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Abstract

In this paper the dynamic analysis of a shaft rotor whose support is mobile
is studied. For the calculation of kinetic energy and stiffness energy, the
beam theory of Euler Bernoulli was used, and the matrices of elements
and systems are developed using two methods derived from the differential
quadrature method (DQM). The first method is the Differential Quadrature
Finite Element Method (DQFEM) systematically, as a combination of the
Differential Quadrature Method (DQM) and the Standard Finite Element
Method (FEM), which has a reduced computational cost for problems in
dynamics. The second method is the Differential Quadrature Hierarchical
Finite Element Method (DQHFEM) which is used by expressing the matrices
of the hierarchical finite element method in a similar form to that of the Dif-
ferential Quadrature Finite Element Method and introducing an interpolation
basis on the element boundary of the hierarchical finite element method. The
discretization element used for both methods is a three-dimensional beam
element. In the differential quadrature finite element method (DQFEM),
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the mass, gyroscopic and stiffness matrices are simply calculated using the
weighting coefficient matrices given by the differential quadrature (DQ)
and Gauss-Lobatto quadrature rules. The sampling points are determined by
the Gauss-Lobatto node method. In the Differential Quadrature Hierarchical
Finite Element Method (DQHFEM) the same approaches were used, and
the cubic Hermite shape functions and the special Legendre polynomial
Rodrigues shape polynomial were added. The assembly of the matrices for
both methods (DQFEM and DQHFEM) is similar to that of the classical finite
element method. The results of the calculation are validated with the h- and
hp finite element methods and also with the literature.

Keywords: Rotor dynamics, differential quadrature finite elements method,
differential quadrature hierarchical finite elements method, hp-version of
FEM, on-board shaft.

1 Introduction

The first to give the term finite element method (FEM) is (Clough, 1960). The
finite element method has undergone several optimisations and changes over
time, it has gradually become a very effective tool for numerical solutions
to a wide range of engineering problems. The h-FEM version was the first
method developed (O. C. Zienkiewicz, 1977), which uses elements of fixed
degree and low order and whose convergence is achieved by increasing the
successive mesh refinement. A new version which is the p version of the
finite element method was evolved during the 1970s (Zienkiewicz et al.,
1970; Szabo, 1979), which uses a single mesh element but its convergence
is obtained by increasing the degree of polynomial of the element, which is
a set of shape functions, the p version is called hierarchical finite element
method. The p version of the finite element method has great advantages
over the h version of the of the finite element method, for example the mesh
of the structure only has to be generated once. Convergence is achieved by
increasing the p-order (Zienkiewicz et al., 1983; Beslin and Nicolas, 1997)
without mesh refinement (Babuška and Suri, 1990). Input data can be reduced
to a minimum, which greatly simplifies pre-post processing (Petyt, 2010). But
also it has some disadvantages, such as contact analysis problems, especially
for the node at the centre of higher order quadrilateral finite elements. The rate
of convergence with the p-version is based on the choice of hierarchical or
non-hierarchical form functions. It only depends on the highest full polyno-
mial you can capture with your shape features. Hierarchical form functions,
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however, offer the advantage of an inhernt p-refinement capability. That is,
when increasing the polynomial degree of shape functions from p to p + 1,
only the contributions corresponding to p + 1 need to be calculated. Consid-
ering non-hierarchical shape functions (based on Lagrange polynomials, for
example), all shape functions must be recomputed if the polynomial degree
is high. On the other hand, the degrees of freedom do not retain any physical
significance for functions of hierarchical form. therefore, mass clustering
techniques are not feasible, which is a distinct drawback when considering
high frequency dynamics as the problems of wave propagation. These two
versions of the FEM were combined to give a new version noted by the h-
p version of the FEM, which was first used by Babuska (Babuska et al.,
1981; Oden, 1991; Babuska and B.Q, 1992) who discovered that the finite
element method converges exponentially faster when the mesh is refined
using an appropriate combination of −h refinements (dividing the elements
into smaller ones) and −p refinements (increasing their polynomial degree).
Many scientific researchers have focused on this axis and have given rise to
several quoted finite element codes (Szabo and Prob, 1985; Heuveline and
Rannacher, 2003) have also worked on the h-p version of the finite element
method, (Suri, 1997) used the h-p version of the finite element method
for hulls, also a study on a Bernoulli beam using the h-p version of the
finite element method can be found in (Bardell, 1996), in the field of rotor
dynamics, work can be found using the hp version of the MEF, the dynamics
of the on-board rotor by (Saimi, 2016), the study of the effect of an open
transverse crack on the vibratory behaviour of rotors using the hp version of
the finite element method (Fellah et al., 2019), and the numerical analysis
of the dynamic behaviour of a functionally graduated shaft in a thermal
environment using the hp finite element method (Hassan et al., 2020).

Over the last three decades, the Differential Quadrature Method (DQM)
has emerged and gradually evolved as an efficient and accurate numerical
method, and has enjoyed notable success over the last two decades (Bellman
and Casti, 1971; Bert, 1988; Bert and Malik, 1996; Shu, 2000). DQM is
based on the approximation of the partial derivatives of a field variable at
a discrete point by a weighted linear sum of the field variable along the
line passing through that point. The significant development of DQM has
led to an interest in combining DQM with a variational formulation. Striz
et al. (1995) took the initiative and developed the hybrid quadrature element
(QEM) method for two-dimensional plane stress and plate bending problems,
and plate-free vibration problems (Striz et al., 1997). Chen and New (1999)
used the DQ technique to discretize the derivatives of the variable functions
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existing in integral statements for variational methods, GALERKIN method,
etc., by deriving the finite element formulation, discretization of linear 3-D
statics and the elasticity problem and the buckling problem of a plate using
the principle of minimum potential energy were illustrated. This method is
called the Differential Quadrature Finite Element Method (DQFEM). (Xing
and Liu, 2009) presented a Differential Quadrature Finite Element Method
(DQFEM) which was motivated by the complexity of imposing boundary
conditions in DQM, the name is the same as that of (Chen and New, 1999), but
the starting points and implementations are different. Compared to (Zhong
and Yu, 2009) and (Chen and New, 1999), DQFEM (Xing and Liu, 2009)
presents the following novelties: The DQ rules are reformulated and, in
conjunction with the Gauss-Lobatto integral rule, are used to discretise the
energy functional to derive the finite element formulation of a Euler Bernoulli
beam (Yufeng et al., 2010). Lagrange interpolation functions are used as test
functions, nodal shape functions as in standard FEM are not required. The
DQFE element matrices are symmetrical, well-conditioned and efficiently
computed by simple algebraic operations of the known weighting coefficient
matrices of the reformulated DQ rules and the Gauss-Lobatto integral rule.
Drawing on the polynomial hierarchical version of the Finite Element Method
(p-FEM) (Cuiyun et al., 2016) combined the DQFEM method by adding
shape functions as in the p version of the finite elements, DQM has had
difficulty solving free vibration (Malik and Bert, 2000; Bert and M, 1996)
due to its difficulty in approximating high-order derivatives, but DQFEM
can solve the problem (Xing and Liu, 2009). It is clear that p-FEM can take
advantage of some techniques in DQFEM, which leads (Cuiyun et al., 2016)
to propose the Differential Quadrature Hierarchical Finite Element Method
(DQHFEM).

Knowledge of the vibratory behaviour of rotors is of great importance
for the manufacturers and operators of this equipment, many researchers
focus their research on this axis and on the study of dynamic behaviour,
especially the critical speeds of the rotors which differ from its natural non-
rotating frequency. The main reason for this difference is known to be the
gyroscopic effect. Green (1948) first studied the gyroscopic effect on the
normal frequency of flexible rotors. Eshienman and Eubanks (1967) and
Rao (1983) also studied the gyroscopic effect on the normal frequency of
rotating shafts, as well as the effect of external loading which can change
the lateral normal frequency of rotating shafts. The effect of axial force and
externally applied torques on the lateral vibrations of rotating shafts has been
studied by several researchers. Bokaian (1948) presented the variations of
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the lateral normal frequency of Euler Bernoulli beams under axial loading
with various boundary conditions. Choi et al. (1995) derived the equation
of motion of the rotating shaft under constant compressive axial loading
by introducing gyroscopic moments. Nelson and McVaugh (1976) used the
finite element method for the study of rotors on deformable bearings. The
study of the dynamic behaviour of a rotor under the loading effect consists
of studying the overall behaviour of a rotor whose support is subjected to
any movement. This model is well adapted to understand the phenomenon
of movement of rotors embedded in vehicles, aircrafts etc. This phenomenon
has recently attracted the attention of researchers. Duchemin et al. (2006)
made a detailed study based on the simple Rayleigh-Ritz model, on a rotor
whose support is in motion. Various analytical studies have been carried
out on simple movements: simple translation, sinusoidal translation, constant
rotation, accelerated rotation. Dakel (2013) continued the work by adding
hydrodynamic bearings by the classical finite element method. In the work
of (Saimi, 2016) there is a study on the behaviour of on-board rotor by
the h-p version of finite elements. Sajal et al. (2018) studied the dynamic
analysis of micro-beams based on modified strain gradient theory using the
differential quadrature method. Weiyan et al. (2019) to use the generalized
differential quadrature method combined with Hamilton’s principle for free
vibration analysis of a thin-walled rotating composite shaft. Ri et al. (2020)
used DQFEM for the analysis of nonlinear forced vibrations of composite
beams. Belhadj et al. (2020) also used DQM for the study of free vibrations
of single-walled carbon nanotubes with rotary inertia.

In this present work, following the literature mentioned above, we study
the dynamic behaviour of a rotor system with a mobile support, using two
different methods, the DQFEM and the DQHFEM. The global equation
of motion is obtained using Euler Bernoulli’s beam theory and Lagrange’s
equation. The material of the shaft is isotropic. The natural frequencies of
the system are determined using a program developed in MATLAB and the
results obtained are verified with those reported in the literature. The DQFEM
and DQHFEM methods have been shown to be faster than the h-FEM and
hp-FEM methods in calculating convergence.

2 Model of the Rotating Shaft

In this section we will give the essential steps for modelling a rotor shaft
whose support is assumed to be non-deformable and in known determin-
istic motion. For the analysis and prediction of rotor dynamic behaviour,
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differential equations are established using the approaches of the modelling
used (Saimi, 2016).

The assumptions and boundary conditions taken into account in the
framework of this study are:

The shaft is deformable and considered as a homogeneous beam and
will be modelled using the fundamental kinematic hypothesis of Euler
Bernoulli’s isotropic beam theory.
The rotor support is infinitely rigid in the first case and mobile in the
second case.
The rotor rotates at a constant rotational speed Ω.

Consideration of support motion can significantly affect the shape of the
equations of motion of a rotor in flexion compared to those obtained for a
fixed support. In order to obtain the simplest possible modelling, the approach
presented by (Duchemin et al., 2006) is used. He proposes the modelling of
a rotor with a mobile support by considering the movement of the rotor with
respect to the support and that of the support with respect to the ground. The
transverse deflections of the mean line of the rotor shaft are studied in relation
to a reference frame linked to the rigid support. The novelty of this work
compared to the work of (Duchemin et al., 2006) is the modelling methods,
(Duchemin et al., 2006) used the classical version of finite elements, and in
this work we used the differential quadrature finite element method and the
differential quadrature hierarchical finite element method, which showed a
very good speed of calculation and fast convergence rate.

In order not to neglect the movement of the support, three main markers
are defined:

• The Galilean fixed reference frame Rg(xg, yg, zg)
• The frame linked to the non-deformable support Rs(xs, ys, zs),
• Current, rotating, shaft-linked frame R(x, y, z) .

The centres of these frames are respectively O, A et C.
In order to calculate the expressions of the kinetic energy and the strain

energy of the shaft, it is necessary to calculate the speed and rotation vectors
of the frame R in relation to the frame Rg.

Since there are three frames taken into consideration, two changes in the
frame system can be carried out by:

• The transformation of the frame linked to the support Rs into a local
frame R.
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• The transformation of the Galilean frame Rg to the frame linked to the
support Rs.

Generally speaking, in rotor dynamics, the rotation of the frame R linked
to a point in the deformable shaft relative to the frameRs linked to the support
is defined by Euler’s angles θx, θy and θz , using two intermediate frames.

• A rotation angle θz around zs (intermediate frame R1(x1, y1, z1))
• A rotation angle θx around the new axis x1 (intermediate frame
R2(x2, y2, z2))

• A rotation angle θy around the final axis y//y2 (final frame R(x, y, z)).

Where the rotation vector of R relative to Rs expressed in R is (1):

−→
Ω

Rs

R =

 0
0

θ̇z


Rs

+

θ̇x0
0


R2

+

 0

θ̇y
0


R

(1)

−→
Ω

Rs

R =

θ̇xcosθy − θ̇zcosθx sinθy

θ̇y + θ̇zsinθx

θ̇xsinθy + θ̇zcosθxcosθy


R

(2)

The movement of the support is defined by the coordinates xA, yA, and
zA, of the vector

−→
OA expressed in the frame Rg, and by the angles α, β, and

γ to switch from the frame Rg to the frame Rs by:

• A rotation angle α around zg (intermediate frame R′(x′, y′, z′))
• A rotation angle β around the new axis x′ (intermediate frame
R′′(x′′, y′′, z′′))

• A rotation angle γ around the final axis y′′ = ys (final frame
Rs(xs, ys, zs))

Knowing that the rotations α, β, and γ depends on the time t.
The rotation vector of Rs relative to Rg expressed in Rs is written:

−→
Ω

Rg

Rs
=

0
0
α̇


R′

+

β̇0
0


R′′

+

0
γ̇
0


Rs

(3)

−→
Ω

Rg

Rs
=

β̇cosγ − α̇cosβsinγ
γ̇ + α̇sinβ

β̇sinγ + α̇cosβcosγ


Rs

=

α̇s

β̇s
γ̇s


Rs

(4)
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To set up the translational movements of the support, the X,Y, Z

coordinates of the vector
−→
OA expressed in the frame Rs are used.

−→
OA =


(xAcosα+ yAsinα)cosγ
−(zAcosβ + (xAsinα− yAcosα) sinβ)sinγ

zAsinβ − (xAsinα− yAcosα) cosβ
(xAcosα+ yAsinα)sinγ

+(zAcosβ + (xAsinα− yAcosα)sinβ)cosγ


Rs

=

XY
Z


(5)

Starting from the equations of motion of the support expressed in the
Galilean coordinate system Rg, The coordinates of the rotation vectors and
the position of the frame R relative to Rg can be easily obtained. For the
following developments, the equations are expressed as a function of α̇s, β̇s,
γ̇s and X,Y, Z and their derivatives in relation to time.

The rotation vector of R with respect to the frame Rg is:

−→
Ω

Rg

R =
−→
Ω

Rg

Rs
+
−→
Ω

Rs

R =

α̇s

β̇s
γ̇s


Rs

+

 0
0

θ̇z


Rs

+

θ̇x0
0


R2

+

 0

θ̇y
0


R

(6)

−→
Ω

Rg

R =



(α̇scosθz + β̇ssinθz + θ̇x)cosθy − ((α̇ssinθz − β̇scosθz )sinθx

+(γ̇s + θ̇y)cosθx)sinθy

−(α̇ssinθz − β̇scosθz)cosθx + (γ̇s + θ̇y)sinθx + θ̇y

(α̇scosθz + β̇ssinθz + θ̇x)sinθy

+((α̇ssinθz − β̇scosθz)sinθx + (γ̇s + θ̇y)cosθx)cosθy


R

(7)

−→
Ω

Rg

R =

ωx

ωy

ωz

 (8)

The rotational speed of the rotor is along the y-axis; θz and θx represent
the angular deformations of the shaft in the x and z directions; θy represents
its angular position in relation to the support. The shaft only undergoes
small deformations (elastic range), θz and θx are therefore considered to be
infinitely small angles.

It is assumed that the rotor rotates at constant speed. θ̇y:

θ̇y = Ω and θy = Ω t (9)
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Assume (u, y, w) are the displacements of a point C of the shaft in the
reference frame Rs, u and w are variable whereas y is considered constant
since only the bending movements of the shaft are studied, therefore:

−→
AC =

u(y, t)
y

w(y, t)


Rs

(10)

And the velocity vector of point C with respect to the Galilean frame:

−→
V

g
(C) =

dg

dt

−−→
OC =

ds

dt

−−→
OC +

−→
Ω

Rg

Rs
∧
−−→
OC with

−−→
OC =

−→
OA+

−→
AC =

X + u(y, t)
Y + y

Z + w(y, t)

 (11)

−→
V

g
(C) =

Ẋ + u̇

Ẏ

Ż + ẇ


Rs

+

α̇s

β̇s
γ̇s


Rs

∧

X + u
Y + y
Z + w


Rs

(12)

−→
V

g
(C) =

Ẋ + u̇+ β̇s(Z + w)− γ̇s(Y + y)

Ẏ + γ̇s(X + u)− α̇s(Z + w)

Ż + ẇ + α̇s(Y + y)− β̇s(X + u)

 =

ucvc
wc

 (13)

The expressions of the kinetic energies of the shaft can be calculated from

the expressions of the rotation vector
−→
Ω

Rg

R and the speed of the point C with
respect to the frame Rg.

2.1 Kinetic Energy of the Shaft

The shaft is modelled by Euler Bernoulli’s beam theory, and rotates at a
constant speed around its longitudinal axis. The shaft has a uniform circular
cross-section.

The kinetic energy of the rotating symmetrical shaft, including the effects
rotary inertia see (Saimi, 2016), can be written as

dEa =

(
ρaSa

2
(uc

2 + vc
2 + wc

2)

+
1

2
(ρaIaxωx

2 + ρa (Iax + Iaz)ωy
2 + ρaIazωz

2)

)
dy (14)
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With Sa, ρa, Iax and Iaz denote respectively the section (supposed to be
constant), density and Section inertia.

Imo
sa =

Iax + Iaz
2

(15)

Ea = Ea,1 + Ea,2 + Ea,3 (16)

Ea,1 =
ρaSa

2

∫ la

0
(u̇2 + ẇ2 + 2((ẋ0 + z0ω

y − (y0 + y)ωz))(u̇+ wωy)

+ 2((ż0 + (y0 + y)ωx − x0ω
y))(ẇ − uωy)

− 2((ẏ0 − z0ω
x + x0ω

z))(wωx − uωz)

+ 2(u̇w − ẇu)ωy + w2ωx2 + (u2 + w2)ωy2

+ u2ωz2 − 2uwωxωz)dy (17)

Ea,2 =
ρaI

mo
sa

2

∫ la

0

((
∂u̇

∂y

)2

+

(
∂ẇ

∂y

)2

+ 2
∂ẇ

∂y
ωx

+ 2

(
∂u̇

∂y

∂w

∂y
− ∂ẇ

∂y

∂u

∂y

)
ωy − 2

∂u̇

∂y
ωz −

((
∂u

∂y

)2

− 1

)
ωx2

+

((
∂u

∂y

)2

+

(
∂w

∂y

)2
)
ωy2 −

((
∂w

∂y

)2

− 1

)
ωz2

−2
∂u

∂y

∂w

∂y
ωxωz − 2

(
∂u

∂y
ωx +

∂w

∂y
ωz

)
ωy

)
dy (18)

Ea,3 = ρaI
mo
sa

∫ la

0

(
(Ω + ωy)2 +

(
∂u

∂y

)2

ωx2 +

(
∂w

∂y

)2

ωz2

+ (Ω + ωy)

(
− 2

∂u̇

∂y

∂w

∂y
−

((
∂u

∂y

)2

+

(
∂w

∂y

)2
)
ωy

+2

(
∂u

∂y
ωx +

∂w

∂y
ωz

))
+ 2

∂u

∂y

∂w

∂y
ωxωz

)
dy (19)
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2.2 The Strain Energy

The strain energy is not affected by the movement of the support because it
only depends on the constraints and therefore the deformation of the shaft
with respect to the support. In this calculation, only the deformations due to
bending is taken into account (the effects of shear are neglected).

In the case of an Euler-Bernoulli beam, shear effects are neglected and
relationships between rotations θz and θx supposedly small and u and w
displacements are expressed by (Saimi, 2016):

Ua =
1

2
EaI

mo
Sa

∫ la

0

((
∂2u

∂y2

)2

+

(
∂2w

∂y2

)2
)
dy (20)

3 The Reformulated Differential Quadrature Rule

Known DQ rules approximate the derivative of a function at a point by a
weighted linear sum of field variables along a line passing through the point.
In addition to Lagrange functions, any other complete base can be used
as a basis for formulating DQ rules. (Cuiyun et al., 2016) (Xing and Liu,
2009)

Thus, for a field variable f(x) its derivative of order n in a discrete point
xi can be expressed as:

∂nf(x, t)

∂xn

∣∣∣∣
xi

=

N∑
j=1

A
(n)
ij f(xj , t) (i = 1, 2, 3, . . . , N) (21)

Where A(n)
ij is the weighting coefficient related to the derivative of order

n, and the weighting coefficient is obtained as follows
if n = 1, so

A
(1)
ij =

M(xi)

(xi − xj)M(xj)
i 6= j, i, j = 1, 2, . . . , N

A
(1)
ii = −

n∑
j=1,j 6=i

A
(1)
ij i = 1, 2, . . . , N (22)
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Where

M(xi) =
N∏

k=1,k 6=i

(xi − xk)

M(xj) =
N∏

k=1,k 6=i

(xj − xk) (23)

If n > 1, secondary and higher order derivatives, the weighting coeffi-
cients are determined using the following simple recurrence relationship:

A
(n)
ij = n

(
A

(1)
ij ∗A

(n−1)
ii −

A
(n−1)
ij

(xi − xj)

)
i 6= j, i, j = 1, 2, . . . , N, n > 1

A
(n)
ii = −

N∑
j=1,j 6=i

A
(n)
ij i = 1, 2, . . . , N (24)

4 Gauss-Lobatto Quadrature Rule

The theory of Gauss-Lobatto quadrature rules can be found in the mathemat-
ical literature; The Gauss-Lobatto quadrature rule with a degree of accuracy
(2n− 3) for the function f(x) defined in [−1, 1] is:∫ 1

−1
f(x)dx =

N∑
j=1

Cjf(xj) (25)

With the weighting coefficient Cj of the Gauss-Lobatto integration is
given by:

C1 = CN =
2

N(N − 1)
, Cj =

2

N(N − 1)[PN−1(xj)]
2 (j 6= 1, N)

(26)

xj is the (j − 1) zero of the first order derivative of PN−1(x). To solve the
roots of the Legendre polynomials, we will use the recursivity formula as
Equations (27) and (28), it is easy to obtain thousands of roots.

PN+1(x) =
2N + 1

N + 1
xPN (x)− N

N + 1
PN−1(x) (27)
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With P0(x) = 1, P1(x) = x. The nth-order derivation of the Legendre
polynomials can be determined by the following formula:

P
(n)
N+1(x) = xP

(n)
N (x) + (N + n)P

(n)
N (x) (28)

In order to obtain a denser population near the boundaries, sampling
points are selected according to the grid distribution of Gauss–Lobatto nodes.

xj = −cos

(
j − 1

N − 1
π

)
(29)

Gauss–Lobatto nodes are solved with the Newton-Raphson iteration
method.

xiT+1 = xiT − F ′(xiT )
−1

F (xiT ), iT = 0, 1, . . . (30)

Including

x = [x2, x3, . . . , xN−1]T (31)

F (x) = [f(x2), f(x3), . . . , f(xN−1)]T (32)

F ′(x) =

[
∂f(xj)

∂xi

]
(N−2)×(N−2)

(33)

f(xj) =
N∑

k−1, k 6=j

1

xj − xk
j = 2, 3, . . . , N − 1 (34)

∂f(xj)

∂xi
=


−

N∑
k=1, k 6=j

1

(xj − xk)2 , (i = j)

1

(xj − xi)2 , (i 6= j)

(35)

Where k is the value of x at iT th iteration step. This method is less
sensitive to the initial value. The values given by Equation (29) are used as
initial values.

5 The Differential Quadrature Finite Element Method

The differential quadrature finite element method was developed by (Xing
and Liu, 2009), whose differential quadrature rules and Gauss-Lobatto
quadrature are used to discretize the system energies.
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Assuming that the deflection function is in the form:

u(x) =

N∑
i=1

Li(x)ui

w(x) =
N∑
i=1

Li(x)wi (36)

With Li is the Lagrange polynomial, and ui = u(xi), wi = w(xi) are
the displacements of the Gauss Lobatto quadrature points or the DQ nodal
displacements of the beam finite element.

Using DQ rules and Gauss - Lobatto quadrature the expressions of kinetic
energy and strain energy (14–20) can be written as follows:

Ea,1 =
ρaSa

2
η1(C,A(1)) (37)

Ea,2 =
ρaI

mo
sa

2
η2(C,A(1)) (38)

Ea,3 = ρaI
mo
sa η3(C,A(1)) (39)

η1(C,A(1)), η2(C,A(1)), and η3(C,A(1)) are detailed in the appendix.

Ua =
1

2
EaI

mo
Sa

(uTA(2)TCA(2)u+ wTA(2)TCA(2)w) (40)

With A(1) and A(2) indicates the matrices of the weighting coefficients of
the DQ rules for the first and second order derivatives respectively calculated
with Equations (22–24), with respect to the Gauss-Lobatto nodes, and

C = diag[C1 C2 . . . CN ] (41)

WhereCj are the weighting coefficients of the Gauss-Lobatto integration.

uT = [u1 u2 . . . uN ]

wT = [w1 w2 . . . wN ] (42)

In order to construct an element that satisfies the requirements of
continuity between elements, the element displacement vectors must be:

uT = [u1 u
′
1 u3 . . . uN−2 uN u′N ]

wT = [w1 w
′
1 w3 . . . wN−2 wN w′N ] (43)
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The relation between w and w is defined using the DQ rule:

u = Qu, w = Qw (44)

Where

Q =



1 0 0 · · · 0 0

A
(1)
1,1 A

(1)
1,2 A

(1)
1,3 · · · A

(1)
1,N−1 A

(1)
1,N

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

A
(1)
N,1 A

(1)
N,2 A

(1)
N,3 · · · A

(1)
N,N−1 A

(1)
N,N


(45)

By replacing Equations (44–45) in Equations (37–40), and using the
formula of the Lagrange equations, the elementary mass matrix [M e], the
gyroscopic matrix [Ge], [Ge

ωy ] and the stiffness matrices [Ke], [Ke
Ωωy ],

[Ke
ωx2 ], [Ke

ωy2 ], [Ke
ωz2 ], [Ke

ωxωz ] are obtained.
The elementary mass matrix obtained with (DQFEM)

[M e] = ρaSa

[
Q−TCQ−1 [0]

[0] Q−TCQ−1

]

+ ρaI
mo
sa

Q−TA(1)T
CA

(1)
Q−1 [0]

[0] Q−TA
(1)T

CA
(1)
Q−1

 (46)

The gyroscopic matrices obtained with (DQFEM)

[Ge] = 2ρaI
mo
sa

 [0] −Q−TA(1)T
CA

(1)
Q−1

Q−TA
(1)T

CA
(1)
Q−1 [0]

Ω

(47)

Ge
ωy = 2ρaSa

[
[0] Q−TCQ−1

−Q−TCQ−1 [0]

]
ωy (48)

The stiffness matrices obtained with (DQFEM)

[Ke] = EaI
mo
Sa

Q−TA(2)T
CA

(2)
Q−1 [0]

[0] Q−TA
(2)T

CA
(2)
Q−1


(49)
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[Ke
Ωωy ] = 2ρaI

mo
sa−Q−TA(1)T

CA
(1)
Q−1 [0]

[0] Q−TA
(1)T

CA
(1)
Q−1

Ωωy

(50)

[Ke
ωx2 ] = ρaSa

[
[0] [0]
[0] −Q−TCQ−1

]
ωx2

+ ρaI
mo
sa

[
−Q−TA(1)T

CA
(1)
Q−1 [0]

[0] [0]

]
ωx2 (51)

[Ke
ωy2 ] = ρaSa

[
−Q−TCQ−1 [0]

[0] −Q−TCQ−1

]
ωy2 + ρaI

mo
saQ−TA(1)T

CA
(1)
Q−1 [0]

[0] Q−TA
(1)T

CA
(1)
Q−1

ωy2

(52)

[Ke
ωz2 ] = ρaSa

[
−Q−TCQ−1 [0]

[0] [0]

]
ωz2

+ ρaI
mo
sa

[
[0] [0]

[0] −Q−TA(1)T
CA

(1)
Q−1

]
ωz2 (53)

[Ke
ωxωz ] = ρaSa

[
[0] Q−TCQ−1

Q−TCQ−1 [0]

]
ωxωz + ρaI

mo
sa [0] −Q−TA(1)T

CA
(1)
Q−1

−Q−TA(1)T
CA

(1)
Q−1 [0]

ωxωz

(54)

It is easy to show that the transformation matrix Q in Equation (45) is
generally well conditioned. The mass, stiffness and gyroscopic matrices of
the FEM and DQFEM elements are almost the same, but Lagrange polyno-
mials are used in Equation (36) while Hermite interpolation functions are
used in FEM.
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All forms of node distribution for differentiation and quadrature are
[−1, 1]. Therefore, in order to apply them in practice, the following modi-
fications must be made to the differential and quadrature matrices,

C =
le
2
C, A

(1)
=

2

le
A(1), A

(2)
=

4

le
2A

(2) (55)

Where le is the length of the beam element.
The matrices for the entire system are obtained according to the MEF

rules for assembling elementary matrices,

[M ]

{
ü(t)

ẅ(t)

}
+ [G]

{
u̇(t)

ẇ(t)

}
+ [K]

{
u(t)

w(t)

}
= [0] (56)

6 The Differential Quadrature Hierarchical Finite Element
Method

In this section we aim to illustrate the use of DQHFEM through the on-
board shaft, although work has already been done (Cuiyun et al., 2016) for
a uniform Euler-Bernoulli beam, we will follow the same steps to determine
the differential equation of motion of the on-board shaft.

The displacement field used for the DQHFEM is the same used for hp-
FEM:

u[x(ξ)] = H1(ξ)u1 +
Le

2
H2(ξ)

du1

dx
+H3(ξ)u2

+
Le

2
H4(ξ)

du2

dx
+

M∑
n=1

ψn(ξ)Un (57)

w[x(ξ)] = H1(ξ)w1 +
Le

2
H2(ξ)

dw1

dx
+H3(ξ)w2

+
Le

2
H4(ξ)

dw2

dx
+

M∑
n=1

ψn(ξ)Wn (58)

The first four functions H1(ξ), H2(ξ), H3(ξ) and H4(ξ) are those of the
finite element method necessary to describe the displacements and rotations
at the nodes of the element, we use for this purpose the cubic Hermit shape
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functions (Bardell, 1996).

H1(ξ) =
1

4
(1− ξ)2(2 + ξ) H2(ξ) =

1

4
(1− ξ)2(ξ + 1)

H3(ξ) =
1

4
(1 + ξ)2(2− ξ) H4(ξ) =

1

4
(1 + ξ)2(ξ − 1) (59)

Where the local coordinates are linked to the non-dimensional coordi-
nates by the relation:

x =
Le

2
(ξ + 1) avec− 1 ≤ ξ ≤ 1 (60)

And ψn(ξ) are the hierarchical functions contribute to the field of internal
displacement,

ψn(ξ) =
(ξ2 − 1)

2

n(n+ 1)(n+ 2)(n+ 3)

d2Pn+1

dξ2
(61)

The low order Legendre polynomial can be calculated from the Rodrigues
form of special Legendre polynomials (Peano, 1976); the generating function
is quoted below.

Pn(ξ) =

(n−1)
2∑

k=0

(−1)k(2n− 2k − 7)!!

2kk!(n− 2k − 1)!
ξ(n−2k−1) with, n > 4

n!! = n(n− 2)(n− 4) . . . (2 or 1), 0!! = (−1)!! = 1,

and (n− 1)/2 Refers to its own whole part (62)

This Legendre polynomial expression has been used in several papers
(Saimi, 2016), (Hassan et al., 2020) in the h, p and hp versions of the finite
element method.

One can also use the recursivity formula Equations (27–28), the order n
can reach several thousands.

The displacement vectors of the element are noted as follows:

uT = [u1 u
′
1 u2 u

′
2 U1 . . . UM ]

wT = [w1 w
′
1 w2 w

′
2 W1 . . . WM ] (63)

So the equations of u[x(ξ)] and w[x(ξ)] become:

u[x(ξ)] = [Nu]Tu

w[x(ξ)] = [Nw]Tw (64)
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Where

Nu
T =

[
H1(ξ)− Le

2
H2(ξ) H3(ξ) − Le

2
H4(ξ) ψ1(ξ) ψ2(ξ) . . . ψM (ξ)

]
Nw

T =

[
H1(ξ)

Le

2
H2(ξ) H3(ξ)

Le

2
H4(ξ) ψ1(ξ) ψ2(ξ) . . . ψM (ξ)

]
(65)

The calculation of Gauss-Lobatto nodes ξj , j = 1, 2, . . . , N , with N =
M + 4. Defines the following motion vectors:

uT = [u(x1) u(x2) . . . u(xN )]

wT = [w(x1) w(x2) . . . w(xN )] (66)

According to Equation (64) the relationship between (63) and (66) is
defined by the following equation:

u = Guu

w = Gww (67)

Where

Gu = [[Nu](ξ1) [Nu](ξ2) . . . [Nu](ξN )]T

Gw = [[Nw](ξ1) [Nw](ξ2) . . . [Nw](ξN )]T (68)

By replacing Equations (22, 24, 41, 66 and 68) in Equations (37–40), and
using the formula of Lagrange’s equations, the elementary mass, stiffness and
gyroscopic matrices are obtained as:

The elementary mass matrix obtained with (DQHFEM)

M e = ρaSa

[
Gu

TCGu [0]

[0] Gw
TCGw

]

+ ρaI
mo
sa

Gu
TA

(1)T
CA

(1)
Gu [0]

[0] Gw
TA

(1)T
CA

(1)
Gw


(69)
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The gyroscopic matrices obtained with (DQHFEM)

Ge = 2ρaI
mo
sa

 [0] −Gu
TA

(1)T
CA

(1)
Gw

Gw
TA

(1)T
CA

(1)
Gu [0]

Ω

(70)

Ge
ωy = 2ρaSa

[
[0] Gu

TCGw

−Gw
TCGu [0]

]
ωy (71)

The stiffness matrices obtained with (DQHFEM)

Ke = EaI
mo
Sa

Gu
TA

(2)T
CA

(2)
Gu [0]

[0] Gw
TA

(2)T
CA

(2)
Gw


(72)

Ke
Ωωy = 2ρaI

mo
sa

−Gu
TA

(1)T
CA

(1)
Gu [0]

[0] Gw
TA

(1)T
CA

(1)
Gw

Ωωy

(73)

Ke
ωx2 = ρaSa

[
[0] [0]

[0] −Gw
TCGw

]
ωx2

+ ρaI
mo
sa

[
−Gu

TA
(1)T

CA
(1)

Gu [0]
[0] [0]

]
ωx2 (74)

Ke
ωy2 = ρaSa

[
−Gu

TCGu [0]

[0] −Gw
TCGw

]
ωy2

+ ρaI
mo
sa

Gu
TA

(1)T
CA

(1)
Gu [0]

[0] Gw
TA

(1)T
CA

(1)
Gw

ωy2

(75)

Ke
ωz2 = ρaSa

[
−Gu

TCGu [0]
[0] [0]

]
ωz2

+ ρaI
mo
sa

[
[0] [0]

[0] −Gw
TA

(1)T
CA

(1)
Gw

]
ωz2 (76)
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Ke
ωxωz = ρaSa

[
[0] Gu

TCGw

Gw
TCGu [0]

]
ωxωz + ρaI

mo
sa [0] −Gu

TA
(1)T

CA
(1)

Gw

−Gw
TA

(1)T
CA

(1)
Gu [0]

ωxωz

(77)

7 Equation of Elementary Motion

By applying Lagrange’s equations to the system discretised by the DQFEM or
DQHFEM methods we obtain the following system of differential equations:

[M e]{q̈}+ [[Ge]Ω + [Ge
ωy ]ωy]{q̇}+ [[Ke] + [Ke

Ωωy ]Ωωy

+ [Ke
ωx2 ] + [Ke

ωy2 ] + [Ke
ωz2 ] + [Ke

ωxωz ]]{q} = {0} (78)

Where:

• [M e], [[Ge]Ω + [Ge
ωy ]ωy] , and [[Ke] + [Ke

Ωωy ]Ωωy + [Ke
ωx2 ] +

[Ke
ωy2 ] + [Ke

ωz2 ] + [Ke
ωxωz ]] are respectively the elementary matri-

ces of mass, gyroscopic and stiffness with periodic and time-varying
parametric terms due to the rotations of its rigid support.

• {q̈}, {q̇}, and {q} are respectively the global acceleration, velocity and
displacement vectors suitable for DQFEM or DQHFEM connectivity.

• Put [M ], [G] and [K] respectively the total matrices after assembly
of mass, damping and stiffness, therefore the differential equation of
motion becomes:

[M ]{q̈}+ [G]{q̇}+ [K]{q} = {0} (79)

The assembly of the global matrices is similar to that of the classic
version of the finite elements method to ensure displacement and rotational
compatibility at the nodes of adjacent elements.

In the current application of DQFEM and DQHFEM, boundary condi-
tions are applied in the same way as the hp version of the finite element
method. For example, if the shaft is supported by a rigid bearing it means that
the displacement at the bearing is zero.

In this work, some numerical methods for solving the equations of motion
and analysis of the dynamic vibration behaviour of the rotating shaft are used.
The programming language used is MATLAB, in order to program these
solving methods using the DQFEM and DQHFEM methods.
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The dynamic behaviour of the embedded rotary shaft is analysed using
Campbell diagrams.

To study the free motion of the rotating shaft the homogeneous differen-
tial system of Equation (78) of the equation of motion of the on-board rotating
shaft rotating at constant speed is solved Ω.

In order to transform the second order differential system to a first order
system, the following expression is added to Equation (78):

− [M ]{q̇}+ [M ]{q̇} = {0} (80)

The result is:[
−[M ] [0]
([G]) [M ]

]{
{q̇}
{q̈}

}
+

[
[0] [M ]

([K]) [0]

]{
{q}
{q̇}

}
= {0} (81)

Equation (69) is a first-order linear differential system in the form:

[B1]{Q̇r}+ [B2]{Qr} = {0} (82)

Where:

[B1] =

[
−[M ] [0]
([G]) [M ]

]
(83)

[B2] =

[
[0] [M ]

([K]) [0]

]
(84)

{Qr} =

{
{q}
{q̇}

}
(85)

Either:
{Q̇r} = −[B1]−1[B2]{Qr} = [Ar]{Qr} (86)

With:

[Ar] = −[B1]−1[B2] = −
[

[M ]−1 [0]

[M ]−2([G]) [K]−1

] [
[0] [M ]

([K]) [0]

]
(87)

So:

[Ar] =

[
[0] [I]

−[M ]−1([K]) −[M ]−1([G])

]
(88)

The absolute values of the eigenvalues of the matrix [Ar] represent
the pulsations ωr of the system, they depend on the rotation speed Ω, the
evolution of the pulsations as a function of the rotation speed is called Camp-
bell’s diagram, the latter also represents the evolution of natural frequencies
fr = ωr/2π.



DQFEM and the DQHFEM for the Dynamics Analysis of on Board Shaft 325

step 1
•Create the geometry and discretize it into beam elements..

step 2
•Assigns material constants to the elements.

step 3
•Sampling nodes using Newton-Raphson iteration (equations (16-22)) 

step 4
•Calculate the weighting matrices , . (equations (9-15))

step 5
•Calculate transfer matrices for DQHFEM (equation (56)), or for DQFEM (equations (32)).

step 6
•Calculate elementary mass, stiffness, and gyroscopic matrices.

step 7
•Assembly of the elements.

step 8
•Applied boundary conditions.

step 9
•Solving (equations (76))

Figure 1 Flowchart of the simulation process using the hierarchical differential quadrature
finite element method or the differential quadrature finite element method.

8 Results and Discussion

 

Figure 2 Model of on-board symmetric shaft (simply supported - simply supported).
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8.1 Validation

This section presents the results calculated with the DQFEM and DQHFEM
methods of vibration of an on-board shaft, and compares them with the results
obtained with the h and hp versions of the finite element method.

A first validation is performed on a single shaft supported in both ends
with a diameter of 0.05 (m), and a length of 0.9 (m), Young’s modulus and
density are respectively 2.1011 (N/m2), 7800 (kg/m3), 7800 (kg/m3), 7800
(kg/m3) and 7800 (kg/m3).

For a first validation the shaft is modelled by a single element, the
parameters taken for the DQFEM are (h = 3 elements and N = 20 sampling
nodes), and for the DQHFEM the same parameters were also taken to see the
deference of the result between the two methods.

For the h version of the finite element method a mesh size of h = 3
elements was taken, and for the hp version of the finite element method a
mesh size of h = 3 elements and polynomial degree p = 10 were taken.

Table 1 Natural frequencies of the first three modes of vibration as a function of Ω
Rotating Speed
Ω [rad/s] 0
Bending (Boukhalfa
Mode and (René,
ω [Hz] Hadjoui, 2014) 1988) DQFEM DQHFEM hFEM hpFEM

1 128.1837 122.7475 122.6308 121.0328 122.7300 122.6307
2 507.0806 490.9899 489.1309 489.1310 494.9093 489.1309
3 1120.8937 1104.7273 1095.3825 1095.3826 1215.6495 1095.3825
Rotating Speed 104

Ω [rad/s] Backward mode (B)

Bending (Boukhalfa
Mode and (René,
ω [Hz] Hadjoui, 2014) 1988) DQFEM DQHFEM hFEM hpFEM

1 122.3467 119.7548 122.3145 122.3145 122.4137 122.3144
2 484.6529 479.0191 487.8730 487.8729 493.6491 487.8729
3 1073.5822 1077.7931 1092.5786 1092.5785 1212.8087 1092.5785
Rotating Speed 104

Ω [rad/s] Forward mode (F)

Bending (Boukhalfa
Mode and (René,
ω [Hz] Hadjoui, 2014) 1988) DQFEM DQHFEM hFEM hpFEM

1 134.2918 125.8150 122.9480 122.9479 123.0472 122.9479
2 530.4377 503.2598 490.3923 490.3922 496.1727 490.3922
3 1169.8098 1132.3346 1098.1939 1098.1939 1218.4970 1098.1938
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The results obtained in Table 1 for the boundary condition of a shaft simply
supported at both ends are compared with the results obtained analytically by
(René, 1988) and (Boukhalfa and Hadjoui, 2014).

After comparing the results with other methods in the literature, it can be
seen that the difference between the methods is very small.

8.2 Convergence Study of the Results

According to Figures 3–4, we notice that the hierarchical differential quadra-
ture finite element method is the differential quadrature finite element
method, have the same speed of convergence when only the number of
samples is varied.

In Figures 5–6 a combination of sampling number N with the number
of elements h (Ni = Ni+1 and hi = hi+3) was used. At each iteration one
sampling degree and three additional elements were added. It can be seen
that the two methods DQFEM and DQHFEM converge rapidly, with N = 6
and h = 7 being the starting point for convergence, making them effective.
Table 2 shows the details of Figures 5–6 in comparison with the hp version of
the finite element method. There is a slight discrepancy between the methods.
The choice of the combination of sampling number N with the number of
elements h is free, which means that any combination can be chosen, the
higher the value, the more convergent the results.

 
Figure 3 Convergence of the first five bending frequencies as a function of the sampling
number of DQFEM nodes N (the shaft is discretised into a single element). Ω = 0.
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Figure 4 Convergence of the first five bending frequencies as a function of the sampling
number of DQHFEM nodes N (the shaft is discretised into a single element). Ω = 0.

 
Figure 5 Convergence of the first frequency with a combination of the mesh degree-h and
the sampling points N with (Ni = Ni+1 and hi = hi+3). With DQHFEM.

8.3 Influence of Boundary Conditions

In rotor dynamics, the influence of boundary conditions is a point not to
be neglected; in Figures 7–8 we show the difference between several cases
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Figure 6 Convergence of the first frequency based on the sampling number N with a fixed
number of elements. With DQFEM.

Table 2 Comparison of convergence results of the first natural frequency between DQH-
FEM, DQFEM, and hp-FEM

Number of
Sampling
Points N

Number of
Mesh

Elements h

First Frequency (Hz),
Calculated with

DQHFEM

First Frequency (Hz),
Calculated with

DQFEM

First Frequency (Hz),
Calculated with

hp-FEM (p = p+1,
h = h+3) h-p

4 1 136.108412638979 136.108412638979 135.674253916772 1–4

5 4 122.630935036219 122.632020652930 122.239767207697 4–5

6 7 122.630797035810 122.631723912041 122.239626983926 7–6

7 10 122.630796028383 122.630935036182 122.239626978018 10–7

8 13 122.630795010945 122.630807356777 122.239626986316 13–8

9 16 122.630794801053 122.630800401490 122.239626967131 16–9

10 19 122.630794790357 122.630794789885 122.239626995141 19–10

11 22 122.630794780622 122.630794787307 122.239626913630 22–11

12 25 122.630794779322 122.630794785638 122.239627031743 25–12

13 28 122.630794742756 122.630794767887 122.239626958780 28–13

14 31 122.630794737688 122.630794762705 122.239626309820 31–14

15 34 122.630794717245 122.630794701809 122.239626718141 34–15

16 37 122.630794690141 122.630788737133 122.239626758437 37–16

17 40 122.630794140855 122.630756419200 122.239625309707 40–17

18 43 122.630793689304 122.630721166728 122.239626470715 43–18

19 46 122.630793062697 122.630230141610 122.239622160122 46–19

20 49 122.630792789800 122.626336236740 122.239619867368 49–20



330 S. Ahmed et al.

 

Figure 7 Influence of four cases of boundary conditions on the dynamic behaviour of the
rotating shaft (DQFEM).

 
Figure 8 Influence of four cases of boundary conditions on the dynamic behaviour of the
rotating shaft (DQHFEM).

of boundary conditions (Simply Supported – Simply Supported; Clamped –
Clamped; Clamped – Clamped; Clamped – Free). Knowing that

• Simply supported: displacement at the node is zero.
• Clamped: displacement at node zero plus rotation at node zero.
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Figure 9 On-board symmetrical rotor.

Table 3 Characteristics of the symmetrical rotor
Density of disc material ρd = 7800 kg/m3

Outer radius of the disc rd = 0.15 m

Disc thickness ed = 0.03 m

Disc position yd = 0.4/3 m

Density of shaft material ρa = 7800 kg/m3

Shaft radius ra = 0.01 m

Shaft length la = 0.4 m

Shaft YOUNG module Ea = 2 ∗ 1011 N/m2

8.4 Interpretations of Campbell Diagrams

A calculation programme for determining the Eigen-modes of the on-board
rotor has been developed and to validate this programme we have the rotor
shown in Figure 9.

The Table 3 shows the characteristics of the symmetrical rotor used in the
literature.

In this part we have a rotor with a symmetrical shaft and a disc, in the h
and hp versions of the finite element method, the disc is modelled as a point
mass see (Saimi, 2016).

In the DQHFEM and DQFEM methods the disc is modelled as if it is part
of the shaft, i.e. a shaft section.

The symmetrical rotor is modelled by three identical Euler Bernoulli
beam finite elements. The bearings are assumed to be rigid, generating a
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Table 4 Elements of discretization
First Element (Shaft) Second Element (Disc) Third Element (Shaft)

Outside Radius (m) 0.01 0.15 0.01

Inside radius (m) 0 0 0

Length (m)
0.4

3
− 0.03

2
0.03 2

0.4

3
− 0.03

2

 
Figure 10 Campbell’s diagram calculated with DQFEM.

rotor simply supported at both ends. Thus the corresponding displacements
are cancelled out.

Taking into account the rotor parameters and geometry, the following
Table 5 shows the rotor elements in Figure 9:

The results presented in Figures 10–11 and detailed in Table 5 show that
the gaps between the methods are small and do not exceed 10%.

8.5 Influence of the Angular Velocities of the Moving Support on
Critical Speeds

In this section, the angular velocities of the mobile support are varied along
the axis Ox, Oy, and Oz , by deducting their influence on the system’s own
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Figure 11 Campbell’s diagram calculated with DQHFEM.

Table 5 Natural frequencies as a function of rotor and stationary support speed (B and F
represent backward and forward precision modes respectively)

Support fixe
Ω rpm fr Hz DQFEM DQHFEM hp-FEM (Saimi, 2016) h-FEM (Saimi, 2016)

0 f1
B 49.96 49.99 45.57 45.61

f1
F 49.96 49.99 45.57 45.61

f2
B 145.78 145.78 125.95 125.96

f2
F 145.78 145.78 125.95 125.96

1500 f1
B 46.92 46.93 42.90 42.93

f1
F 52.58 52.58 47.68 47.72

f2
B 126.80 126.80 106.79 106.79

f2
F 169.76 169.76 150.82 150.83

3000 f1
B 43.46 43.47 39.70 39.72

f1
F 54.70 54.70 49.31 49.35

f2
B 112.53 112.52 92.98 92.99

f2
F 198.50 198.50 180.97 181

4500 f1
B 39.80 39.81 36.16 36.18

f1
F 56.41 56.42 50.57 50.62

f2
B 102.20 102.19 83.56 83.57

f2
F 231.37 231.37 215.53 215.57

6000 f1
B 36.17 36.18 32.60 32.61

f1
F 57.81 57.81 51.55 51.61

f2
B 94.87 94.87 77.31 77.32

f2
F 267.58 267.58 253.46 253.53
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Table 6 Critical speed of the intersection of the first backward mode with the line f = Ω/60
Backward Critical Speed

Constant Rotation of the Support Present hp-FEM (Saimi, 2016)

ωx = 25 Hz 2653 rpm 2457 rpm

ωy = 25 Hz 2802 rpm 2810 rpm

 
Figure 12 Evolution of the critical speed of the intersection of the first backward and
Forward modes with the line f = Ω/60 depending on the constant rotation of the support
along the axis Ox (ωx) DQHFEM.

critical speeds. Critical velocities are determined from the intersection of the
Campbell diagram modes with the line fréquances (Hz) = Ω(Rpm)/60.

According to Figures 12–14, it can be seen that the constant rotation of the
rigid support on the axes Ox, Oy, and Oz , influences the dynamic behaviour
of the rotor. The angular velocities of the support along the axes Ox (ωx),
and Oz (ωz), do not have an influence on the gyroscopic effect, which is the
opposite in case of the angular velocity of the support along the axis Oy (ωy)
which explains the decrease in critical forward mode speeds and the increase
in critical reverse mode speeds (Figure 11).

The angular velocities of the mobile support cause excitations that can
make the rotor movement sensitive, resulting in the decrease of critical
speeds.

The results in Figures 12–14 are obtained with the DQHFEM method
since they are close to those of the DQFEM method.
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Figure 13 Evolution of the critical speed of the intersection of the first backward and
Forward modes with the line f = Ω/60 depending on the constant rotation of the support
along the axis Oy (ωy) DQHFEM.

 

Figure 14 Evolution of the critical speed of the intersection of the first backward and
Forward modes with the line f = Ω/60 depending on the constant rotation of the support
along the axis Oz (ωz) DQHFEM.

9 Conclusion

The analysis of the vibrational behaviour of embedded rotor shafts is treated
in this paper, using methods which are the differential quadrature finite
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element method (DQFEM) and the differential quadrature hierarchical finite
element method (DQHFEM). The use of these methods is new in the context
of rotor dynamics.

The calculation of the kinetic energy and stiffness energy of the on-board
rotor shaft, the application of the Lagrange method, and the introduction
of the characteristics of the differential quadrature finite element method
(DQFEM) and the differential quadrature hierarchical finite element method
(DQHFEM), gave us the equations of motion of the system. A programme
for calculating natural frequencies and critical speeds was developed using
the MATLAB programming language.

The results of an example tree in the literature were well validated with
the DQFEM and DQHFEM methods, and the difference between the meth-
ods is small, which explains the efficiency of the methods. Convergence is
obtained for a low sampling and item number compared to h-FEM, hp-FEM

Several examples were treated and this allowed us to determine the
influence of different geometrical parameters of the on-board rotor as well
as the influence of the movement of the support on the rotor’s behaviour.

This work allowed us to draw the following conclusions:

• The matrices of the DQFEM and DQHFEM methods are somewhat
similar to those of the hp version of the finite element method.

• The calculation times using the DQFEM and DQHFEM methods are
significantly faster compared to the hp version of the finite element
method.

• The convergence of the results can be controlled by increasing the
number of samples and the number of elements.

• The difference in results between the two methods (DQFEM and
DQHFEM) is very small.

• The Legendre polynomial is used in this work, because of its very close
approximation to deformed trees.

• The DQFEM and DQHFEM methods have the advantages of a simple
mathematical principle, a fast convergence speed, high computational
accuracy, low computation quantity and lower memory requirements,
etc. According to the results obtained in this work.

• The movement of the rotor of the embedded support amplifies the
gyroscopic effect caused by the coupling of the movement perpendicular
to the axis of rotation, and creates an asymmetry in the movement of the
rotor.

• In the case of disturbances in the vicinity of the first critical speed, the
influence of the rotation of the support around the axes Ox (ωx), Oz
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(ωz), and Oy (ωy) is very important and should not be neglected. As the
angular speeds of the support increase, the critical speeds decrease.

• Following the results obtained in this work, it was concluded that the
rotation of the support along an axis parallel to the axis of rotation of the
rotor has a great influence on the rigidity of the system and in particular
on the gyroscopic effect.

• The geometrical parameters also have an influence on the vibration
behaviour of the on-board rotor. It can be seen that it causes frequency
variations and therefore critical speed variations depending on the drive
positions.

Appendix

a. η1(C,A(1)), η2(C,A(1)), and η3(C,A(1))

η1(C,A(1)) = (u̇
T
Cu̇+ ẇ

T
Cẇ + 2((ẋ0 + z0ω

y − (y0 + y)ωz))

(u̇
T
C + wTCωy) + 2((ż0 + (y0 + y)ωx − x0ω

y))

(ẇ
T
C − uTCωy)− 2((ẏ0 − z0ω

x + x0ω
z))

(wTCωx − uTCωz) + 2(u̇
T
Cw − ẇT

Cu)ωy

+ wTCwωx2 + (uTCu+ wTCw)ωy2

+ uTCuωz2 − 2uTCwωxωz) (89)

η2(C,A(1)) = (u̇
T
A(1)TCA(1)u̇+ ẇ

T
A(1)TCA(1)ẇ

+ 2CA(1)ẇωx + 2(u̇
T
A(1)TCA(1)w

− ẇT
A(1)TCA(1)u)ωy − 2CA(1)u̇ωz

− (uTA(1)T CA(1)u− 1)ωx2

+ (uTA(1)TCA(1)u+ wTA(1)T CA(1)w)ωy2

− (wTA(1)TCA(1)w − 1)ωz2 − 2uTA(1)TCA(1)wωxωz

− 2(CA(1)uωx + CA(1)wωz)ωy) (90)



338 S. Ahmed et al.

η3(C,A(1)) = ((Ω + ωy)2 + uTA(1)TCA(1)uωx2

+ wTA(1)TCA(1)wωz2 + (Ω + ωy)

(−2u̇
T
A(1)TCA(1)w

− (uTA(1)TCA(1)u+ wTA(1)TCA(1)w)ωy

+ 2(CA(1)uωx + CA(1)wωz))

+ 2uTA(1)TCA(1)wωxωz) (91)

b. Transformation matrix Q (DQFEM)

Figure 15 Sampling points of a beam element.

Figure 15 Represents sampling points of order N of a beam element. In
order to construct an element which satisfies the requirements for continuity
between elements, the sampling points must be in the following form:

Figure 16 Sampling points of a beam element.

The transformation between Figures 15 and 16 is made using the DQ rule,

u =



u1

u′1 = A
(1)
1,1 u1 +A

(1)
1,2 u2 +A

(1)
1,3 u3

+ · · ·+A
(1)
1,N−1uN−1 +A

(1)
1,N uN

u3
...

uN−2

uN

u′N = A
(1)
N,1 u1 +A

(1)
N,2 u2 +A

(1)
N,3 u3

+ · · ·+A
(1)
N,N−1uN−1 +A

(1)
N,N uN


(92)
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We can write this vector as a product of a matrix by a vector

u =



1 0 0 · · · 0 0

A
(1)
1,1 A

(1)
1,2 A

(1)
1,3 · · · A

(1)
1,N−1 A

(1)
1,N

0 0 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

A
(1)
N,1 A

(1)
N,2 A

(1)
N,3 · · · A

(1)
N,N−1 A

(1)
N,N





u1

u′1
u3
...

uN−2

uN
u′N


(93)

Acknowledgements

We acknowledge with grateful thanks the support by the laboratory of
mechanical and material systems engineering, as well as the General Direc-
torate of Scientific Research and Technological Development of the Ministry
of Higher Education of Algeria.

We also want to thank the effort made by European Journal of Computa-
tional Mechanics team, and the reviewers.

References

Babuska and B.Q, G., 1992. The h, p and h-p version of the finite element
method: basis theory and applications. Advances in Engineering Software,
15(3–4), pp. 159–174.

Babuska, I., B A, S. and I N, K., 1981. The p-Version of the Finite Element
Method. SIAM Journal on Numerical Analysis, 18(3), pp. 515–545.

Babuška, I. and Suri, M., 1990. The p- and h-p versions of the finite ele-
ment method, an overview. Computer Methods in Applied Mechanics and
Engineering, 80(1–3), pp. 5–26.

Bardell, N. S., 1996. An engineering application of the hp version of the
finite element method to the static analysis of a Euler-Bernoulli beam.
Computers & structures, 59(2), pp. 195–211.

Belhadj, A., Boukhalfa, A. and Belalia, S. A., 2020. Free vibration investiga-
tion of single walled carbon nanotubes with rotary inertia. Nanomaterials
Science & Engineering, 2(3), pp. 103–112.

Bellman, R. and Casti, J., 1971. Differential quadrature and long term inte-
gration. Journal of Mathematical Analysis and Applications, Volume 34,
pp. 235–238.



340 S. Ahmed et al.

Bert, C. and M, M., 1996. The differential quadrature method for irregu-
lar domains and application to plate vibration. International Journal of
Mechanical Sciences, 38(6), pp. 589–606.

Bert, C. W. J. S. K. a. S. A. G., 1988. Two new approximate methods for
analyzing free vibration of structural components. AIAA Journal, Volume
26, pp. 612–618.

Bert, C. W. and Malik, M., 1996. Differential quadrature method in compu-
tational mechanics: A review. Applied Mechanics Reviews, Volume 49,
pp. 1–28.

Beslin, O. and Nicolas, J., 1997. A hierarchical functions set for predicting
very high order plate bending modes with any boundary conditions.
Journal of Sound and Vibration, 202(5), pp. 633–655.

Bokaian, A., 1988. Natural frequencies of beams under compressive axial
load. Journal of Sound and Vibration, Volume 126, pp. 49–65.

Boukhalfa, A. and Hadjoui, A., 2014. Dynamic analysis of a spinning func-
tionally graded material shaft by the p–version of the finite element
method. Latin American Journal of Solids and Structures.

Chen and New, C., 1999. A differential quadrature finite element method.
Applied mechanics in the Americas. Proceedings of the 6th Pan-American
Congress of Applied Mechanics and 8th International Conference on
Dynamic Problems in Mechanics PACAM VI, Rio de Janeiro, Brazil; US,
pp. 305–308.

Choi, I. S., Pierre, C. and Ulsoy, A. G., 1992. Consistent modeling of rotat-
ing Timoshenko shaft subject to axial loads. Journal of Vibration and
Acoustics, Volume 114, pp. 249–259.

Clough, R. W., 1960. The finite element method in plane stress analysis
Conference on Electronic Computation, Pittsburgh, PA. Proceedings of
the Second American Society of Civil Engineers, pp. 345–378.

Cuiyun, L. et al., 2016. A differential quadrature hierarchical finite element
method and its applications to vibration and bending of Mindlin plates
with curvilinear domains. International Journal for Numerical Methods
in Engineering, 109(2), pp. 174–197.

Dakel, M., 2013. Steady-state dynamic behaviour of an on-board rotor under
combined base motions. Journal of Vibration and Control, Volume 20,
pp. 2254–2287.

Duchemin, M., Berlioz, A. and Ferraris, G., 2006. Dynamic behavior and sta-
bility of a rotor under base excitation. Journal of Vibration and Acoustics,
Volume 128, pp. 576–585.



DQFEM and the DQHFEM for the Dynamics Analysis of on Board Shaft 341

Eshlenman, R. L. and Eubanks, R. A., 1967. On the critical speeds of a con-
tinuous shaft-disk system. Journal of Engineering for Industry, Volume
80, pp. 645–652.

Fellah, A., Hadjoui, A. and Bekhaled, B. S. A., 2019. Study of the Effect of an
Open Transverse Crack on the Vibratory Behavior of Rotors Using the hp
Version of the Finite Element Method. Journal of Solid Mechanics, 11(1),
pp. 181–200.

Green, R. B., 1948. Gyroscopic effects on the critical speeds of flexible
rotors,. Transaction of the American society of Mechanic Engineers.,
Volume 70, pp. 309–376.

Hassan, A., Abdelhamid, H. and Saimi, A., 2020. Numerical analysis on the
dynamics behavior of FGM rotor in thermal environment using hp finite
element method. Mechanics Based Design of Structures and Machines,
pp. 1–24.

Heuveline, V. and Rannacher, R., 2003. Duality-Based Adaptivity in the
Hp-Finite Element Method. Journal of Numerical Mathematics, 11(2),
pp. 95–113.

Malik, M. and Bert, C., 2000. Vibration analysis of plates with curvilinear
quadrilateral planforms by DQM using blending functions. Journal of
Sound and Vibration, 230(4), pp. 949–954.

Nelson, H. D. and McVaugh, J. M., 1976. The dynamics of rotor-bearing
systems using finite elements. ASME Journal of Engineering for Industry,
Volume 98, pp. 593–600.

O. C. Zienkiewicz, M. L., 1977. The finite element method, 3rd edn. Wiley
Online Library, pp. 1054–1054.

Oden, J. T. a. D. L., 1991. h-p adaptive finite element methods in compu-
tational fluid dynamics. Computer Methods in Applied Mechanics and
Engineering, Volume 89, pp. 11–40.

Peano, A., 1976. Hierarchies of conforming finite elements for plane elasticity
and plate bending.. Computers & Mathematics with Applications, Volume
2, pp. 211–224.

Petyt, M., 2010. Introduction to Finite Element Vibration Analysis (2nd edn).
New York: Cambridge University Press.

Rao, S. S., 1983. Rotor dynamics. New York: NY: Wiley.
René, J. G., 1988. Vibrations des structures : interactions avec les fluides,

sources d’excitation aléatoires. Paris: Eyrolles.
Ri, K. et al., 2020. Nonlinear forced vibration analysis of composite beam

combined with DQFEM and IHB. AIP Advances, 10(8).



342 S. Ahmed et al.

Saimi, A. H. A., 2016. An engineering application of the h-p version
of the finite elements method to the dynamics analysis of a symmet-
rical on-board rotor. European Journal of Computational Mechanics,
pp. 388–416.

Sajal, S. S. et al., 2018. Dynamic analysis of microbeams based on modified
strain gradient theory using differential quadrature method. European
Journal of Computational Mechanics , 27(3), pp. 187–203.

Shu, C., 2000. Differential Quadrature and its Application in Engineering.
Springer-Verlag éd. London: s.n.

Striz, A. G., Chen, W. L. and Bert, C. W., 1995. High accuracy plane stress
and plate elements in the quadrature element method. Proceedings of the
36th AIAA/ASME/ASCE/AHS/ASC, pp. 957–965.

Striz, A. G., Chen, W. L. and Bert, C. W., 1997. Free vibration of plates
by the high accuracy quadrature element method. Journal of Sound and
Vibration, Volume 202, pp. 689–702.

Suri, M., 1997. A reduced constraint h?? finite element method for shell
problems. Mathematics of computation, 66(217), pp. 15–29.

Szabo, B., 1979. Some recent developments in finite element analysis.
Computers & Mathematics with Applications , 5(2), pp. 99–115.

Szabo, B. and Prob, 1985. Theoretical manual release 1. St Louis, Missouri:
Noetic Technologies Corporation.

Weiyan, Z., Feng, G. and Yongsheng, R., 2019. Generalized Differential
Quadrature Method for Free Vibration Analysis of a Rotating Com-
posite Thin-Walled Shaft. Mathematical Problems in Engineering, Vol-
ume 2019.

Xing, Y. F. and Liu, B., 2009. High-accuracy differential quadrature finite
element method and its application to free vibrations of thin plate
with curvilinear domain. International Journal for Numirical methods in
engineering. Vol 80. issue 13. pp. 1718–1742.

Yufeng, X., Bo, L. and Guang, L., 2010. A Differential Quadrature Finite
Element Method. International Journal of Applied Mechanics, 2(1),
pp. 207–227.

Zhong, H. and Yu, T., 2009. A weak form quadrature element method
for plane elasticity problems. Applied Mathematical Modelling, 33(10),
pp. 3801–3814.



DQFEM and the DQHFEM for the Dynamics Analysis of on Board Shaft 343

Zienkiewicz, O., De, S., Gago, J. and Kelly, D., 1983. The hierarchical
concept in finite element analysis. Computers & Structures, 16(1–4),
pp. 53–65.

Zienkiewicz, O., Irons, B., Scott, F. and Campbell, J., 1970. Three-
dimensional stress analysis. Proceedings of IUTAM Symposium on High
Speed Computing of Elastic Structures, Liege, pp. 413–431.

Biographies

Saimi Ahmed obtained his Ph.D in Mechanics of Materials and Struc-
tures from the University of Tlemcen, Algeria, in 2017. He is currently a
Senior Lecturer at the National High School of Hydraulics Blida, Algeria.
A researcher member of Mechanical Systems and Structural Engineering
Laboratory, IS2M/UABT. His research interests are: Finite element methods,
Structural vibration, Structural dynamics, Dynamics of rotors, Dynamics
of rotating machines, computational mechanics, FG materials, Composite
materials.

Hadjoui Abdelhamid obtained his Ph.D in mechanical engineering from the
University of Tlemcen, Algeria. He is currently a professor at the University
of Tlemcen, Algeria (UABT). Research Director in Mechanical Systems
and Structural Engineering Laboratory, IS2M/UABT. His research interests
are: Materials Engineering, Structural Engineering, Mechanical Engineering,



344 S. Ahmed et al.

Structural Analysis, Finite elements Modeling, Structural Dynamics, Simu-
lation, Dynamic Analysis, Modal Analysis, Structural Vibration, Vibration
Analysis.

 

Bensaid Ismail received his B.Sc, M.Sc and Ph.D degrees in Mechanical
Engineering from Abou Beckr Belkaid University Tlemcen, Algeria. He is
currently working in the level of the Mechanical engineering department at
the same University. Dr. Bensaid does research in Mechanical and struc-
tural Engineering, Materials, Composite, Maintenance, Nanostructures and
Dynamical Systems. He, as an author/co-author, has published more than 18
articles in various journals.

Fellah Ahmed obtained a Ph. D in rehabilitation and reliability of structures
and mechanical equipment from the University of Tlemcen, Algeria, in 2019.
He is currently a research associate in the laboratory of engineering of
mechanical systems and structures, IS2M/UABT. His research interests are:
Finite element methods, Structural vibration, Structural dynamics, Dynamics
of rotors, Dynamics of rotating machines, computational mechanics, FG
materials, Composite materials.


	Introduction
	Model of the Rotating Shaft
	Kinetic Energy of the Shaft
	The Strain Energy

	The Reformulated Differential Quadrature Rule
	Gauss-Lobatto Quadrature Rule
	The Differential Quadrature Finite Element Method
	The Differential Quadrature Hierarchical Finite Element Method
	Equation of Elementary Motion
	Results and Discussion
	Validation
	Convergence Study of the Results
	Influence of Boundary Conditions
	Interpretations of Campbell Diagrams
	Influence of the Angular Velocities of the Moving Support on Critical Speeds

	Conclusion

