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Abstract

The present study aims to evaluate the nonlinear vibration of an annular
circular plate in contact with the fluid. Analysis of plate is based on first-
order Shear Deformation Theory (FSDT) by considering of rotational inertial
effects and transverse shear stresses. The governing equation of the oscilla-
tory behavior of the fluid is determined by solving the Laplace equation and
satisfying its boundary conditions. The nonlinear differential equations are
solved based on the differential quadrature method and obtaining nonlinear
natural frequency. In addition, the numerical results are presented for a
sample plate, and the effect of some parameters such as aspect ratio, boundary
conditions, fluid density, and fluid height are investigated. Finally, the results
are compared with those of similar studies in the literature.
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1 Introduction

In recent decades, some researchers have focused on studying structure
behavior in contact with the fluid. Hydroelastic characteristics of plates in
contact with fluid are important in various engineering applications such
as micro-pumps, aerial structures, solar panels, marine structures, nuclear
reactors and the like. Fluid-coupled vibrations causes failure and fatigue
in the structure in some cases. Thus, controlling and even modifying this
behavior is very important. A large body of research has been conducted on
the vibration of the plate in contact with the fluid.

Kwak and Kim [1] investigated the vibration of a circular plate in contact
with the ideal fluid in the axi-symmetrically state. The non-dimensional
added virtual mass incremental factor for circular plates with simply sup-
ported, clamped and free edges determined by employing the integral trans-
formation technique in conjunction with the dual integral equation method.
Their study shown that the presence of fluid increases the inertia of the
plate and a significant decrease occurs with dry state. Endo [2] studied
the vibrational behavior of very large floating structures (VLFS) under the
influence of moving load and waves by using the finite element method and
indicated that waves increase the dynamic response of VLFS, the effect of
which should be considered in designing these structures. Kozlovsky [3]
examined the vibration of the plate in contact with the viscous fluid and
indicated that the natural frequency of the plate decreases through contacting
with the fluid. In another study. Askari et al. [4] reported the vibration of a
circular plate immersed in finite fluid and used the semi-analytical method to
solve the plate equations in simple edge support and free edge. Tariverdilo
et al. [5] evaluated the free vibration of a circular plate in contact with a
finite and incompressible fluid. They applied the Bessel-Fourier series and
variation method to extract the natural frequencies of the plate and fluid, both
of which yielded almost similar results. Finally, the effect of fluid depth on
the added mass and natural frequencies of the plate in contact with the fluid
was considered.

In another study, Allahverdizadeh et al. [6] developed a semi-analytical
approach for nonlinear free and forced axisymmetric vibration of a thin circu-
lar functionally graded plate and reported that the free vibration frequencies
are dependent on vibration amplitudes. In addition, the volume fraction index
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has a significant influence on the nonlinear response specifications of the
plate. Jeong [7] suggested an analytical method based on the finite Fourier-
Bessel expansion and Rayleigh-Ritz methods and indicated that in-phase and
out-of-phase two transverse vibration modes are alternately observed in the
fluid-coupled system when the number of nodal circles increases for the
fixed nodal diameter. Jeong and Kim [8] developed an analytical method
to estimate the natural frequencies of a circular plate coupled with a com-
pressible fluid by Rayleigh–Ritz and finite Fourier–Bessel series expansion
methods. The results showed that the normalized natural frequencies decrease
drastically when the offcenter distance approaches unity. In addition, Amabili
studied [9] the free vibrations of circular and annular plates in contact with
a finite fluid domain on one side, where the plates were placed in an annular
(or circular) aperture of an infinite rigid wall and the fluid was assumed to be
incompressible. Based on the results, natural frequencies decrease with the
fluid depth when the fluid domain is limited by a free surface.

Shafiee et al. [10] developed free vibrations of a functionally graded elas-
tic plate resting on Winkler elastic foundation in contact with a quiescent fluid
and indicated that the natural frequencies of the fluid coupled system increase
by increasing the material parameter. Further, the natural frequency of the
plate increased when the elastic foundation stiffness increased. Canales and
Mantari [11] considered an analytical solution for the free vibration analysis
of thick rectangular composite plates in contact with a bounded fluid. They
evaluated the classical boundary conditions using suitable functions in the
Ritz series. Finally, the formulation analyzed thick plates with high accuracy,
as observed from their comparison with a 3D finite element solution.

In another study, Bo [12] studied the vertical vibration of an elastic
circular plate on fluid-saturated porous half space by a new analytical method.
Also, the governing equations were developed by using the Hankel transform
Techniques. In addition, Khorshidi et al. [13] focused on the free vibration
response of a thin rectangular plate in contact with fluid by applying acoustic
and modal tests. They considered the plate as one of the walls of a cubic tank
containing fluid. They used a modal test to obtain plate natural frequencies
and studied the effect of different parameters such as tank dimensions on the
vibrational behavior of the plate in contact with the fluid. Soni et al. [14]
proposed an analytical model for vibration analysis of partially cracked rect-
angular plates coupled with fluid. They modified the governing equations of
plate based on the classical plate theory to consider the effect of linear crack.
The effect of the fluid environment, which is characterized by inertia on the
governing equations, was obtained based on the potential function of velocity
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and Bernoulli’s equation. Using multiple scales method, they examined the
frequency response and peak amplitude of the crack structure. Soni et al. [15]
proposed stability and dynamic analysis of partially cracked thin orthotropic
microplates under a thermal environment. The crack was modeled by using
appropriate crack compliance coefficients based on the simplified line spring
model. They solved the cracking plate equation analytically to obtain the
frequency and central deflection of plate.

By considering the above-mentioned studies, the nonlinear vibration of an
annular circular plate in contact with a fluid has been less considered. Thus,
the nonlinear free vibrations of an annular circular plate in contact with a
fluid are analyzed using the first-order shear deformation theory. In addition,
the effect of fluid presence on nonlinear natural frequency is evaluated.
The equations of motion are obtained by the Hamilton principle and the
dynamic pressure exerted by the fluid on the plate is obtained by solving the
Laplace equation and applying boundary conditions in terms of the transverse
displacement of the plate. In addition, the nonlinear differential equations are
solved based on the DQM, and accordingly, the nonlinear natural frequency
is determined. Further, the effect of parameters such as the dimensional ratio,
boundary conditions, fluid density, and fluid height are investigated. Finally,
the obtained results without considering the fluid are validated by comparing
with those of the previous studies, and good convergence is observed.

2 Formulation

Consider an annular circular plate with the inner radius a, the outer radius b,
and thickness h as illustrated in Figure 1.

The annular circular plate is considered to be in contact with fluid in a
rigid cylindrical vessel at the z = −h/2, where d and H refer to radius and
depth of the vessel, respectively. In addition, a1 is considered as an internal
fluid boundary.

Based on the first-order shear deformation plate theory, the displacement
components are given as follows [16]:

ur(r, θ, z) = u0 + zφr(r, θ)

uθ(r, θ, z) = v0 + zφθ(r, θ)

uz(r, θ, z) = w(r, θ) (1)

Where z indicates the thickness coordinate, and ur, uθ and uz are the dis-
placement along the r, θ, and z axes, respectively. u0 and v0 are considered as
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Figure 1 Circular plate in contact with the fluid with coordinate convection.

the displacement of mid-plane along the r and θ directions, respectively. Fur-
thermore, φr and φθ show the rotational about the r and θ axes, respectively.
Considering the nonlinear strain–displacement relationships, the strains are
declared at an arbitrary point in the plate as follows [16]:
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2.1 Hamilton’s Principle

The Hamilton’s principle is used for obtaining the equations of motion of the
circular plate [17]:

δ

∫ t2

t1

(T − U +Wn.c)dt = 0 (3)

Where T,U , and Wn.c indicate kinetic energy, strain energy, and work
done by external loads, respectively.

Further, the kinetic energy of the plate is defined as Equation (4) [17]:

T =
1

2

∫∫∫
ρ(r, θ, z)(u̇2r + u̇2θ + u̇2z)dV (4)

By substituting Equation (1) into Equation (4), the kinetic energy is
calculated as follows:

T =
1

2

∫ h
2

−h
2

∫ 2π

0

∫ b

a
ρ(r, θ, z)(u̇20 + z2φ̇2r + 2u̇0zφ̇r

+ v̇20 + z2φ̇2θ + 2v̇0zφ̇θ + Ẇ 2)rdrdθdz (5)

By integrating Equation (5) with respect to the thickness direction, the
variations of kinetic energy are determined by using the variational principle
for equations and integration terms by parts as follows:∫ t2

t1

δTdT =
1

2

∫ t2

t1

∫ 2π

0

∫ b

a
−(2ρ0ü0δu0 + 2ρ2φ̈rδφr

+ 2ρ1φ̈rδu0 + 2ρ1ü0δφr + 2ρ0v̈0δv0 + 2ρ2φ̈θδφθ

+ 2ρ1φ̈θδv0 + 2ρ1v̈0δφθ + 2ρ0ẅδw)rdrdθ (6)

Where ρ0, ρ1, and ρ2 indicate the inertia terms defined as follows.

(ρ0, ρ1, ρ2) =

∫ h
2

−h
2

(1,z, z2)ρ(r, θ, z)dz (7)
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The strain energy stored in the plate is given as Equation (8) [17]:

U =
1

2

∫∫∫
σijeijdv =

1

2

∫ h
2

−h
2

∫ 2π

0

∫ b

a
(σrrerr + σθθeθθ + 2σrθerθ

+ 2σrzerz + 2σθzeθz)rdrdθdz (8)

By substituting Equation (2) into Equation (8), Equation (9) is obtained
through integrating with respect to the thickness direction, applying the
variation method [17], and integrating the terms by parts:

dU =

∫ 2π

0

∫ b

a
{δφr(−(rMrr),r +Mθθ − (Mrθ),θ + rφr)

+ δU0(−(rNrr),r −Nθθ − (Nrθ),θ)

+ δV0(−(Nθθ),θ − (rNrθ),r −Nrθ)

+ δW (−(rQr),r −Qθ,θ)

+ δφθ(−(rMrθ),r −Mrθ + rQθ −Mθθ,θ)}drdθ (9)

whereMrr,Mθθ, andMrθ are considered as bending moment resultants,Nrr,
Nθθ and Nrθ represent membrane force resultants, and Qr and Qθ are shear
force resultants, which are defined as follows.

(Mrr,Mθθ,Mrθ) =

∫ h
2

−h
2

(σrr, σθθ, σrθ)z dz

(Nrr, Nθθ, Nrθ) =

∫ h
2

−h
2

(σrr, σθθ, σrθ)dz

(Qr, Qθ) =

∫ h
2

−h
2

(σrz, σθz)dz (10)

Also, the variations in the work of the non-conservative forces are as
follows:

δwn.c =

∫ 2π

0

∫ b

a
(−p(r, θ, t))δw rdrdθ (11)

Where p(r, θ, t) is the dynamic pressure applied by the fluid.
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In addition, the governing differential equations of the plate can be
obtained as substituting Equations (6), (9), and (11) into Equation (3) and
using the variational principle:

1

r
(Nrr −Nθθ) +

1

r
Nrθ,θ +Nrr,r = ρ0ü0 + ρ1φ̈r

2

r
Nrθ +Nrθ,r +

1

r
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1

r
(Mrr −Mθθ) +Mrr,r +

1

r
Mrθ,θ −Qr = ρ2φ̈r + ρ1ü0

2

r
Mrθ +Mrθ,r +

1

r
Mθθ,θ −Qθ = ρ2φ̈θ + ρ1v̈0

1

r
Qr +Qr,r +

1

r
Qθ,θ +

1

r
(rNrrw,r),r +

1

r2
(Nθθw,θ),θ

+
1

r
(Nrθw,θ),r +

1

r
(Nrθw,r),

θ
= ρ0ẅ − p (12)

3 Fluid Pressure

The following assumptions are considered for the dynamic model behavior
in order to determine the fluid pressure.

1. The desired fluid is ideally considered Therefore, a potential function
can be considered for it.

2. Fluid displacements and velocities are assumed to be small and the fluid
behavior is considered to be linear.

3. The initial condition of the fluid is considered as zero.
4. Fluid pressure formulation is based on the velocity potential function.
5. The fluid is considered incompressible, non-viscous, and non-rotating.

Given the above conditions for the fluid in contact, the velocity potential
function Φ must satisfy the Laplace equation in the fluid amplitude. The form
of the equation in cylindrical coordinates is as follows [18].

∇2Φ(r, θ, z, t) =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2
= 0 (13)

Also, the boundary conditions of the problem are as follows.

(vr)r=a1,d = 0→
(
∂Φ

∂r

)
r=a1

=

(
∂Φ

∂r

)
r=d

= 0
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(vz)z=−h
2
−H = 0→

(
∂Φ

∂z

)
z=−h

2
−H

= 0.

(vz)fluid =(vz)plate in contact surface →
(
∂Φ

∂z

)
z=−h

2

=
∂w

∂t
(14)

Using the Bernoulli equation, irrespective of the non-rotational expres-
sion, the fluid pressure at the fluid-structural contact surface is considered as
follows [4].

p = p|z=−h
2

= −ρf
∂Φ

∂t

∣∣∣∣
z=−h

2

(15)

In the above equation, ρf shows the density of the fluid in unit volume.
Equation (16) is obtained by using the method of separating variables and
applying boundary conditions, and placing the potential function in relation
to the dynamic pressure applied by the fluid on the plate as follows.

p(r, θ, t) = −ρf
∞∑
m=1

∞∑
n=1

coth(ηmnH)

ηmn
ẅ(r, θ, t) (16)

Furthermore, ηmn is determined as follows.

J ′βm(ηa1)Y
′
βm(ηd)− J ′βm(ηd)Y ′βm(ηa1) = 0 (17)

Also, J and Y are the polar Bessel function of the first and second types
and βm = n.

4 Numerical Methods

In this study, the Differential Quadrature Method (DQM) is used as a fast
and accurate method for the numerical solution of governing differential
equations. Using fewer nodes and reducing computational time and cost are
considered as the main advantages of using DQM compared to the finite
element method. According to DQM, the solution domain is discretized into
N discrete grid points. In this method, the partial derivative of a function is
approximately expressed with respect to the space variable at a given discrete
point by a sum of the weighted linear functions and function values at all
discrete points. Thus, in each point, the derivative is a linear set of weight
coefficients and the function values are presented along the directions of a
coordinate axis in the same point and other points of the domain. Then, the
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nth order partial derivative of a given function g(r, θ) with respect to r and
the sth order partial derivative with respect to θ are established in each point
of the grid (ri, θj) as follows.

∂ng

∂rn

∣∣∣∣
(r,θ)=(ri,θj)

=

Nr∑
k=1

Bik
ngkj

∂sg

∂θs

∣∣∣∣
(r,θ)=(ri,θj)

=

Nθ∑
k=1

Cjk
sgik

i = 1, . . . Nr j = 1, . . . Nθ

∂(n+s)g

∂rn∂θs

∣∣∣∣∣
(r,θ)=(ri,θj)

=

Nr∑
k=1

Bik
n
Nθ∑
l=1

Cjl
sgkl (18)

Where gij denotes g(ri, θj) [19], Bikn and Cjks are considered as the
weight coefficients in the r and θ directions, respectively, which refers to
test functions. It is worth noting that the behavior of this method is related
to the selection of weight coefficients. In this study, the polynomial test
functions are used for weight coefficients along a direction, which is defined
as follows [19]:

B
(1)
ik =

∏
(ri)

(ri − rk)
∏

(rk)
i, k = 1, . . . Nr & k 6= i

∏
(ri) =

Nr∏
m=1,m 6=i

(ri − rm),
∏

(rk) =

Nr∏
m=1,m 6=k

(rk − rm)

B
(n)
ik = n

(
B

(n−1)
ii B

(1)
ik −

B
(n−1)
ik

ri − rk

)
; for (i, k = 1, . . . Nr),

k 6= i, 2 ≤ n ≤ Nr − 1

B
(n)
ii = −

Nr∑
m=1,m 6=i

B
(n)
im ; for i = 1, . . . Nr, 1 ≤ n ≤ Nr − 1 (19)

In numerical computations, Chebyshev–Gauss–Lobatto quadrature points
are used as the location relationships of grid points for the annular circular
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plate in r and θ directions, respectively, which are expressed as follows [19]:

ri =

(
b+

1

2

[
1− cos

(
(i− 1)π

NR − 1

)]
(a− b)

)
i = 1, 2, . . . , NR (20a)

θj =
α

2

[
1− cos

(
(j − 1)π

Nθ − 1

)]
j = 1, 2, . . . , Nθ (20b)

Further, the annular circular plate equations of motion yield as:
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ρ2φ̈θ + ρ1v̈0 = A3

(
1
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∂2φθ

∂θ2
+

1

r2
∂φr
∂θ

+
1

r
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)
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(
1
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r
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+
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− φθ
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+
1

r

∂φθ
∂r

)
−A2

(
φθ +

1

r
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ρ0ẅ + ρf

∞∑
m=1

∞∑
n=1

coth(ηmnH)

ηmn
ẅ(r, θ, t)

= A2

(
∂φr
∂r

+
φr
r

+
1

r

∂φθ
∂θ

+
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

)
+Nrr

∂2w

∂r2
+ 2Nrθ

(
1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ

)
+Nθθ

(
1

r2
∂2w

∂θ2
+

1

r

∂w

∂r

)
(21e)

Where the coefficient A1, A2, A3, A4 are defined as follows

A1 =
1

1− ν2

∫ h
2

−h
2

E dz, A2 =
1

2(1 + ν)

∫ h
2

−h
2

E dz

A3 =
1

1− ν2

∫ h
2

−h
2

Ez2 dz, A4 =
1

2(1 + ν)

∫ h
2

−h
2

Ez2 dz (22)

In this paper, four types of boundary conditions are considered as follows.
Clamped-clamped

r = a, b u0 = v0 = w = φr = φθ = 0 (23a)

Simple-simple

r = a, b u0 = v0 = w = φθ = Mrr = 0 (23b)

Clamped-simple

r = a, b u0 = v0 = w = φr = φθ = 0

r = a, b u0 = v0 = w = φθ = Mrr = 0 (23c)
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Simple-clamped

r = a, b u0 = v0 = w = φθ = Mrr = 0

r = a, b u0 = v0 = w = φr = φθ = 0 (23d)

To study the flexural vibration of thin plates, u and v are considerably
smaller than the transverse displacement and the effects of in-plane inertia
can be neglected [20]. Consequently, the in-plane degrees of freedom can
be eliminated from the final eigenvalue system of equations, which causes a
considerable reduction in the computational efforts, especially for nonlinear
vibration analysis of circular plates, which has an iterative procedure solution.
To eliminate the in-plane degrees of freedom, one can write the in-plane
forces at all the domain grid points in the matrix form as follows.Nrr

Nθθ

Nrθ

 = [Cdd]

{
{u0}d
{v0}d

}
+ {F (w)} (24)

Where [Cdd] indicates the coefficient matrix, {F (w)} shows a quadratic
function of transverse displacement w obtained from the discretized form
of the in-plane forces. {u0}d and {v0}d are considered as the vectors of
the in-plane displacements at the domain grid points. On the other hand,
neglecting the in-plane inertia forces, the discretized form of the in-plane
equations of motion (21a)–(21b) can be rearranged in the matrix form as
follows.

[Suu]

{
{u0}d
{v0}d

}
+ {G(w)} = {0} (25)

Where the vector {G(w)} indicates a quadratic function of transverse dis-
placement and [Suu] shows the in-plane stiffness matrix. Using Equation (25),
the constitutive Equation (24) at the domain grid points is written as follows.{Nrr}

{Nθθ}
{Nrθ}

 = −[Cdd][Suu]−1{G(w)}+ {F (w)} = {N(w2)}

(26)

Where the vector {N(w2)} is a quadratic function of the trans-
verse displacement w. The following equation is obtained by substituting
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Equation (26) into the DQ discretized form of Equation (18e)[
[Mww] [0]

[0] [Mφφ]

]{
{ẅ}d
{φ̈}d

}
+

[
[Kww(w)] [Kwφ]

[Kφw] [Kφφ]

]{
{w}d
{φ}d

}
+

[
[Kwb]
[Kφb]

]
{U}b = {0} (27)

Further, [Kww(w)] is the sum of linear and nonlinear stiffness matrix,
which is a cubic function of transverse displacement vector {w}. [Kwφ],
[Kφw] and [Kφφ] are linear stiffness matrices which represent the role of
domain degrees of freedom in the equations of motion. [Kwb] and [Kφb] indi-
cate linear stiffness matrices, which show the interaction between boundary
degrees of freedom and equations of motion. Furthermore, [Mww] and [Mφφ]

are considered as the mass matrices and {φ} =

{
{φr}
{φθ}

}
. Also, the symbol

of (̈.) indicates the second derivative with respect to time. The DQ discretized
form of boundary conditions is written in the matrix form as follows.

[[Kbb] [Kbd]]

{
{U}b
{φ}d

}
= {0} (28)

Where [Kbb] and [Kbd] show the linear boundary stiffness matrices.
Using Equation (28) for eliminating the boundary degrees of freedom of
Equation (27) leads to a system of the differential equations in temporal
domain as follows.[

[Mww] [0]
[0] [Mφφ]

]{
{ẅ}d
{φ̈}d

}
+

[
[Kww(w)] [Kwφ]

[Kφw] [Kφφ]

]{
{w}d
{φ}d

}
= {0}

(29)

Where [Kwφ] and [Kφφ] are linear stiffness matrices which are given as
follows.

[Kwφ] = [Kwφ]− [Kwb][Kbb]
−1[Kbd],

[Kφφ] = [Kφφ]− [Kφb][Kbb]
−1[Kbd] (30)

In the present analysis, the solution algorithms are based on the harmonic
balance method [17]. Regarding the harmonic balance method, it is assumed
that the nonlinear system undergoes a harmonic motion, which is reasonable
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in many cases, particularly for moderate vibration amplitudes. This simpli-
fication allows one to obtain a compact frequency domain model, which
provides very useful information. The domain degrees of freedom are written
by using this method. {

{w}d
{φ}d

}
=

{
{W}
{φ}

}
cos(ωt) (31)

Where

{
{W}
{φ}

}
is the vector of generalized amplitudes of the harmonic

motions. Inserting Equation (31) into Equation (29), as well as the use of the
harmonic balance method results in allowing frequency-domain equations of
motion.

−ω2

[
[Mww] [0]

[0] [Mφφ]

]{
{w}d
{φ}d

}
+

[
[Kww(w)] [Kwφ]

[Kφw] [Kφφ]

]{
{w}d
{φ}d

}
= {0}

(32)

Where [Kww(w)] = [KL
ww]+3/4[KNL

ww(w)]. Also, [KNL
ww(w)] are

the linear and nonlinear stiffness matrices, respectively. An iterative method
should be used to solve the system of nonlinear eigenvalue (Equation (32)).
In the iterate procedure, the linear problem is first solved by vanishing the
nonlinear terms in this equation. Furthermore, the linear eigenvectors are used
to obtain the nonlinear coefficients. The eigenvalue problem is solved again to
determine the nonlinear eigenvalues and eigenvectors. The iterative procedure
continues until two frequencies obtained from subsequent iterations can
satisfy the following equation.∣∣∣∣ωK+1 − ωk

ωk

∣∣∣∣ ≤ 0.001 (33)

5 Numerical Results and Discussion

In this section the parameters affecting the natural nonlinear frequency of an
annular circular plate in contact with a fluid is investigated. In addition, an
annular circular plate of aluminum with the characteristics is considered as
ρ = 2707 kg/m3, E = 70 GPa, ν = 0.3, and ρf = 1000 kg/m3. As shown in
Table 1, for validation in a linear mode without considering nonlinear strain
term, the non-dimensional natural frequencies of the clamped annular plate
is considered as β = b2ω

√
hρ/D , where different thickness ratios were
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Table 1 Comparison of the dimensionless natural frequencies of the clamped annular plate
for different thickness with Ref. [21]
a/b h/b Method β1 %Error β2 %Error β3 %Error β4 %Error

0.1 0.05 Ref. [21] 26.546 0.03% 71.232 0.01% 135.245 0.01% 215.114 0.01%

0.05 present 26.538 71.228 135.244 215.112

0.1 Ref. [21] 24.634 0.01% 62.146 0.01% 111.127 0.01% 167.166 0.01%

0.1 present 24.631 62.144 111.124 167.161

0.2 Ref. [21] 19.852 0.02% 44.922 0.01% 74.869 0.01% 106.815 0.01%

0.2 present 19.847 44.918 74.862 106.812

0.3 0.05 Ref. [21] 43.604 0.01% 115.272 0.01% 214.625 0.01% 334.708 0.01%

0.05 present 43.602 115.270 214.621 334.706

0.1 Ref. [21] 39.395 0.01% 95.598 0.01% 165.267 0.01% 242.176 0.01%

0.1 present 39.390 95.595 165.260 242.171

0.2 Ref. [21] 30.046 0.01% 64.239 0.01% 104.095 0.01% 145.236 0.01%

0.2 present 30.041 64.234 104.093 145.235

compared with the results given by [21]. Based on the results, an excellent
agreement was observed for all of the cases.

Further, the results reported from the [21] are used (dry plate) for val-
idating the results of nonlinear frequency. Figure 2 displays the results of
an annular circular plate with the aspect ratios of a/b = 0.3 and h/b = 0.1
in terms of non-dimensional transverse displacement amplitude of the plate
(wmax/h) for clamped boundary conditions. The results are consistent with
those of [21].

The natural dimensionless nonlinear frequency is defined as ωNL =
ωNLb

2
√
hρ/D . Also, the nonlinear natural frequency of a plate in contact

with a fluid depends on some parameters such as dimensional ratio, fluid
characteristics, and non-dimensional transverse displacement amplitude of
the plate (wmax/h). A shown in Figure 3, the wmax/h effect is evaluated
for the four state conditions of the boundary conditions, which indicates that
the dimensionless ratio of frequency (nonlinear natural frequency to linear
natural frequency) increases by increasing wmax/h.

For example, CC and SS modes are used for evaluating different factors
on nonlinear natural frequency. Now, the results are provided for a/b = 0.1,
0.2, 0.3.

As illustrated in Figures 4 and 5, the non-dimensional natural fre-
quency of the circular plate in contact with fluid increases by increasing a/b
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Figure 2 Dependency of the ratio of nonlinear to linear frequencies of the clamped annular
plate with dimensionless vibration amplitudes for the first axisymmetric mode shapes.

Figure 3 Frequency ratio (nonlinear frequency to linear frequency) for four different bound-
ary modes.

(decreasing plate width). Further, a decrease in the width of the plate leads to
a decrease in its inertia and stiffness increases which causes the frequency to
increase.

Figure 6 shows the CC and SS modes examining the effect of the h/b
aspect ratio on the dimensionless nonlinear natural frequency. The results of
h/b = 0.05,0.1 are presented as follows.
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Figure 4 The effects of dimensional ratio changes a/b on the dimensionless nonlinear natural
frequency of an annular circular plate in contact with a fluid for CC boundary conditions.

Figure 5 The effects of dimensional ratio changes a/b on the dimensionless nonlinear natural
frequency of an annular circular plate in contact with a fluid for SS boundary conditions.
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Figure 6 The effects of dimensional ratio changes h/b on the dimensionless nonlinear natural
frequency of an annular circular plate in contact with a fluid for four boundary conditions.

As shown, the dimensionless natural nonlinear frequency of the circular
plate in contact with the fluid increases by increasing h/b (thickening of the
plate). In addition, an increase in the thickness of the plate leads to an increase
in mass and stiffness. However, the ratio of increasing stiffness is higher than
that of inertia, leading to an increase in the natural frequency.

Figures 7 and 8 display the effects of fluid density change on the
dimensionless nonlinear natural frequency of circular plate in CC and SS
modes.

As shown in Figures 7 and 8, it is expected that the dimensionless
nonlinear natural frequency of the plate could decrease by increasing fluid
density (heavier fluid).

The fluid behaves like the mass added to the plate since it is assumed
to be non-viscous and has only inertia. Therefore, as the density of the fluid
increases, the mass added to the plate increases and the frequency decreases

In addition, as displayed in Figures 7 and 8, the dimensionless natural
nonlinear frequency of the plate decreases with a very steep slope in the
density range of 0–0.3, which indicates that the presence of fluid reduces
the nonlinear natural frequency significantly.
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Figure 7 The effect of fluid density on the dimensionless nonlinear natural frequency of an
annular circular plate in contact with a fluid for CC boundary conditions.

Figure 8 The effect of fluid density on the dimensionless nonlinear natural frequency of an
annular circular plate in contact with a fluid for SS boundary conditions.

In Figures 9 and 10, the change in fluid height on dimensionless nonlinear
natural frequency for both CC and SS modes has been investigated.

As shown in Figures 9 and 10, the dimensionless nonlinear natural fre-
quency first increases by increasing fluid height, and tends to be a constant
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Figure 9 The effect of fluid height on the dimensionless nonlinear natural frequency of an
annular circular plate in contact with a fluid for CC boundary conditions.

Figure 10 The effect of fluid height on the dimensionless nonlinear natural frequency of an
annular circular plate in contact with a fluid for SS boundary conditions.
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value. Further, an increase in the height can have a slight effect on the
dimensionless frequency, which indicates that the fluid with more depth
affects the vibrational behavior of the circular plate slightly. With the onset
of vibrational motion, the wave created by the vibration enters the fluid, is
propagated in, strikes the lower rigid plane, and is created as the opposite
wave in the fluid and causes opposition to the vibrating motion of the plate
and thus reduces the frequency. This phenomenon is significant at low fluid
height, but by increasing height there is not enough time to reach opposite
waves to the vibration of the plate, and deeper fluid can have less impact on
this phenomenon.

6 Conclusion

In this study, the effect of the presence of a fluid on the nonlinear natural
frequency has been investigated. The dynamic pressure from the fluid on the
plate has been obtained by solving the Laplace equation and applying bound-
ary conditions in terms of transverse displacement of the plate. In addition,
the nonlinear differential equations have been determined based on the solved
DQ method. Then, the effect of various parameters such as dimensional
ratios, fluid density, and fluid height on the nonlinear natural frequency has
been evaluated. Further, the results obtained without considering the fluid
have been validated by comparing to those of the previous studies, which
indicated a good convergence. The following results have been presented for
all boundary conditions:

• The nonlinear natural frequency increases by increasing the a / b ratio
(decreasing the width of the circular plate).

• The nonlinear natural frequency increases by increasing h / b ratio
(thickening of the plate).

• The nonlinear natural frequency decreases when the fluid density
increases. Additionally, the natural frequency of the plate decreases
with a very steep slope in the range of density changes from 0 to 0.3,
which indicates that the presence of fluid reduces the nonlinear natural
frequency significantly.

• An increase in the fluid height leads to an increase in the nonlinear nat-
ural frequency, and then tends to become a constant value. In addition,
an increase in height can slightly affect the natural frequency, which
indicates that the distant fluid has little effect on the vibrational behavior
of the circular plate.
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