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ABSTRACT
Wave propagation analysis in 2-D composite structures is 
performed efficiently and accurately through the formulation 
of a User-Defined Element (UEL) based on the wavelet 
spectral finite element (WSFE) method. The WSFE method 
is based on the first-order shear deformation theory which 
yields accurate results for wave motion at high frequencies. 
The 2-D WSFE model is highly efficient computationally 
and provides a direct relationship between system input 
and output in the frequency domain. The UEL is formulated 
and implemented in Abaqus (commercial finite element 
software) for wave propagation analysis in 2-D composite 
structures with complexities. Frequency domain formulation 
of WSFE leads to complex valued parameters, which are 
decoupled into real and imaginary parts and presented 
to Abaqus as real values. The final solution is obtained by 
forming a complex value using the real number solutions 
given by Abaqus. Five numerical examples are presented in 
this article, namely undamaged plate, impacted plate, plate 
with ply drop, folded plate and plate with stiffener. Wave 
motions predicted by the developed UEL correlate very well 
with Abaqus simulations. The results also show that the UEL 
largely retains computational efficiency of the WSFE method 
and extends its ability to model complex features.

1.  Introduction

Wave propagation in elastic structures has significance for several applications 
such as nondestructive evaluation (NDE), transient response prediction and 
mechanical property characterisation (Graff, 1975; Rose, 2004). Among these, 
NDE is perhaps the most common application as ultrasonic waves are often used 
for inspection of engineering structures. Advanced composites have several 
advantages compared to metallic materials such as higher specific strength and 
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modulus, fewer joints, improved fatigue life and higher resistance to corrosion 
leading to their growing use in aerospace, wind energy and civil infrastructure. 
Much research has recently been carried out on NDE of composites using Lamb 
waves due to several advantages it offers over existing methods (Chimenti, 1997; 
Nayfeh, 1995). Lamb waves are elastic waves that are generated in a solid plate with 
free boundaries and are also known as plate waves. Lamb waves are able to travel 
long distances with little dispersion allowing rapid scan of large areas. These fea-
tures of Lamb waves coupled with the ease of application with integrated actuators 
and sensors has enabled in situ damage diagnosis also known as structural health 
monitoring (SHM). SHM is nondestructive evaluation through integrated actua-
tors and sensors and has been a very active area of research in the past decade. A lot 
of work has been carried out over the last decade contributing to the development 
of Lamb wave-based SHM (Boller, Chang, & Fujino, 2009; Diamanti & Soutis, 
2010; Giurgiutiu, 2007; Raghavan & Cesnik, 2007; Su, Ye, & Lu, 2006). However, 
there are many challenges yet to be addressed before this method is implemented 
practically. Computational modelling is essential for complete understanding of 
Lamb wave propagation in composite structures. Physics-based models for wave 
propagation may also be used for generating baseline data which is necessary in 
ultrasonic inspection systems.

Modelling of wave propagation in composite structures is much more 
complex compared to the isotropic structures (Rose, 2004; Nayfeh, 1995). It 
is very difficult to obtain the governing differential equations and boundary/
initial conditions for wave propagation in most practical structures. Numerical 
methods are often used, which include the conventional finite element method 
(FEM) (Lee & Staszewski, 2003; Ochoa & Reddy, 1992; Talbot & Przemieniecki, 
1975), finite difference method (Graves, 1996; Strikwerda, 2004), pseudospectral 
method (Fornberg, 1987) and boundary element method (Beskos, 1997). FEM 
is the most popular numerical technique for wave motion analysis. However, 
20 nodes are generally needed spanning a wavelength for accurate predictions 
(Ochoa & Reddy, 1992), which makes FEM-based wave propagation analysis at 
high frequencies very expensive computationally. Spectral finite element (SFE), 
based on the transformation of wave equations into the frequency domain, is 
highly suitable for wave propagation analysis (Doyle, 2012; Gopalakrishnan, 
Chakraborty, & Mahapatra, 2008; Gopalakrishnan & Mitra, 2010). SFE requires 
only one element to model a beam or plate structure of any length if there are 
no discontinuities. Just a few elements can model wave motion in a simplified 
practical structure such as a stiffened plate, leading to very high computational 
efficiency.

Use of an integral transform method, which transforms variables between 
frequency and time domains, is a key component in SFE implementation. 
Doyle (2012) popularised the fast Fourier transform (FFT)-based spectral finite 
element (FSFE) to model wave motion in isotropic 1-D and 2-D waveguides. 
Mitra and Gopalakrishnan (2008) presented the 2-D wavelet based spectral 
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finite element (WSFE) to overcome some limitations of FSFE and accurately 
model 2-D plate structures of finite dimensions. WSFE uses orthogonal com-
pactly supported Daubechies scaling functions (Daubechies, 1992) as the basis 
for both temporal and spatial approximations. Jha and associates developed 
WSFE based on the first-order shear deformation theory (FSDT) which was a 
major improvement compared to the previously reported classical laminated 
plate theory based models (Samaratunga, Jha, & Gopalakrishnan, 2014a). The 
developed WSFE was validated with Abaqus FEM simulations using shear 
flexible elements. Excellent correlation was observed in the results and WSFE 
computation time was less than two orders of magnitude compared to Abaqus 
(Samaratunga et al., 2014a). Composite plates with transverse cracks were also 
modelled using WSFE (coded in Matlab) and validated with Abaqus FEM 
simulations (Samaratunga, Jha, & Gopalakrishnan, 2014b). WSFE models 
with additional complexity such as adhesively bonded joints and skin stiff-
ener structures have also been developed by the authors (Samaratunga, Jha, 
& Gopalakrishnan, 2014c, 2016). Thus, WSFE is well established for regularly 
shaped structures like rod, beam and plate. However, modelling complex struc-
tural features (holes, cut-outs, etc.) and damages (impact, delamination, crack, 
etc.) with spectral finite element method presents difficulties. These limitations 
stem from the difficulty in deriving governing equations and boundary con-
ditions for modelling structures with complex features. Assembling spectral 
elements of different types and dimensions would give us the ability to model 
complex structures and damages while retaining the computational efficiency 
of WSFE. The present authors earlier reported UEL formulation for thick beams 
(Khalili, Samaratunga, Jha, & Gopalakrishnan, 2014; Khalili, Samaratunga, Jha, 
Lacy, & Gopalakrishnan, 2015).

In the present work, we develop WSFE-based User Elements (UEL) that can 
be implemented in conventional finite element platform to analyse ultrasonic 
wave propagation in 2-D composite structures accurately and efficiently. The 
new user element is implemented in commercial finite element code Abaqus 
through UEL subroutine. One of the major aspects of this research is that all of 
the variables in WSFE have complex value in the frequency domain. For UEL 
implementation in Abaqus, a complex value is represented as a 2 × 2 matrix of real 
numbers which leads to doubling the number of degrees of freedom. All of the 
structures in numerical examples are modelled and meshed using Abaqus CAE 
and WSFE formulation-based elements are assigned as element type using UEL. 
The numerical examples include five different cases, namely, healthy plate, plate 
with impact damage, plate with ply drop, folded plate and plate with stiffener. This 
approach provides access to powerful modelling tools, pre- and post-processing, 
and efficient solvers of Abaqus along with the computational efficiency of the 
WSFE method.
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The subsequent sections contain a summary of WSFE plate element formula-
tion, details of UEL development, validation of results through comparison with 
Abaqus simulations and concluding remarks.

2.  WSFE formulation for a composite plate

A summary of the WSFE formulation for a composite plate is presented here; 
interested readers are referred to (Samaratunga et al., 2014a) for further details. 
Consider a laminated composite plate of thickness h with the origin of the global 
coordinate system located at the mid-plane of the plate with Z axis being normal 
to the mid-plane as shown in Figure 1(a) and (b) shows the corresponding nodal 
representation of the spectral element. Using FSDT, the governing equations for 
wave propagation involve the five degrees of freedom (DOFs) at each node: u, v, 
w, ϕ and ψ (Khalili et al., 2015). The terms u(x, y, t) and v(x, y, t) are mid-plane 
(z = 0) displacements along X and Y axes; w(x, y, t) is transverse displacement in 
Z direction, and ψ(x, y, t) and ϕ(x, y, t) are the rotational displacements about Y 
and X axes, respectively. The displacements w, ϕ and ψ do not change along the 
thickness (Z direction). The quantities (Nxx, Nxy, Nyy) are in-plane force resultants, 
(Mxx, Mxy, Myy) are moment resultants and (Qx, Qy) denote the transverse force.

The governing wave equations are PDEs with respect to two spatial dimensions 
and time. The WSFE formulation begins with transformation of the field variables 
(displacements) on to the frequency-wavenumber domain using the scaling func-
tions for Daubechies compactly supported wavelet (Daubechies, 1992). Scaling 
functions of order 22 are used for temporal approximation and scaling functions of 
order 4 are used for spatial (lateral dimension) approximation (Samaratunga et al., 
2014a), thereby reducing the PDEs to ODEs. Daubechies compactly supported 
scaling functions have only a finite number of nonzero filter coefficients which 
enables easy handling of finite geometries and imposition of boundary conditions. 
Use of wavelet transform has clear advantages in modelling finite wave guides over 
widely used Fourier transform which has global support basis functions (Mitra 
& Gopalakrishnan, 2008).
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Figure 1. (a) Plate element (b) nodal representation with DOFs.
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Time approximated coupled PDEs are decoupled using eigenvalue analysis. 
Next, the time approximated PDEs are reduced to a set of ODEs using another 
Daubechies scaling function approximation in lateral spatial (Y) direction. 
Frequency-dependent wave characteristics corresponding to each lateral wave 
number are extracted directly from the formulation. The ODEs resulting from 
spatial approximation are derivatives only of the remaining spatial variable x. The 
natural boundary conditions are also transformed similarly. The solution of these 
ODEs to derive the exact shape function involves determination of wave numbers 
and the amplitude ratio matrix. Unlike isotropic cases, the process of solution for 
composite materials is more complicated and is done by posing it as polynomial 
eigenvalue problem (Mitra & Gopalakrishnan, 2008).

Finally, the transformed nodal forces and transformed nodal displacements 
are related as 

{
F̃
e}

=
[
K̃

e]
{ũe} where 

[
K̃

e] is the exact elemental dynamic stiffness 
matrix. Solution of the final equation and the assembly of the elemental stiff-
ness matrices to obtain the global stiffness matrix are similar to the conventional 
FEM technique. One major difference is that the time integration in FEM uses a 
suitable finite difference scheme; however, the WSFE performs dynamic stiffness 
generation, assembly, and solution through a double do-loop over frequency and 
horizontal wavenumber. Although this procedure is computationally expensive, 
the problem size in WSF is very small which keeps overall low computational 
cost. Another difference is that unlike FEM, WSFE deals with only one dynamic 

• Wave equations (PDEs) reduced to ODEs using wavelet 
approximation in time and lateral dimension

• ODEs decoupled using eigenvalue analysis

• Decoupled ODEs solved exactly using polynomial 
eigenvalue problem (PEP)

• Elemental dynamic stiffness matrix obtained using 
exact solution of ODEs as shape functions

• Structural assembly and solution similar to FEM

• Time domain results obtained after inverse wavelet 
transform of frequency domain results

Figure 2. Summary of WSFE procedure for a composite plate.
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stiffness matrix and hence matrix operation and storage require minimum compu-
tations. The decoupled ODEs are solved and the final solutions u(x, y, t), v(x, y, t),  
w(x, y, t), ϕ(x, y, t) and ψ(x, y, t) are obtained using inverse wavelet transform 
twice for spatial Y dimension and time. Figure 2 presents a summary of the WSFE 
method.

3.  User-defined element based on wavelet spectral finite element

User subroutines in a commercial software give the ability of defining new elements 
or material properties to expand the capabilities of the software. User-Defined 
Element (UEL) is a subroutine for defining new elements in Abaqus. Along with 
the newly defined UEL, the current approach takes advantage of Abaqus modelling 
capabilities, powerful pre- and post-processing tools, and highly efficient solver. 
Here we present the details of UEL formulation for 2-D plates.

Determination of elemental stiffness matrix is the most important step in for-
mulating an UEL. Along with the elemental stiffness matrix, two other quantities 
must be defined as well: right-hand-side vector (residual nodal fluxes or forces) 
and solution-dependent state variables. Degrees of freedom at each node and 
the number of nodes in each element are also needed. Figure 3 shows the UEL 
interface that shows the variables to be defined (RHS, AMATRX, SVARS and 
ENERGY), variables that can be updated (PNEWDT) and variables passed in 
for information (rest of the variables) (Dassault Systèmes Simulia Corp, 2014).

Wavelet spectral finite element works in the frequency domain and, thereby, 
all the parameters such as stiffness matrix, wavenumbers, displacements and 
forces, have complex values. However, Abaqus computations can use real numbers 
only. To overcome to this problem, the following mathematical rule is used 
wherein every complex number can be represented as a 2  ×  2 matrix of real 

Figure 3.  UEL interface which shows all the variables (written in Fortran [Dassault Systèmes 
Simulia Corp, 2014]).
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numbers (Equation 1). A set of complex number forms a field and the matrices 
of this form are exactly the field of complex numbers. The absolute value of the 
complex numbers can be calculated as square root of the determinant of the 
matrix. Further details about matrix representation of complex numbers are 
explained by Hongbao (2014). 

Applying this method doubles the dimension of a complex-valued matrix to 
obtain a matrix with real values, that is, an n × n matrix with complex values is 
represented as a 2n × 2n matrix with real values. As an example, consider a rod 
element with one DOF at each node (Figure 4(a)). The stiffness matrix for this 
element has the dimension of 2 × 2. In the frequency domain analysis, all terms 
in Equation 2 have complex values wherein K11 = K11

Re + iK11
Im (and similarly for 

all other terms.)
 

Applying the matrix representation for complex values doubles the size to 
obtain a matrix equation with real numbers (Equation 3). Now, this matrix equa-
tion can be solved within Abaqus since all terms have real values only.

 

The plate element in WSFE (Figure 2) has two nodes and there are five DOFs at 
each node. To decouple the real and imaginary parts of forces, displacements and 
stiffness terms, we obtain effectively ten DOFs per node. One can choose to use ten 
DOFs per node or double the number of nodes (Figure 4) to have five DOFs per 
node. In this work, we use five DOFs per node and double the number of nodes.
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Figure 4. A two-node truss element with (a) complex values; (b) real values.
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Another issue that arises in formulating WSFE-based UEL relates to the discre-
tisation points along the lateral edges. As mentioned previously, each lateral edge 
is discretised at m points during spatial approximation in WSFE formulation. In 
order to implement the spatial approximation through UEL, every discretisation 
point is modelled as two nodes (one each for real and imaginary parts). This leads 
to 2m nodes at each lateral edge and, thus, the plate element has 4m nodes with 
five DOFs at each node (Figure 5). In this research m is chosen as 64. With five 
DOFs per node, the elemental stiffness matrix has the dimension of 1280 × 1280. 
Although the UEL leads to a large elemental stiffness matrix, several measures 
are implemented for computational efficiency. The eigenvalues and eigenvectors 
for the frequency-dependent stiffness matrix are calculated only once and stored 
for subsequent frequency increments. Similarly, stiffness constants and inertial 
coefficients are calculated just once (first increment) and saved in the solution-
dependent state variables (SVARS) array which is accessed throughout the analysis.

The stiffness matrix in global coordinate system is defined as

Figure 5. Plate element and nodal representation for UEL based on WSFE.
Notes: Red dots represent real nodes and black circles represent imaginary nodes (co-located with real nodes). 
Numbers show node numbering in UEL.
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where subscript G denotes the values in global coordinate system and e stands 
for elemental coordinate system. [T] is the transformation matrix and can be 
written as:
 

The terms c and s denote cosine and sine of the angle between local and global 
coordinate systems. The transformation matrix (Equation 5) has a dimension of 
20 × 20 due to the decoupling of real and imaginary parts.

It must be noted that in implementing this UEL, Abaqus is used just as a solver 
without being aware of the physics of the problem. Although the problem is a 
dynamic one (wave propagation), GENERAL STATIC solver in Abaqus is used 
for solution. The real and imaginary parts of the solution are combined to obtain 
results in the frequency domain, and then inverse wavelet transform is used to 
obtain time domain solutions (Khalili et al., 2014, 2015).

Load distribution along the Y-axis (Figure 2) is given by Equation 6.
 

where α is a variable to change the distribution of the load long Y-axis. In all of 
the analysis in this paper, α is selected as 0.05 which causes a Gaussian distribu-
tion of load along the edge. The UAMP subroutine is used to define edge load on 
the element. Load is defined once in the beginning and then saved in a common 
block to be accessed during rest of the analysis.

(4)
[
K̃G

]
= [T]T

[
K̃e

]
[T]

(5)[T] =

[
[Q] [0]

[0] [Q]

]

[Q] =
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An Abaqus subroutine named URDFILL is used to write a code for transfor-
mation of results from frequency domain to time domain using inverse wavelet 
transform. It should be recalled that the results (displacements) are obtained in 
the frequency domain in WSFE analysis. Obtained results from collocated real and 
imaginary nodes are coupled to form the frequency domain results as complex 
numbers. For all of the frequency increments, the results (complex values) are 
saved in an array and then transformed to the time domain after the last increment 
for computational efficiency.

4.  Numerical experiments

The 2-D WSFE-based user-defined element is used to study axial and transverse 
wave propagation in composite plates. Computational efficiency and accuracy 
of the newly developed UEL and its ability to model complex features are also 
demonstrated. Numerical experiment results are presented in the time domain 
and compared to FEM results. FEM results are obtained using Abaqus dynamic 
implicit simulation employing 8-node shell element (S8R5) which is shear flex-
ible and able to model multiple layers. Using shell elements in Abaqus for wave 
propagation analysis has been reported earlier (Samaratunga et al., 2014a, 2014c, 
2016). Hanning windowed sinusoid (tone burst) signal with 3.5 cycles and central 
frequency of 20 kHz (Figure 6) is used as input load. The spatial domain distribu-
tion of load is defined using Equation 6 with α = 0.05. AS4/3501-6 graphite-epoxy 
with material properties mentioned in Table 1 is used for all of the simulations. 
Models are simulated using a desktop computer with 3.4 GHz Intel Core i7 CPU 
and 16 GB memory.

Five different cases are simulated and compared with FEM: healthy plate, plate 
with impact damage, plate with ply drop, plate with stiffener and plate with two 

Figure 6. A 3.5 cycle tone burst signal and its frequency content (20 kHz central frequency).

Table 1. Material properties (AS4/3501-6).

E11 144.48e9 Pa E33 9.63e9 Pa G13 4.128e9 Pa υ12 0.02 υ23 0.3
E22 9.63e9 Pa G12 4.128e9 Pa G23 4.128e9 Pa υ13 0.02 Density 1389 kg/m3
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folds. Load is always applied at the free edge and simulation results are presented 
at different points on the plates. Comparison of CPU time and number of elements 
is given in tables. In all the cases, a symmetric lay up of [0/90/0/90]s is used except 
for ply drop example for reasons explained later.

Using Disperse software (Lowe & Pavlakovic, 2013), dispersion curve (group 
velocity versus frequency-thickness) is obtained as shown in Figure 7. Group 
velocity for A0 mode (first asymmetric mode) at 80 kHz-mm is 1537 m/s. In all 
of the numerical examples, element size in FEM models is chosen based on 20 
nodes per wavelength as recommended by Ochoa and Reddy (Ochoa & Reddy, 
1992). Wavelength is given by

 

where Cg is the group velocity and f is the frequency.

(7)� =
Cg

f

S0 mode

A0 mode

A1 modePoint of 
interest

Figure 7. Dispersion curve for AS4/3501 laminate obtained using Disperse software.

Figure 8. Schematic view of plate.
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4.1.  Healthy plate

4.1.1.  Numerical validation
A healthy plate with [0/90/0/90]s layup in cantilever configuration is modelled 
using the developed UEL. The plate has dimensions of 0.5 m × 0.5 m and its 
thickness is 0.004 m. A schematic view of the plate is illustrated in Figure 8. Using 
UEL, the plate is modelled as a 256-node element with 5 DOFs per node. Resulting 
elemental stiffness matrix has the dimension of 1280 × 1280.

A 3.5 cycle tone-burst with 20 kHz central frequency is applied at the free edge 
of the plate (AB) in Z-direction. Spatial distribution and point of application of the 
load (along Y-axis) are shown in Figure 8. Wave propagation results are obtained 
in all three different directions (X, Y and Z) at two different points on the plate: 
central point of the free edge and mid-point of the plate. For validation purposes, 
the results are compared to those obtained from two other simulations: WSFE 
(coded in MATLAB) and Abaqus (FEM).

Hereafter, UEL, FEM and WSFE are used to refer to WSFE-based UEL, FEM 
model in Abaqus and WSFE method coded in Matlab, respectively. Since there 
is no discontinuity in the plate, the entire plate can be modelled using just one 
element in UEL and WSFE models, whereas FEM model contains 10,000 elements. 
The time domain results for UEL and WSFE are identical so there is no difference 
visible between them in Figure 9. The incident wave for UEL and FEM match 
completely and there is a very small difference in the boundary reflections. This 
difference is likely due to the difference in element formulations between UEL and 

Figure 9. Transverse velocity response of a healthy plate to a tone-burst signal at the tip.

Table 2. CPU time comparison – healthy plate.

Number of elements Element type Time (sec)
WSFE 1 WSFE 133
UEL 1 WSFE 726
FEM 10,000 8-noded Shell Elements 6517
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Abaqus. As mentioned earlier, UEL is based on the first shear deformation theory 
while Abaqus model uses S8R5 elements. The group velocity for A0 mode for the 
plate lay-up and thickness is 1537 m/s (based on results from Disperse software). 
Accordingly, the time of flight for a wave to travel from plate tip to the fixed 
boundary and come back to the tip after reflection should be 0.00065 s. The UEL 
simulation shows the first reflection from the fixed boundary arriving at 0.00059 
s which is very close to the predicted value. Table 2 shows that the computation 
time for FEM is 6517 s which is almost 10 times higher than the computation 
time for UEL (726 s). WSFE is the most efficient method computationally since 
UEL works within a large FE solver (Abaqus).

4.1.2.  Experimental validation
Experimental investigation is conducted to validate the accuracy of the results 
obtained from WSFE and UEL. As discussed earlier (Figure 9), the time domain 
results for WSFE and UEL are indistinguishable, hence experimental validation 
figures showing WSFE represent UEL results as well. A composite plate with 
[0/90/0/90]s layup is fabricated from AS4/3501-6 pre-preg following vacuum 
bag technique. The plate has a dimension of 0.42 m × 0.317 m and thickness of 
0.0014 m. A piezoelectric (PZT) actuator with 7 mm diameter is bonded to the 
surface of the composite plate using epoxy adhesive. A National Instruments 
PXI 6339 and a BNC-2110 board are used to generate a tone burst signal and a 
QuickPack® power amplifier is used to amplify the actuation signal. In order to 
investigate the sensitivity of the WSFE to different frequencies, two tone burst 
excitations (3.5 cycle) with different central frequencies (25 and 50 kHz) are used 
to generate Lamb waves in the composite plate. A Scanning Laser Vibrometer 
(SLV) is employed to sense the wave motion at two points, P1 and P2 (shown in 
Figure 10). Figure 10(a) shows the location of actuator and sensing points whereas 
experimental set up is illustrated in Figure 10(b).

The acquired velocity data at two sensor points, P1 and P2, are then compared 
to the results obtained from the WSFE model. Figure 11 shows the comparison 
between experimental data and the WSFE simulation results for tone burst sig-
nal with central frequency of 25 kHz while Figure 12 shows the comparison for 
50 kHz excitation frequency.

The experimentally acquired velocity profiles show very good agreement with 
the WSFE simulation results for all the four cases (two sensor locations and two 
excitation frequencies). These results demonstrate the capability of WSFE (and 
UEL) model to accurately predict the wave motion in composite plates even at 
high frequencies such as 50 kHz.

4.2.  Plate with impacted area

Impact damage is a major area of concern for composite structures and Lamb 
waves have shown a lot of potential for their detection. To study wave motion in a 
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plate damaged by an impact, the stiffness is reduced by 50% in the impacted area 
placed in the middle of the plate length. Figure 13 shows a schematic view of the 
plate which is modelled in fixed-free configuration. The square plate dimensions 
are 0.4 m along X- and Y- axes, while the location of impacted area is given by 
L1 = L2 = 0.19 m and Ld = 0.02 m. The thickness of the plate is 0.008 m. Three 
elements are used to model the plate using UEL while FEM needs 6400 elements 
to capture the wave propagation accurately.

The 3.5 cycle 20 kHz tone-burst input load is applied on the free edge of the plate 
in the transverse (Z) direction and results are compared at the two points shown 
in Figure 13. Figure 14 shows the comparison of time domain results between 
UEL and FEM at both points. Partial reflections from impacted area are observed 

(a)

(b)

Figure 10. (a) A schematic view of the plate with PZT and sensor locations; (b) experimental set-up.
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clearly in both cases. The first wave packet (incident wave) and reflections from 
the impacted area show excellent match. The fixed boundary reflections show 
some differences in wave arrival times largely due to differences in element types 
as noted earlier.

Figure 11. Response comparison for 25 kHz input at (a) P1 and (b) P2.

Figure 12. Response comparison for 50 kHz input at (a) P1 and (b) P2.
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It is often instructive to visualise the wave propagation in complex struc-
tures. Employing dummy elements to define contact surfaces, tie, or visualise 
while using UEL has been reported in (Salahouelhadj, Abed-Meraim, Chalal, & 
Balan, 2012) and the same approach is used here to visualise wave propagation 
in the impacted plate. Dummy elements share the same nodes as UEL and have a 

(a)

(b)

Incident 
wave

Impacted area 
reflection

Fixed end 
reflection

Figure 14. Transverse wave propagation in a plate with impacted area (a) Response at the plate 
tip, and (b) Response at the midpoint of the impact (right edge).

Figure 13. Schematic view of a plate with impacted area is shown in blue.
Note: Red dots show the points where results are obtained.
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negligible stiffness. A python script is written to produce a new output database 
file to assign the displacements to each node of dummy elements. Figure 15 shows 
wave propagation in the impacted plate at two different time instances where 
we clearly observe the incident wave (Figure 15(a)) and the wave reflected from 
impact region (Figure 15(b)).

A comparison between run time for UEL and FEM simulations is shown 
in Table 3 along with the number of elements used. The CPU time for UEL 
is 1252 s while it is 3955 s for FEM, that is, UEL is more than 3 times faster 
than FEM.

Figure 15.  Wave propagation in a [0/90/0/90]s composite laminate with impacted area in the 
middle at time instants (a) 80 μs, and (b) 240 μs.
Note: Partial reflection from the impacted area is visible in Figure 15(b).

Table 3. CPU time comparison – impacted plate.

Number of elements Element type Time (sec)
UEL 3 WSFE 1252 
FEM 6400 8-noded Shell Elements 3955
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4.3.  Plate with ply drops

Ply drop is an essential feature of manufacturing composite structures such as 
aircraft wings. A 1.5-m long and 0.5-m wide plate with ply drops (Figure 16) 
is modelled to demonstrate the ability of UEL in simulating such complexities. 
The plate has eight plies at the root (line GH) and its thickness reduces to 4 
plies at the tip (line AB) wherein ply thickness equals 0.001 m. The plate is 
fixed at the left end (along line GH) and all other edges are free. The 3.5 cycle, 
20 kHz tone-burst excitation is applied at the free edge (AB) in the axial (X) 
direction.

For UEL modelling, the plate is divided into three regions along the X-axis. 
The first region, from the fixed end to line EF has the layup of [0/90/0/90]s with 
a thickness of 0.008 m. The second region, EF to CD has [90/0/90]s layup and 
0.006 m thickness. The last region has [0/90]s lay-up and 0.004 m thickness. Since 
there are two discontinuities in the plate (two ply drops), three elements are used 
in UEL modelling. FEM model needs 30,000 elements for simulating wave motion 
in this structure.

Figure 17(a) shows axial velocity measured at the plate tip (midpoint of line 
AB). As expected, two reflections are observed before the fixed end boundary 
reflection arrives. The ply drops act as discontinuities and the first two reflec-
tions are associated with the first and the second ply drops, respectively. For the 
measurement point located at midpoint of line CD (Figure 17(b)), there is only 
one reflection observed before the boundary reflection arrives. Results from UEL 
and FEM show very good match for the incident wave, reflections from first and 
second ply drops, and fixed end boundary reflection. Significant differences are 
observed at later time instances where the waves undergo multiple interactions 
with discontinuities (ply drops and plate boundaries). Table 4 shows the run time 
comparison between UEL and FEM simulations showing more than 13 times 
higher computational efficiency for UEL

Figure 16. Schematic view of a plate with ply drops.
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4.4.  Folded plate

A folded plate represents a three-dimensional structure wherein waves undergo 
mode conversions at fold lines (discontinuities). A 1.5-m long and 0.5-m wide 
plate with two folds is modelled to examine the ability of UEL for simulating 
structures in 3D space. The entire structure has a symmetric lay-up of [0/90/0/90]s 
with 0.008 m thickness. The fold lines divide the structure into three parts (two 
slanted plates and one main plate) and all three parts have the same dimension 

(b)

Incident 
wave

First 
discontinuity 

reflection

Second 
discontinuity 

reflection

Incident 
wave

Second 
discontinuity 

reflection

(a)

Figure 17. Axial velocity response of a plate with ply drops for two sensing locations: (a) Response 
at plate tip, and (b) Response at midpoint of line CD.

Table 4. CPU time comparison – plate with ply drops.

Number of elements Element type Time (sec)
UEL 3 WSFE 1252 
FEM 30,000 8-noded Shell Elements 16,434
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Figure 18. Schematic view of a folded plate.
Note: The coordinate system in red colour (X–Y–Z) indicates global coordinates and the coordinate system 
associated with each element is shown in blue.

Figure 19. Transverse and axial velocity response of a folded plate to a tone-burst signal.
Note: Responses measured at midpoint of line EF.
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of 0.5 m × 0.5 m (Figure 15). The two slanted plates have 45 degree angle with 
the X-axis (rotation about Y-axis). In Figure 18, the coordinate system in red 
colour (X–Y–Z) shows the global coordinate system and the coordinate systems 
associated with each element are shown in blue. The plate is fixed along AB and 
GH edges. The 3.5 cycle 20 kHz tone-burst input load is applied at EF edge in 
Z-direction with the spatial distribution given previously in Equation 6.

Since the fold lines act as discontinuities, three elements are used for UEL 
modelling to represent each region (two slanted plate and one main plate). The 
three elements are assembled along the local 1-direction. For this purpose, a trans-
formation matrix (Equations 4 and 5) is applied to obtain the stiffness matrix in 
global coordinate system for each element. The FEM model needs 30,000 elements 
for the same simulation.

Axial and transverse velocities from UEL and FEM are compared at two loca-
tions on the plate (midpoints of edges EF and CD) given in Figures 19 and 20, 
respectively. The incident waves have perfect match while minor differences are 
observed in the reflections from the fold lines (discontinuity). The incident wave 

Figure 20. Transverse and axial velocity response of a folded plate to a tone-burst signal.
Note: Responses measured at midpoint of line CD.
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Figure 21. Wave propagation in a folded plate.
Note: Blue arrows represent waves in Z-direction (transverse waves) and green ones represent the waves in  
X-direction (axial waves).

Table 5. CPU time comparison – folded plate.

Number of elements Element type Time (sec)
UEL 3 WSFE 947 
FEM 30,000 8-noded Shell Elements 17,964

Figure 22. Schematic view of a plate with stiffener.
Note: Global coordinate system (X–Y–Z) is shown in red and the local coordinate systems for each element are 
shown in blue.
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is in Z-direction (transverse), but both axial and transverse waves are observed 
in the responses. This indicates that a partial wave mode change occurs when the 
incident transverse wave interacts with the fold lines (Figure 21). Table 5 compares 
the CPU time and number of elements for UEL and FEM simulations. The run 
time for UEL is 947 s while the same simulation needs 17,964 s using FEM, thus 
UEL is almost 20 times faster than FEM.

4.5.  Skin-stiffener structure

Stiffened plates are widely used in light weight aerospace structures since they can 
carry both in-plane and out of plane loadings. Figure 22 illustrates the schematic 
view of a skin-stiffener structure used to study wave propagation. The entire 

Figure 23. Wave motion in plate with stiffener at midpoint of edge AB: (a) transverse velocity, and 
(b) axial velocity.
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structure can be divided into two regions, skin and stiffener, wherein the stiffener 
has a 90 degree rotation with respect to skin. In this numerical example, the skin 
has a dimension of 1 m × 0.5 m while the stiffener dimension is 0.5 m × 0.25 m. 
Both skin and stiffener have a symmetric lay-up of [0/90/0/90]s and 0.008 m thick-
ness. The structure is fixed along the edge GH. Load is applied in Z-direction as 
a 3.5 cycle tone-burst with 20 kHz central frequency acting along the free edge of 
the skin (AB) with a spatial distribution given in Equation 6.

Three elements are used to simulate wave propagation in the stiffened struc-
ture with UEL, two elements to model the skin and one element is used for the 
stiffener. The two skin elements and the stiffener are assembled along line CD, 
that is, all three elements share nodes along line CD. Figure 22 also shows the 
local coordinate system (1–2–3) for each element in blue colour and the global 
coordinate system (X–Y–Z) is shown in red colour. The transformation matrix 

Figure 24. Wave motion in plate with stiffener at midpoint of edge CD: (a) transverse velocity, and 
(b) axial velocity.
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discussed previously (Equation 5) is applied on the elemental stiffness matrices 
to transform them to the global coordinate system before assembly.

Figure 23 compares time domain results at the midpoint of edge AB showing 
excellent match between UEL and FEM simulations. It is observed that there is a 
delay for axial wave arrival at the plate tip. The incident wave is in transverse (Z) 
direction and initially there is no axial wave till the transverse wave reaches edge 
CD (stiffener), and then partially reflects back to plate tip after mode conversion. 
Figures 24 and 25 show similar plots for two other locations, namely the midpoint 
of edges CD and EF, respectively. Again, there is very good match between UEL 
and FEM results, including the top of stiffener (line EF). Figures 26(a) and (b) 
show the wave propagation visualisation in the skin-stiffener structure at two 
time instants, 120 and 512 μs, respectively. Figure 26(b) clearly shows that most 
of the incident wave is reflected by the skin-stiffener joint and only a small part 

Figure 25. Wave motion in plate with stiffener at midpoint of edge EF: (a) transverse velocity, and 
(b) axial velocity.
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of the incident wave gets transmitted into the stiffener or the skin on the other 
side of the stiffener. Figure 26(c) shows the wave motion schematically, including 
mode conversions.

Table 6 compares run time and number of elements for FEM and UEL simula-
tions. Again, UEL is about 10 times more efficient compared to the FEM.

Figure 26. Wave propagation in a skin-stiffener structure at (a) 120 μs and (b) 512 μs.
Notes: Wave reflections from the stiffener are clearly observed in Figure 23(b). Figure 23(c) shows blue arrows 
representing waves in Z-direction (transverse waves) and green arrows representing waves in X-direction (axial 
waves).

Table 6. CPU time comparison – plate with stiffener.

Number of elements Element type Time (sec)
UEL 3 WSFE 1117
FEM 22,500 8-noded Shell Elements 10,904
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5.  Concluding remarks

The main objective of this research was to demonstrate the potential of integrating 
spectral finite element technique onto conventional finite element platform for 
efficient simulations of transient dynamics and wave propagation in 2-D com-
posite structures. A wavelet spectral finite element-based user-defined element 
for 2-D laminated plates was formulated and implemented in a commercial finite 
element code (Abaqus). The WSFE is formulated in frequency domain and all of 
the variables and parameters are complex numbers. Since Abaqus (and other com-
mercial finite element solvers) works only with real values, every complex number 
is represented as a 2 × 2 matrix of real numbers and then presented to Abaqus 
for processing. Matrix representation of complex numbers leads to doubling the 
number of DOFs at each node. Therefore, a spectral element with 64 spatial (Y) 
discretisation points at each lateral edge is modelled as 128 nodes at each lateral 
edge. The resulting plate element has 256 nodes with five DOFs at each node.

Five numerical examples were presented to demonstrate the ability of the newly 
developed element to model complex structures: healthy plate, plate with impact 
damage, plate with ply drop, plate with two folds and plate with stiffener. A 3.5 
cycle tone-burst load with 20 kHz central frequency was used to excite the struc-
ture. For the healthy case, UEL and WSFE responses matched completely validat-
ing the UEL formulation. For all numerical examples presented, UEL and FEM 
(Abaqus) results compare very well, except for a few minor differences likely due 
to the differences in element formulations. It was shown that UEL captured the 
reflections from boundary, discontinuity, and damaged areas correctly. A python 
script was written to visualise UEL results to get a better understanding of wave 
propagation.

The CPU time for the UEL in all five examples is much less compared to the 
same simulation for FEM. For a healthy case, the CPU time for the UEL was 11% 
of FEM. Similar number for the other four numerical examples, namely, impact 
damage, ply drop, folded plate and stiffener was 32, 8, 5 and 10%, respectively. 
Therefore, UEL was shown to be preserving the computational efficiency of the 
WSFE along with the ability to model complex features using facilities available 
in Abaqus.
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