d) into (50a) we obtain Ē0 in the
form:

Ē0 =
A5(s)

V
K1(sVr), (50e)

where, A5(s) is some parameter depending on s and, K0,K1 are the modified
Bessel’s function of second kind of order zero and one respectively.

4.3 Boundary Conditions in Laplace Transform Domain

Now, in Laplace transform domain the above boundary conditions can be
written in the form:

θ̄(r, s) =
θ0
s
, σ̄rr(r, s) = 0, P̄(r, s) =

P0

s
,

h̄(r, s) = h̄0, Ē(r, s) = Ē0 at r = $. (51)
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Upon application of the boundary conditions into (49a–49f), we get a sys-
tem of five linear equations in five unknown parameter Ai(i = 1, 2, 3, 4, 5):

4∑
i=1

νiAiK0(kia) =
ρn
(

1 + n3τqs + n5
τ2q
2 s2
)

Q̄

[d2αγ2ε1 − nε2]
(

1 + n4τqs + n5
τ2q
2 s2
) +

θ0
s
,

(52a)

4∑
i=1

[{
1− a3νi −

a5α2

α1β2
(ζi + a14δiµi)

}
K0(kia)− 2

kiβ2r
K1(kia)

]
Ai = −Q̄∗, (52b)

4∑
i=1

µiAiK0(kia) =
P0

s
−

ρdα
(

1 + n3τqs + n5
τ2q
2 s2
)

Q̄

[d2αγ2ε1 − nε2]
(

1 + n4τqs + n5
τ2q
2 s2
) ,
(52c)

4∑
i=1

δiAiK0(kia) = A5(s)K0(sVa), (52d)

4∑
i=1

s

ki
δiAiK1(kir) =

A5(s)

V
K1(sVa). (52e)

Now, solving the above system of linear equations by Cramer’s rule, we
obtain the values of unknown parameter Ai(i = 1, 2, 3, 4, 5):

Ai =
∆i

∆
,A5 =

4∑
i=1

ψiAi(i = 1, 2, 3, 4). (53)

∆ =

∣∣∣∣∣∣∣∣
χ1 χ2 χ3 χ4

Ω1 Ω2 Ω3 Ω4

Λ1 Λ2 Λ3 Λ4

Γ1 Γ2 Γ3 Γ4

∣∣∣∣∣∣∣∣ , ∆1 =

∣∣∣∣∣∣∣∣
Q̄1 χ2 χ3 χ4

Q̄2 Ω2 Ω3 Ω4

Q̄3 Λ2 Λ3 Λ4

0 Γ2 Γ3 Γ4

∣∣∣∣∣∣∣∣ ,

∆2 =

∣∣∣∣∣∣∣∣
χ1 Q̄1 χ3 χ4

Ω1 Q̄2 Ω3 Ω4

Λ1 Q̄3 Λ3 Λ4

Γ1 0 Γ3 Γ4

∣∣∣∣∣∣∣∣ , ∆3 =

∣∣∣∣∣∣∣∣
χ1 χ2 Q̄1 χ4

Ω1 Ω2 Q̄2 Ω4

Λ1 Λ2 Q̄3 Λ4

Γ1 Γ2 0 Γ4

∣∣∣∣∣∣∣∣ ,
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∆4 =

∣∣∣∣∣∣∣∣
χ1 χ2 χ3 Q̄1

Ω1 Ω2 Ω3 Q̄2

Λ1 Λ2 Λ3 Q̄3

Γ1 Γ2 Γ3 0

∣∣∣∣∣∣∣∣ , ψi =
δiK0(kia)

K0(sVa)
, χi = νiK0(kia),

Γi =
δi
ki

K0(kia)− δiK0(kia)K1(sVa)

VK0(sVa)
,

Ωi = {1− a3νi −
a5α2

α1β2
(ζi + a14δiµi)}K0(kia)− 2

kiβ2a
K1(kia),

Λi = µiK0(kia),

Q̄1 =
ρn(1 + n3τqs + n5

τ2q
2 s2)Q̄

[d2αγ2ε1 − nε2](1 + n4τqs + n5
τ2q
2 s2)

+
θ0
s
,

Q̄2 = Q̄∗, Q̄3 =
P0

s
−

ρdα(1 + n3τqs + n5
τ2q
2 s2)Q̄

[d2αγ2ε1 − nε2](1 + n4τqs + n5
τ2q
2 s2)

.

Equations (46a, 49a–49f) with (53) represent the complete solutions of
the problem in Laplace transform domain.

5 Laplace-inversion

As the transformed functions of displacements, stress etc. are very compli-
cated, the inverse functions can not be obtained directly as functions of x and
t. We then take the help of numerical inversion of Laplace transformation.
There are various methods of numerical inversion of Laplace transformation
out of which we apply here the method adopted by Honig and Hirdes (1984).

Let, g(p) is the Laplace transform of g(t), then inverse Laplace transform
can be written as g(t) = ect

2π

∫∞
−∞ eiωtg(c + iω)dω, where c is an arbitrary

constant greater than real part of all the singularities of g(p). Fourier series
expansion of h(t) = e−ctg(t) in the interval [0, 2T] gives the approximate
formula gN(t) of g(t) given by [46]

g(t) = g∞ + ED = gN (t) + ET + ED,

where,

gN (t) =
g(c)

2
+

N∑
k=1

Re

[
g

(
c+

ikπ

L

)
e
ikπt
L

]
.
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Here, ED and ET represents the discretization error and truncation error
respectively. The values of c and L are selected according to the criterion
outlined in Honig and Hirdes (1984). With the suitable choice of L, we have
computed the values of the functions with the help of computer software and
drawn the graphs accordingly.

6 Numerical Results and Discussion

For the complexity of the solution of the problem in transform domain it is
very difficult to obtain the solutions of the problem in space-time domain
directly by applying Laplace-inversion formula. That’s why we use the
numerical inversion process due to Honig and Hirdes (1984) by considering a
numerical example. The results depict the variations of the dimensionless val-
ues of displacement, temperature, chemical potential, radial stress, induced
magnetic and electric field. For this purpose, metal copper is taken as the
thermo-elastic material for which we have the physical constants (Elhagary
(2014), Sur and Kanoria (2015), He and Li (2014))

λ = 7.76× 1010kgm−1s−2, µ = 3.86× 010kgm−1s−2,

T0 = 293K, ρ = 8954kgm−2,CE = 383.1Jkg−1K−1, tp = 1ps,L0 = 1,

αc = 1.98× 10−4m3kg−1, αt = 1.78× 10−5K−1, k = k∗ = 386,

a = 1.2× 104m2s−2K−1,b = 9× 105m5kg−1s−2,

Ra = 0.5, I0 = 1× 111Jm−2, τq = τP = τT = τp = τ∗p = τη = 1,

D = D∗ = 8.5× 10−9kgsm−3, σ0 = 585× 106Ω−1m−1,

ε0 =
1

36π × 109
Ω−1m−1, µ0 = 4π × 10−7Hm−1,

H0 =
1

36π × 107
Hm−1, δ∗ = 1× 105,h′ = 0.01.

We have studied the solution of our problem in the context of five dif-
ferent theories of thermo-elasticity and models namely, Lord–Shulman (LS)
theory, Green-Lindsay (GL), Green-Nagdhi (GNIII), Dual-Phase-Lag (DPL)
and Three-Phase-Lag (TPL) and compared our model(legend expressing
“PRESNT MODEL” is our model) through Figure 2 to Figure 7 at fixed time
t = 0.5 with radial distance r with a cylindrical hole of radius r = 1 as all the
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Figure 2 Variation of displacement u with radial distance r.

Figure 3 Variation of radial stress σrr with radial distance r.

field quantities of the problem viz temperature, displacement, stress, chemical
potential, induced magnetic field and induced electric field are depended on r
and t only.

In this work, for applied laser-pulse, the value of tp is measured in
picoseconds (1ps = 10−12 s) due to the disadvantage of nanoseconds
(1 ns = 10−9 s) and longer-pulse laser generated shock waves because a thin
layer of the material near the irradiated surface of the cylindrical hole could
be removed or damaged by melting. The material absorbs heat energy from
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Figure 4 Variation of temperature θwith radial distance r.

Figure 5 Variation of chemical potential P with radial distance r.

laser beam that generates thermo-mechanical waves in the elastic material
and propagates throughout the medium until it reaches to equilibrium. This
also effect the induced electromagnetic field produced due to the application
of constant magnetic field on strength H0.

Figures 2 and 3 represent the distribution of displacement and radial stress
for different models with the variation of radial distance. It is observed from
the two figures that on the surface of the cylindrical hole the magnitude
of stress and displacement is maximum and then decay with distance and
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Figure 6 Variation of induced magnetic field h with radial distance r.

Figure 7 Variation of induced electric field E with radial distance r.

gradually converges to zero value. Also, the effects of different models are
clear from the graphs.

Figures 4 and 5 highlight the variation of temperature and chemical
potential for different models. We conclude from the two figures that the two
quantities are decaying in nature for all models and take their maximum value
on the surface of cylindrical hole and thereafter slowly reach to zero value.
It is also noticed that the difference of magnitude between any two models is
decreasing with the distance and finally approaches to zero.
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Figures 6 and 7 analyses that induced magnetic field and electric field
take their maximum value on the surface of cylindrical hole, then decay with
radial distance and finally tends to zero value for all the six models which is
realistic for physical problems.

In the graphs of Figures 6 and 7, the curves indicate our model is of
maximum slope compared to the other models of thermo-elasticity while for
the other graphs of Figures 2–5, the slope is smallest.

7 Conclusions

This article studies different theories of generalized thermo-elasticity in the
context of magneto-thermo-elastic diffusion theory subject to laser pulse
of an isotropic, homogeneous, semi-infinitely long, perfectly conducting
thermo-elastic material with a cylindrical hole. The analysis of the results
permits some concluding remarks:

1. The problem study five models of generalized thermo-elasticity like L-S
model, G-N model, GNIII, DPL and TPL model and compared it to our
present model for the strength of solution of our model from physical
and practical point of views.

2. The different models have significant effect on the solutions of dis-
placement, stress, temperature, chemical potential, induced magnetic
and electric field respectively.

3. All the graphs are decaying in nature. More preciously, starting with
maximum magnitude value, it decreases and finally converges to zero,
which is expected for physical problems.

4. All the quantities take its maximum value on the surface of the hole,
where non-Gaussian laser pulse is applied, which is quite natural from
practical point of view.
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