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Abstract

The delamination is one of the major modes of failure occurring in the
laminated composite due to insufficient bonding between the layers. In this
paper, the natural frequencies of delaminated S-glass and E-glass epoxy
cantilever composite plates are presented by employing the finite element
method (FEM) approach. The rotary inertia and transverse shear deformation
are considered in the present study. The effect of parameters such as the
location of delamination along the length, across the thickness, the percentage
of delamination, and ply-orientation angle on first three natural frequencies of
the cantilever plates are presented for S-glass and E-glass epoxy composites.
The standard eigenvalue problem is solved to obtain the natural frequencies
and corresponding mode shapes. First three mode shape of S-Glass and E-
Glass epoxy laminated composites are portrayed corresponding to different
ply angle of lamina.
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1 Introduction

Today scientists and researchers are working on designing and manufacturing
of lightweight and stiffer materials such as laminated composites. Laminated
composite plates have an extensive technological application in many areas
such as aircraft, marine, automobiles and other applications where weight
sensitiveness is of prime importance because of its outrageous specific stiff-
ness and favourable specific strength. Although composites are very useful,
where lightweight and flexible structures are required but they failed at the
higher temperature and cyclic load due to delamination. The strength and
stiffness of the structures are mostly checked by delamination in case of
laminated composites leading to the structural instability. The delamination
of layers occurs due to insufficient bonding and residual stresses between the
layers. The delamination may occur due to manufacturing defects, externally
applied repeated impact load, and irregularities in surfaces. The natural
frequencies are decreased by reducing the stiffness (greatly affected by the
delamination) of the plate. Therefore, it is required to analyze the dynamic
characteristics of composite plates under delamination to ensure operational
safety.

In past, many researchers conducted research on natural frequency anal-
ysis of delaminated composite plates such as [1] presented review on delami-
nated plates and beam and examined the elements influencing the vibration of
the delaminated composites. Nanda and Sahu applied different shell theories
to determine the vibration responses of composite shells in the absence of
damping with or without delamination by using the FE method [2]. Campan-
elli and Engblom formulated a finite element-based model to contemplate the
influence of delamination on the dynamic behaviours of composite plates [3].
A 3D FEM based methodology is developed by F. Fu [4] to investigate the
behaviour of tall building subjected to fire. Hu et al. [5] employed higher-
order plate theory to analyse vibrational attributes of composite plates with
delamination. FEM based algorithm is developed by Polatov et al. [6] for
getting the solution for elastoplastic deformation of composites. Krawczuk
and Ostachowicz [7] developed a model to evaluate the free vibration of a
cantilever beam of composite material with a crack in the transverse direction.
Kaya et al. [8] evaluated the impact of the surrounding condition for first
three natural frequencies of carbon fibre reinforced composites by using
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experimental method and results are further validated with ANSYS results.
Dey et al. [9] carried out a stochastic investigation of natural frequencies
of cantilever composite plate by incorporating an artificial neural network
(ANN) and portrayed the influence of stochasticity in properties of the
material. Byrd and Birman [10] explored the impact of matrix cracks on
mechanical behaviour and frequencies due to vibration for cross-ply com-
posite beams. Ramkumar et al. [11] applied eigenvalue boundary problems to
investigate the vital characteristics of composite beams due to delamination.
Wang et al. [12] presented a general solution for a beam having a split and
non-split region. Kalita et al. [13] determined the natural frequency response
of laminated plates by employing FEM and determined the influence of ply
orientation angle, the ratio of length to thickness and number of plies. Ercopur
and Kiral [14] used ANSYS for evaluating the natural frequency of composite
plates due to delamination under different boundary conditions. Saravanos
and Hopkins [15] employed an analytical approach in light of classical
laminated plate theory to explore the impact of delamination on vibration
characteristics. Kisa [16] utilized FEM and component modal synthesis tech-
niques for free vibration investigation of a cantilever beam of composite with
several cracks considering the effect of damping and delamination. Perel [17]
employed FEM to analyse the dynamic characteristics of the composite beam.
Tornabene and Viola [18] investigated in-plane fundamental natural frequen-
cies for thin as well as thick non-uniform roundabout curves in unharmed
and harmed setups with different end conditions. Qatu and Leissa [19]
performed extensive work on pre-twisted composite plates wherein the Ritz
method and shell theory is utilized to define the vibrational characteristics of
stationary plates. Some researchers applied the deterministic and stochastic
approach for the free vibration behaviour analysis of composite and FGM
structures [20–23].

The novelty of the present paper includes determination of effect of
delamination on the first three natural frequencies of the S-glass and E-glass
cantilever composite plate and compared the results of these two composites.
Also, the effects of the number of delamination, location of delamination,
percentage of delamination as well as plate geometry on the first three natural
frequencies are determined. A comparative study of the natural frequencies
of two different types of composites such as E-glass epoxy and S-glass epoxy
has carried out. A finite element approach has applied for the deterministic
natural frequency analysis, in which plate is discretised into 64 elements. The
first three mode shapes plate for both E-glass and S-glass composite are also
determined by using the ANSYS software.
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Figure 1 Laminated composite cantilever plate through multiple delaminations.

2 Mathematical Formulation

The dynamic equilibrium equation in the absence of external load and
damping [24] can be written as

[M ]{δ̈}+ [K]{δ} = 0 (1)

where, [M ] implies global mass matrix, [K] implies stiffness matrix and {δ}
is a displacement vector. The stresses at any point can be expressed as [25]

σxx
σyy
τxy
τxz
τyz

 =


q11 q12 q16 0 0
q12 q22 q26 0 0
q16 q26 q66 0 0
0 0 0 q44 q45
0 0 0 q45 q55



εxx
εyy
γ′xy
γ′xz
γ′yz

 (2)

where, [qij ] is the elastic constant matrix. For laminated composite, elasticity
matrix is given by

[D′′] =

Eclm Eblm 0
Eblm Dlm 0

0 0 Slm

 (3)

where,

[Eclm, E
b
lm, Dlm

] =
n∑
k=1

∫ zk

zk−1

[q
lm

][1, z, z2]dz l,m = 1, 2 and 6 (4)

U1 =
1

2

∫
V OL
{δ̄e}T [H][D′′][H]{δ̄e}dφ (5)
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i.e., U1 =
1

2
{δ̄e}T [K ′e]{δ̄e} (6)

[Slm] =
∑∫ zk

zk−1

β[qilm ]kdz l,m = 4, 5 (7)

where {δe} represents nodal displacement vector of the element, [H] repre-
sents strain-displacement matrix, [D′′] is the elasticity matrix and β is the
shear correction factor assumed as 0.833.

2.1 Multipoint Constraints

The cross-sectional view of the delaminated composite crack tip of a plate is
depicted in Figure 2. The nodes of all the three plate elements are arranged
in order to form the common node A. Plate element 1 having thickness ‘h’
shows an un-delaminated area whereas there is the region of delamination at
the boundary of plate element 2 and 3 of thickness ‘h2’ and ‘h3’. The nodal
displacement (ui, vi, wi) of second and third element for crack tip can be
formulated as [26]

ui = ûi − (z − ẑi)θ◦xi
vi = v̂i − (z − ẑi)θ◦yi (8)

wi = ŵi (where, i = 2 and 3)

where, midplane displacements are represented as ûi, v̂i, ŵi and at mid-plane
the co-ordinate of i element in the z-direction is ẑi. The above-mentioned
equations hold good for element 1 as well and ẑ1 become equal to 0.

Figure 2 Delamination crack at the tip of plate elements.
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Consider θx, θy as rotation componets about x and y-axis. At common
node the transverse displacements and rotations can be expressed as

w1 = w2 = w3 = w

θx1 = θx2 = θx3 = θx (9)

θy1 = θy2 = θy3 = θy

All three elements have equal in-plane displacements at the crack tip and
represented as

û2 = û1 − ẑ2θx
v̂2 = v̂1 − ẑ2θy
û3 = û1 − ẑ3θx
v̂3 = v̂1 − ẑ3θy (10)

where û1 implies displacement at the mid-plane for first element. The relation
between rotation of elements and displacements at the delamination crack tip
is provided in Equations (9) and (10). These equations satisfy the compatibil-
ity equations of displacement and rotations and these equations are employed
for the finite element formulation in the present study. The strain between
second and third elements at mid-plane are expressed by Equation (11).

{ε◦}j = {ε◦}1 + ẑj{k} (11)

where {ε◦} represents the strain vector at mid-plane, while {k} is the curva-
ture vector. For elements 1, 2 and 3 curvature vector have same value at the
crack tip. This equation is the special case for element 1 when z’1 is equal
to zero. For the element, 2 and 3 the in-plane moment resultants {M} and
stress- resultants {N} expressed by,

{N}m = [Ec]m{ε◦}1 + (z̄j [E
c]m + [Eb]m){K} (12)

{M}m = [Eb]m{ε◦}1 + (z̄m[Eb]m + [D]m){k} (13)

Where the coefficients [Ec] implies extension, [Eb] implies bending-
extension coupling and [D] implies bending stiffness for the laminated plate.
The modified matrix of elasticity for the nth sub-laminate can be expressed
as

[D]n =

Eclm z◦nE
c
lm + Eblm 0

Eblm z◦nE
c
lm +Dlm 0

0 0 Slm

 (14)
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where,

[Eclm]n =

∫ t/2+zon

−t/2+zon
[q]dz (15)

[Eblm]n =

∫ t/2+zon

−t/2+zon
[q](z − z0n)dz =

∫ t/2+zon

−t/2+zon
[q]zdz − z0n[Eclm]n (16)

[Dlm]n =

∫ t/2+zon

−t/2+zon
[q](z − z0n)2dz

=

∫ t/2+zon

−t/2+zon
[q]z2dz − 2z0n

∫ t/2+zon

−t/2+zon
[q]zdz + (z0n)2[Eclm]n

where l,m = 1, 2 (17)

[Slm]n =

∫ t/2+zon

−t/2+zon
[q]dz where l,m = 4, 5 (18)

where, [q] is the transformed reduced stiffness as defined by Jones [19] while
z0n is the z co-ordinate of mid-plane of tth sublaminate. Thus the formulation
based on the multipoint constraint conditions leads to unsymmetric stiffness
matrix. The resultant moments and forces for the elements 1, 2, and 3 satisfy
the following conditions [25]:

{R} = {R}1 = {R}2 + {R}3 (19)

{S} = {S}1 = {S}2 + {S}3 + Z ′2{N}2 + Z ′3{N}3 (20)

{T} = {T}1 = {T}2 + {T}3 (21)

where {T} represents shear resultants in the transverse direction. An isopara-
metric element of a quadrilateral shape having eight nodes and five (three
translations and two rotations) degrees of freedom are utilized and shape
functions (Sf ) can be expressed as:

8∑
i=1

Sf = 1,
8∑
i=1

∂Sf
∂χ

= 0,
8∑
i=1

∂Sf
∂υ

= 0 (22)

Sf = (1 + χχi)(1 + υυi)(χχi + υυi − 1)/4

(for i = 1, 2, 3 and 4) (23)
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Figure 3 Finite element discretization of composite plate.

where, χ, υ represents the local natural coordinates of the element in which
χi = +1 for nodes 2, 3, 6, χi = −1 for nodes 1, 4, 8, υi = +1 for nodes 3,
4, 7, and υi = −1 for nodes 1, 2, 5 as shown in Figure 3. The accuracy of the
shape function is quantified by Equations (24) and (25)

Sf = (1− χ2)(1 + υυi)/2 (for i = 5, 6) (24)

Sf = (1− υ2)(1 + χχi)/2 (for i = 6, 8) (25)

For the eight-noded element at any point, the coordinates (x, y) can be
derived from

x =
8∑
i=1

Sfxi, y =
8∑
i=1

Sfyi (26)

The relationship between the nodal degree of freedom and displacement
at any point can be depicted as

u =

8∑
i=1

Sfui, v =

8∑
i=1

Sfvi, w =

8∑
i=1

Sfwi (27)

θx =

8∑
i=1

Sfθxi, θy =

8∑
i=1

Sfθyi (28)

[
Sf,x
Sf,y

]
= [J ]−1

[
Sf,ζ
Sf,η

]
(29)

where [J ] =

[
x, ζ y, ζ
x, η y, η

]
is the Jacobian matrix.
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3 Results and Discussion

In the current study, the effects of different input parameters on first three
natural frequencies (Fundamental natural frequency (FNF), Second natural
frequency (SNF), and Third natural frequency (TNF)) of composite cantilever
plate are determined. The input parameters considered are as follows:

(a) Delamination along the length of the plate
(b) Delamination across the thickness of the plate
(c) Percentage of delamination
(d) Effect of the ply orientation angle of the plate

Figure 4 illustrates the flowchart for free vibration analysis employing the
FE method in the composite plate. The plate is discretized into 64 number
of elements with each element having five degrees of freedom (DOF). The
finite element modeling is based on 8-layer square laminated glass-epoxy
composite plates having width = length = 1 m and thickness = 4 mm with
a configuration of bending stiff [0◦, 0◦,±30◦]S , torsional stiff [±45◦,±45◦]S
and quasi-isotropic [0◦,±45◦, 90◦]S until otherwise mentioned. The material
properties of S-glass and E-glass composites are given in Table 1(a).

Figure 4 Flowchart of free vibration analysis using FEM.
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Table 1(a) Material properties of glass-epoxy laminated plates
Material Properties S-Glass E-Glass

E1 43 GPa 38.6 GPa

E2 = E3 8.9 GPa 8.27 GPa

G12 = G13 4.5 GPa 4.14 GPa

G23 1.8 GPa 1.656 GPa

υ12 = υ13 0.27 0.26

υ21 = υ31 0.006 0.006

υ23 = υ32 0.40 0.26

ρ 2000 kg/m3 2600 kg/m3

Figure 5 The relative effect of delamination with fundamental natural frequency for can-
tilever composite plate.

In the present study, FEM is incorporated to develop computer code.
The evaluated results are compared and further validated with published
literature’s results [7] as shown in Figure 5. The present analysis depicts
a very similar pattern as compared with the published literature results.
It justifies the merit of developed codes and accuracy of the results. For
more reliability of our results, one more validation is carried out for E-glass
composite with material properties E1 = 72.7 GPa, E2 = E3 = 7.2 GPa,
G12 = G13 = 3.76 GPa, G23 = 2.71 GPa, ν12 = ν13 = 0.3, ν23 = 0.33
and ρ = 1566 kg/m3 as presented in Table 1(b).
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Table 1(b) Validation of present results with the previously published results
Mode Present FE Model Ercopur and Kiral [28]

1 81.02 81.52

2 109.41 109.92

3 199.06 199.57

Figure 6 Various location of delamination throughout the length of the plate.

3.1 Analysis of Delamination Along the Length

The effects of delamination position laterally on the first three natural fre-
quencies are discussed in this section. The presence of delamination causes
loss of stiffness in the plate resulting in a decrement of natural frequencies of
composite plates. The effects of delamination location on natural frequencies
of E-glass and S-glass epoxy composites are given in Table 2, where ‘a’ is the
distance of delamination from the clamped end. The location of delamination
along the length is presented in Figure 6. In this case, the percentage of
delamination is considered as 25% of the length of the plate. The funda-
mental natural frequency decreases as moving away from the fixed end and
lowest values are obtained near the free end for different configuration of
the laminated composite plates. However, the natural frequencies of the S-
Glass epoxy composites are greater than E-Glass epoxy composites, while
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Table 2 Effects of delamination location along the length of the plate on the first three natural
frequencies of E-glass and S-glass composite plates
Delamination Natural Frequencies (rad/s)
Along with Fiber E-Glass S-Glass
the Length Orientation FNF SNF TNF FNF SNF TNF

a = l/3 [0◦, 0◦,±30◦] 4.503 23.625 78.801 5.364 28.104 93.826

[±45◦,±45◦] 4.659 26.382 85.038 5.536 31.386 101.295

[0◦,±45◦,±90◦] 5.048 27.721 88.573 6.010 33.022 105.661

a = l/2 [0◦, 0◦,±30◦] 4.497 23.642 78.829 5.357 28.124 93.862

[±45◦,±45◦] 4.656 26.374 84.984 5.532 31.377 101.232

[0◦,±45◦,±90◦] 5.045 27.719 88.537 6.007 33.020 105.620

a = 2l/3 [0◦, 0◦,±30◦] 4.167 22.996 78.161 4.959 27.345 93.051

[±45◦,±45◦] 4.446 25.926 84.245 5.281 30.839 100.315

[0◦,±45◦,±90◦] 4.809 27.221 87.813 5.724 32.420 104.722

the natural frequencies for the quasi-isotropic laminate are higher than the
bending and torsion stiff laminates.

3.2 Analysis of Delamination Location Across the Thickness

In this section, the natural frequencies are evaluated for the square delami-
nation at a/l = 0.5 (where a is a distance of delamination from the clamped
end). The delamination location across the depth of plate is shown in Figure 7,
In which t is the thickness of the plate and t′ is the distance between the
delamination point and top surface of the plate. The natural frequencies of
E-glass and S-glass epoxy composite with different ply configurations are
shown in Table 3 considering 33.33% of delamination. The results illus-
trate that the fundamental frequency decreases when delamination location
changes from the top layer to mid-point.

3.3 Analysis of Percentage of Delamination

The effect of delamination size on the natural frequencies for both glass-
epoxy composites is presented in this section. The square delaminations are
considered at the mid-plane of the plate with different percentage of delami-
nation as shown in Figure 8. Table 4 illustrates the influence of percentage
(size) of delamination on the first three natural frequencies for different
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Figure 7 Delamination location across the thickness (t) of plate.

Table 3 Effects of delamination location across the thickness of the plate on the first three
natural frequencies of E-glass and S-glass composite plates

Natural Frequencies (rad/s)
Delamination Fiber E-Glass S-Glass
Location Orientation FNF SNF TNF FNF SNF TNF

t′/t = 0.125 [0◦, 0◦,±30◦] 4.501 23.641 78.936 5.3617 28.124 93.871

[±45◦,±45◦] 4.660 26.381 85.022 5.537 31.385 101.276

[0◦,±45◦,±90◦] 5.047 27.722 88.555 6.009 33.024 105.641

t′/t = 0.25 [0◦, 0◦,±30◦] 4.496 23.633 78.800 5.356 28.113 93.827

[±45◦,±45◦] 4.656 26.374 84.991 5.532 31.377 101.240

[0◦,±45◦,±90◦] 5.045 27.717 88.532 6.007 33.018 105.613

t′/t = 0.375 [0◦, 0◦,±30◦] 4.495 23.628 78.782 5.354 28.108 93.804

[±45◦,±45◦] 4.655 26.371 84.976 5.531 31.373 101.221

[0◦,±45◦,±90◦] 5.043 27.714 88.517 6.005 33.015 105.595

t′/t = 0.5 [0◦, 0◦,±30◦] 4.494 23.627 78.776 5.353 28.106 93.797

[±45◦,±45◦] 4.654 26.369 84.970 5.530 31.371 101.214

[0◦,±45◦,±90◦] 5.043 27.713 88.513 6.004 33.013 105.590

ply configurations. The results show that the percentage of delamination
is inversely proportional to all-natural frequencies irrespective of stacking
sequence and composite materials. The natural frequency is minimum when
delamination is 50%.
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Figure 8 Different sizes of delamination [(a) 16.67% (b) 25% (c) 33.33% (d) 50%] at the
mid-point of plate.

Table 4 Percentage of delamination at mid-point of the plate for different natural frequencies
Natural Frequencies (rad/s)

% of Fiber E-Glass S-Glass
Delamination Orientation FNF SNF TNF FNF SNF TNF

16.66% [0◦, 0◦,±30◦] 4.498 23.649 78.839 5.358 28.133 93.875

[±45◦,±45◦] 4.656 26.376 84.993 5.532 31.380 101.24

[0◦,±45◦,±90◦] 5.045 27.721 88.545 6.007 33.024 105.63

25% [0◦, 0◦,±30◦] 4.497 23.642 78.828 5.357 28.124 93.861

[±45◦,±45◦] 4.655 26.374 84.984 5.532 31.377 101.230

[0◦,±45◦,±90◦] 5.044 27.718 88.536 6.007 33.020 105.620

33.33% [0◦, 0◦,±30◦] 4.493 23.627 78.776 5.353 28.106 93.796

[±45◦,±45◦] 4.654 26.369 84.969 5.530 31.371 101.210

[0◦,±45◦,±90◦] 5.043 27.713 88.512 6.004 33.013 105.590

50% [0◦, 0◦,±30◦] 4.443 23.581 78.611 5.293 28.052 93.601

[±45◦,±45◦] 4.614 26.291 84.729 5.530 31.371 101.210

[0◦,±45◦,±90◦] 5.003 27.634 88.254 5.956 32.917 105.279
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Table 5 Effect of ply orientation angle on the first three natural frequencies of E-glass and
S-glass composite plate considering different numbers of delamination (Nd)

Ply Orientation angle 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

E-Glass Nd = 0 FNF 4.296 4.328 4.480 4.661 4.850 4.948 4.948

SNF 21.560 22.637 24.730 26.388 27.373 27.588 27.314

TNF 71.581 75.945 82.582 85.056 84.791 82.572 80.084

Nd = 1 FNF 4.280 4.315 4.470 4.652 4.843 4.941 4.941

SNF 21.528 22.609 24.720 26.369 27.347 27.562 27.288

TNF 71.456 75.833 82.496 84.969 84.675 82.431 79.926

Nd = 4 FNF 4.276 8.046 4.469 4.653 4.842 4.940 4.939

SNF 21.518 39.078 24.715 26.364 27.340 27.555 27.281

TNF 71.420 132.750 82.472 84.947 84.643 82.391 79.882

S-Glass Nd = 0 FNF 5.122 5.155 5.329 5.539 5.759 5.874 5.874

SNF 25.637 26.917 29.424 31.394 32.549 32.773 32.423

TNF 85.067 90.362 98.375 101.318 100.925 98.170 95.108

Nd = 1 FNF 5.103 5.138 5.316 5.529 5.751 5.866 5.865

SNF 25.592 26.881 29.403 31.371 32.517 32.741 32.390

TNF 84.914 90.225 98.270 101.214 100.785 98.001 94.919

Nd = 4 FNF 5.097 5.135 5.314 5.528 5.750 5.864 5.863

SNF 25.579 26.871 29.397 31.365 32.509 32.732 32.382

TNF 84.870 90.185 98.241 101.187 100.747 97.953 94.866

3.4 Analysis of Ply-orientation Angle

In this section, effects of ply-orientation angle for the first three natural fre-
quencies of laminated composite cantilever plates with zero, single and multi-
ple delamination are determined as shown in Table 5. The natural frequencies
are directly proportional to ply-orientation angle for un-delamination as
well as for single and multi-delamination. The results present the natural
frequencies of E-Glass and S-Glass epoxy laminated composite and found
the reduction in global stiffness of S-Glass is lower than the E-Glass with the
increase in ply-orientation angle. The mode shapes (obtained by ANSYS) for
first three natural frequencies for different ply angles of an un-delaminated E-
glass and S-glass epoxy composite cantilever plate are presented in Figures 9
and 10.
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Figure 9 Mode shapes of S-Glass for different ply angle with no delamination.
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Figure 10 Mode shapes of E-Glass for different ply angle with no delamination.
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4 Conclusions

In this paper, the effect of location, size of delamination and plate geometry
viz. ply-orientation angle are investigated for the natural frequencies of a can-
tilever composite plate. FEM is employed for free vibration analysis of single
and multiple delamination E-glass epoxy and S-glass epoxy composite plate.
The result illustrates that the delamination in plate decreases global stiffness
and performance of the composite structures. The natural frequencies are
observed to be varying with change in location and size of the delamination.
The natural frequencies are also observed to be varying with change in
ply-orientation angle and have the maximum value for 45◦ and 90◦ with
respect to no delamination case. A comparative study is carried out between
the natural frequencies of E-glass and S-glass epoxy composite considering
different types of laminates. In future, further study can be conducted by some
advanced method such as adaptive meshing on complex structures.
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