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ABSTRACT
The h-p hybrid finite element method is used in this paper 
for the dynamic analysis of a symmetrical on-board rotor 
on mobile dimensionally stable supports. The disc and the 
bearings are assumed to be rigid, with deformable shaft, 
the material is isotropic. A three-dimensional beam element 
is used for the discretization of the rotor. In the standard 
h-version of the finite element, the used shape functions are 
cubic Hermit, which respect the boundary conditions in all 
directions, the shape functions-h are modified so they can 
make the combination between K-orthogonal polynomial 
shape functions facilitating combination to use the h-p 
version of the finite element method. Energy method is used 
for the determination of energy for the entire rotor system. The 
equations of motion of the rotor system are determined by 
the Lagrange method. The calculation steps for linear dynamic 
behaviour of on-board rotor system analysis are grouped in 
an application created using MATLAB programming language 
and validated with the work done previously by the classic 
version of the finite element method. In this paper, we make 
a comparison of the natural frequencies of on-board rotor 
system, obtained by the h-p version of the finite element 
method with version h.

1.  Introduction

The h-p version is a general version of the finite element method, a numerical 
method to solve partial differential equations based on approximations polynomial 
elements that use variable sized elements (h) and polynomial of degree (p). The 
origins date back to h-p-MEF innovative work of Babuska and Guo (1992) who 
discovered that the finite element method converges exponentially fast when the 
mesh is refined using an appropriate combination of refinements – h (dividing 
into smaller elements) and – p refinement (by increasing the polynomial degree). 
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The exponential convergence makes the method a very attractive choice compared 
to most other methods of finite elements that converge at an algebraic rate. The 
exponential convergence of the h-p-MEF was not only theoretically predicted, 
but observed by many independent researchers.

Many scientists have focused on this axis and have given several finite element 
codes such as Probe (Szabo, 1985a) and Fiesta (Szabo, 1985b); Heuveline and 
Rannacher (2003) also worked on the h-p version of the finite element methods, 
Babuška and Suri (1987) used the h-p version of the finite element method for 
shells, as there is a study on a beam by the Bernoulli h-p version of the finite ele-
ment by Bardell (1996), on the other hand in the dynamic field of rotor not many 
articles by h-p version of the MEF are found, we can cite the work of Boukhalfa 
and Hadjoui (2010) on composite rotor.

Rotating machines play a vital role in many modern industrial applications. 
Most of them can be considered as embedded machine mainly affected by an 
imbalance and excitations due to the support.

Knowledge of the vibration behaviour of the rotors has a great importance 
for manufacturers and uses of these equipment; many researchers focused their 
research on this axis and the dynamic behaviour study, especially for critical 
rotor speeds that differs from its non-rotary natural frequency. The main reason 
for this difference is known as the gyroscopic effect. Green (1948) for the first 
time has studied the gyroscopic effect on the normal frequency of flexible rotors. 
Eshienman and Eubanks (1967) and Rao (1983) also studied the gyroscopic effect 
on the normal frequency of rotating shafts The external loading can also change 
the lateral normal frequency of rotating shafts. The effect of the axial force and 
torque twist externally applied to the lateral vibration of the rotating shafts has 
been studied by several investigators. Bokaian (1948) introduced the changes in 
lateral normal frequency of Euler Bernoulli beams under axial load with various 
boundary conditions. Choi II, Pierre and Ulsoy (1995) derived the equation of a 
rotating shaft subjected to constant compressive axial load by introducing gyro-
scopic times. Khader (1995) studied the stability of a cantilever bend shaft with a 
hard disc at its free end, subjected to axial load and torque. Chen and Sheu (1998) 
have investigated analytically the behaviour stability of a Timoshenko rotating 
shaft with a disc subjected to a longitudinal force. They gave the expressions of 
equations frequencies for different boundary conditions. Chen and Ku (1992) 
examined the dynamic stability of a cantilever shaft-disc system subject to periodic 
axial force by the finite element method and have given the limitations of dynamic 
instability. The inertial forces may also induce axial loads on rotating shafts, and 
the rotation of a beam around an axis perpendicular to the axis, create centrifugal 
forces directly producing axial forces in the beam, this phenomenon was also 
studied by researchers. Banerjee (2000) used the dynamic stiffness matrix for 
the case of beam of Euler Bernoulli with the axial force for the vibration analysis. 
Lin and Hsiao (2001) have derived the equation governing linear vibrations of a 
Timoshenko beam, and proposed a method based on the resolution of the entire 
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series to reach the final solution which is the natural frequency of the Timoshenko 
beam. Nelson et al. (1976) used the finite element method to study the rotors on 
deformable supports. The dynamic behaviour study of a rotor in the boarding 
effect is the study of the global behaviour of the rotor whose support is subject 
to any movements. This model is well suited to understand the movement of 
rotors phenomenon embedded in vehicles, aircraft etc. This phenomenon recently 
attracted the attention of researchers. Duchemin, Berlioz, and Ferraris (2006) 
made a detailed study based on the simple model of Rayleigh-Ritz, a rotor whose 
support is in motion. Various analytical studies were performed on simple move-
ments, simple translation, sinusoidal translation, constant rotation, accelerated 
rotation. Dakel (2013) continued the work by adding the hydrodynamic bearings 
by the conventional finite element method. In the work of Boukhalfa and Hadjoui 
(2010), we find a study on behaviour of composite rotor materials by h-p version 
finite element. Based on the latter two works, in our case we will make a study 
of an on-board rotor, whose support is assumed to be rigid and mobile, with the 
application of the h p-version finite element.

2.  Model of on-board rotor

In general, a rotor system is composed of a shaft supported by bearings, and having 
one or more discs. In this study, the solicitations considered are the imposed dis-
placements of rigid base. The number of each component can be more than one, 
however, in this paper, the studied rotor has one shaft (single shaft), (see Figure 1)

The assumptions that we consider in this paper are:

• � The shaft is deformable and modelled by homogeneous straight beams, iso-
tropic, linear elastic with constants sections subjected to bending moment 
in two orthogonal directions (horizontal and vertical directions).

• � The discs are assumed to be rigid.
• � The bearings are assumed to be rigid.
• � The rotor support is infinitely rigid; but mobile.

Shaft 
Disc 

Bearings 

Figure 1. On-board rotor.
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The consideration of the motion of the support can significantly affect the form 
of the equations of motion of a rotor in flexion with respect to those obtained in 
the case of a fixed support. To obtain the simplest possible model, the approach 
presented by Duchemin et al. (2006) is used. It offers the modelling of a rotor with 
mobile support by considering the motion of the rotor relative to the support and 
that of the support relative to the ground. This is to study the transverse deflections 
of the mid-line of the rotor shaft relative to a reference linked to the rigid support.

The steps for obtaining the equations of motion are inspired by the approach 
used by Lalanne and Ferraris (1998), so it needs the description of the movement 
of the on-board rotor and vectors expressing rotations between them.

The differential equations of the bending motion of an on-board steady rotor 
are deducted from the equations LAGRANGE applied with respect to the gener-
alised coordinates as follows:

 

2.1.  Equations elaboration

In order not to neglect motion of the support, three main frames are defined:

• � The fixed Galilean reference frame Rg(xg, yg, zg)
• � The reference related to the deformable support Rs(xs, ys, zs),
• � The current rotating reference frame, connected to the rotor R(x, y, z).

The centres of these frames are, respectively, O, A and C.
The calculation of the expressions of kinetic energies of the shaft and the disc, 

requires the calculation of velocity vectors and rotation of the frame R relative 
to the frame Rg.

Since there are three frames considered, two reference system changes may be 
performed by:

• � Transforming the frame attached to the support Rs to the local frame R
• � The transformation of the Galilean reference frame Rg to the frame attached 

to the support Rs

Generally in rotor dynamics, the rotation of a reference frame R linked to a 
point in the deformable shaft relative to the frame Rs attached to the support is 
defined by Euler angles �x , �yet �z (Figure 2), by involving two intermediate frames.

• � A rotation angle θz around zs (intermediate frame R1(x1, y1, z1)).
• � A rotation angle θx around the new axis x1 intermediate frame R2(x2, y2, z2)).
• � A rotation angle θy around the final axis y∕∕y2 (final frame R(x, y, z)).

Which rotation vector of the frame R relative to Rs expressed in R

(1.1)
d

dt

(
𝜕E

𝜕q̇𝚤

)
−

𝜕E

𝜕qi
+

𝜕U

𝜕qi
= 𝛿Fi
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The motion of the base is defined by the coordinates xA, yA, and zA, of the vector 
�����⃗OA expressed in the frame Rg, and by the angles �, �, and γ which allow to go 
from frame Rg to frame Rs (see Figure 3):

• � a rotation angle α around zg (intermediate frame R�(x�, y�, z�))
• � a rotation angle β around the new axis x′ (intermediate frame R��(x��, y��, z��))
• � a rotation angle γ around the final axisy�� = ys (final frame Rs(xs, ys, zs))

(1.2)Ω⃗Rs
R =

⎡⎢⎢⎢⎣

0

0

𝜃̇z

⎤⎥⎥⎥⎦Rs

+

⎡⎢⎢⎢⎣

𝜃̇x
0

0

⎤⎥⎥⎥⎦R2

+

⎡⎢⎢⎢⎣

0

𝜃̇y

0

⎤⎥⎥⎥⎦R

(1.3)Ω⃗Rs
R =

⎡⎢⎢⎢⎣

𝜃̇x cos 𝜃y − 𝜃̇z cos 𝜃x sin 𝜃y
𝜃̇y + 𝜃̇z sin 𝜃x

𝜃̇x sin 𝜃y + 𝜃̇z cos 𝜃x cos 𝜃y

⎤
⎥⎥⎥⎦R

Figure 2. Intermediate frame used to move from frame Rs linked to the support frame R related 
to the deformed shaft.

Figure 3.  Intermediate frame, transition from Galilean reference Rg to frame Rs linked to the 
support.



European Journal of Computational Mechanics    393

Knowing that the rotations �, �, and γ depend on time t (Figure 4).
The rotation vector of the frame Rs compared to Rg expressed in Rs is written as,
 

 

To configure the translation movements of the support, the coordinates X, Y, Z of 
the vector �����⃗OA expressed in frame Rs are used (Duchemin et al., 2006).
 

Starting from the equations of motion of the support expressed in the Galilean 
reference Rg, the rotation vector coordinates and position of the frame R with 
respect to Rg can be obtained easily. For the following developments, equations are 
expressed in terms of 𝛼̇s, 𝛽̇s, 𝛾̇s and X, Y, Z and their derivatives with respect to time.

The rotation vector of frame R with respect to frame Rg is :
 

 

 

(1.4)Ω⃗
Rg

Rs

=

⎡⎢⎢⎢⎣

0

0

𝛼̇

⎤⎥⎥⎥⎦R�

+

⎡⎢⎢⎢⎣

𝛽̇

0

0

⎤⎥⎥⎥⎦R��

+

⎡⎢⎢⎢⎣

0

𝛾̇

0

⎤⎥⎥⎥⎦Rs

(1.5)Ω⃗
Rg

Rs

=

⎡⎢⎢⎢⎣

𝛽̇ cos 𝛾 − 𝛼̇ cos 𝛽 sin 𝛾

𝛾̇ + 𝛼̇ sin 𝛽

𝛽̇ sin 𝛾 + 𝛼̇ cos 𝛽 cos 𝛾

⎤⎥⎥⎥⎦Rs

=

⎡⎢⎢⎢⎣

𝛼̇s
𝛽̇s
𝛾̇s

⎤⎥⎥⎥⎦Rs

(1.6)

�����⃗OA =

⎡⎢⎢⎢⎣

�
xA cos 𝛼 + yA sin 𝛼

�
cos 𝛾 −

�
zA cos 𝛽 +

�
xA sin 𝛼 − yA cos 𝛼

�
sin 𝛽

�
sin 𝛾

zA sin 𝛽 −
�
xA sin 𝛼 − yA cos 𝛼

�
cos 𝛽�

xA cos 𝛼 + yA sin 𝛼
�
sin 𝛾 +

�
zA cos 𝛽 +

�
xA sin 𝛼 − yA cos 𝛼

�
sin 𝛽

�
cos 𝛾

⎤⎥⎥⎥⎦Rs

=

⎡⎢⎢⎢⎣

X

Y

Z

⎤⎥⎥⎥⎦

(1.7)Ω⃗
Rg

R
= Ω⃗

Rg

Rs

+ Ω⃗Rs
R =

⎡⎢⎢⎢⎣

𝛼̇s
𝛽̇s
𝛾̇s

⎤⎥⎥⎥⎦Rs

+

⎡⎢⎢⎢⎣

0

0

𝜃̇z

⎤
⎥⎥⎥⎦Rs

+

⎡⎢⎢⎢⎣

𝜃̇x
0

0

⎤
⎥⎥⎥⎦R2

+

⎡⎢⎢⎢⎣

0

𝜃̇y

0

⎤
⎥⎥⎥⎦R

(1.8)

Ω⃗
Rg

R

=

⎡⎢⎢⎢⎢⎣

�
𝛼̇s cos 𝜃z + 𝛽̇s sin 𝜃z + 𝜃̇x

�
cos 𝜃y −

��
𝛼̇s sin 𝜃z − 𝛽̇s cos 𝜃z

�
sin 𝜃x +

�
𝛾̇s + 𝜃̇y

�
cos 𝜃x

�
sin 𝜃y

−
�
𝛼̇s sin 𝜃z − 𝛽̇s cos 𝜃z

�
cos 𝜃x +

�
𝛾̇s + 𝜃̇y

�
sin 𝜃x + 𝜃̇y�

𝛼̇s cos 𝜃z + 𝛽̇s sin 𝜃z + 𝜃̇x
�
sin 𝜃y +

��
𝛼̇s sin 𝜃z − 𝛽̇s cos 𝜃z

�
sin 𝜃x +

�
𝛾̇s + 𝜃̇y

�
cos 𝜃x

�
cos 𝜃y

⎤⎥⎥⎥⎥⎦R

(1.9)

Ω⃗
Rg

R
=

⎡
⎢⎢⎢⎣

𝜔x

𝜔y

𝜔z

⎤⎥⎥⎥⎦
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The rotor rotation speed is along the axis y; θz and θx represent the angular defor-
mation of the shaft in directions x and z; θy represents its angular position relative 
to the support. The shaft undergoes only small deformations (elastic domain), θz 
and θx are considered infinitely small angles.

Based on the assumptions, the rotor rotates at constant speed 𝜃̇y :
 

Let (u, y,w) be displacement of a point C of the shaft in frame Rs, u and w are 
variables where y is considered constant since only the shaft deflection movements 
are studied, so:

 

And the velocity vector of point C relative to the Galilean reference is:
 

 

 

The terms of the kinetic energies of the shaft and the disc can be calculated from 
the expressions of the rotation vector Ω⃗

Rg

R
 and the velocity of point C with respect 

to frame Rg

2.1.1.  Disc kinetic energy
In general case, the disc is assumed to be perfectly rigid and only its kinetic energy 
is taken, the disc centre C is located at the arbitrary position yd (Figure 1). Its 
kinetic energy is written as:

 

(1.10)𝜃̇y = Ω and 𝜃y = Ω t

(1.11)�����⃗AC =

⎡⎢⎢⎢⎣

u(y, t)

y

w(y, t)

⎤⎥⎥⎥⎦Rs

(1.12)

V⃗ g (C) =
dg

dt
�����⃗OC =

ds

dt
�����⃗OC + Ω⃗

Rg

Rs

∧ �����⃗OC avec �����⃗OC = �����⃗OA + �����⃗AC =

⎡⎢⎢⎢⎣

X + u(y, t)

Y + y

Z + w(y, t)

⎤⎥⎥⎥⎦

(1.13)V⃗ g (C) =

⎡⎢⎢⎢⎣

Ẋ + u̇

Ẏ

Ż + ẇ

⎤⎥⎥⎥⎦Rs

+

⎡⎢⎢⎢⎣

𝛼̇s
𝛽̇s
𝛾̇s

⎤⎥⎥⎥⎦Rs

∧

⎡⎢⎢⎢⎣

X + u

Y + y

Z + w

⎤⎥⎥⎥⎦Rs

(1.14)V⃗ g (C) =

⎡⎢⎢⎢⎣

Ẋ + u̇ + 𝛽̇s(Z + w) − 𝛾̇s
�
Y + y

�
Ẏ + 𝛾̇s(X + u) − 𝛼̇s(Z + w)

Ż + ẇ + 𝛼̇s
�
Y + y

�
− 𝛽̇s(X + u)

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

uc

vc
wc

⎤⎥⎥⎥⎦

(1.15)ED =
1

2
md

(
V⃗ g (C)

)2

+
1

2
Ω⃗

Rg

R
IcΩ⃗

Rg

R
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where md is the mass of the disc and Ic is its principal inertia tensor expressed in 
the frame related to the disc:

 

If the disc is symmetrical: Idx = Idz, then the kinetic energy is:
 

To distinguish the effects due to the inertia of the average section of the disc and 
the effects of the asymmetry, the following notation is used:

 

The kinetic energy of the disc is then written as:
 

With:
 

The final expression of the kinetic energy Ed of the mass centre of disc placed at 
the arbitrary abscissa yd along the axis Oy of the frame related to the support R is :

 

 

(1.16)Ic =

⎡⎢⎢⎢⎣

Idx 0 0

0 Idy 0

0 0 Idz

⎤⎥⎥⎥⎦

(1.17)ED =
1

2
md

(
u2
c + v2c + w2

c

)
+

1

2

(
Idx�

2
x + Idy�

2
y + Idz�

2
z

)

(1.18)I
mo

md
=

Idx + Idz
2

, Idimd
=

Idx − Idz
2

, I
y
md

= Idy

(1.19)Ed =
1

2
mdt1

(
y, t

)
+

1

2

[
I
mo

md
t2
(
y, t

)
+ I

y
md
t3
(
y, t

)
+ Idimd

t4
(
y, t

)]

(1.20)

t1
(
y, t

)
= u2

c + v2c + w2
c

t2
(
y, t

)
= �2

x + �2
z

t3
(
y, t

)
= �2

y

t4
(
y, t

)
= �2

x − �2
z

(1.21)Ed = Ed,1 + Ed,2 + Ed,3 + Ed,4

(1.22)

Ed,1 =
1

2
md

((
ẋ
0
+ z

0
𝜔y −

(
y
0
+ yd

)
𝜔z

)2
+
(
ẏ
0
− z

0
𝜔x + x

0
𝜔z

)2
+
(
ż
0
+
(
y
0
+ yd

)
𝜔x − x

0
𝜔y

)2
+ u̇2

d + ẇ2

d

+ 2
((
ẋ
0
+ z

0
𝜔y −

(
y
0
+ yd

)
𝜔z

))(
u̇d + wd𝜔

y
)

+ 2
((
ż
0
+
(
y
0
+ yd

)
𝜔x − x

0
𝜔y

))(
ẇd − ud𝜔

y
)

− 2
((
ẏ
0
− z

0
𝜔x + x

0
𝜔z

))(
wd𝜔

x − ud𝜔
z
)
+ 2

(
u̇dwd − ẇdud

)
𝜔y

+ w2

d𝜔
x2 +

(
u2

d + w2

d

)
𝜔y2 + u2

d𝜔
z2 − 2udwd𝜔

x𝜔z
)
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2.1.2.  Shaft energies
The shaft is supposed to be deformable. It is necessary to calculate both its kinetic 
energy and its strain energy.

• � Kinetic energy
The kinetic energy of a shaft element dEa can be derived by extension of the 

kinetic energy of the disc considering an infinitely thin shaft section, with a thick-
ness dy, and section Sa (supposed to be constant), density ρa and Section inertia 
Iax and Iaz (also assumed to be constant).

Elementary kinetic energy of an infinitely thin shaft section is then:
 

When the shaft is not symmetrical (Iax ≠ Iaz), it has the following amounts:
 

 

(1.23)
Ed,2 =

1

2
I
mo

md

(
𝜃̇2z + 𝜃̇2x + 2𝜃̇x𝜔

x − 2
(
𝜃̇z𝜃x − 𝜃̇x𝜃z

)
𝜔y + 2𝜃̇z𝜔

z −
(
𝜃2z − 1

)
𝜔x2

+
(
𝜃2z + 𝜃2x

)
𝜔y2 −

(
𝜃2x − 1

)
𝜔z2 + 2𝜃z𝜃x𝜔

x𝜔z + 2
(
𝜃z𝜔

x − 𝜃x𝜔
z
)
𝜔y

)

(1.24)
Ed,3 =

1

2
I
y
md

(
(Ω + 𝜔y)

2 + 𝜃2z𝜔
x2 + 𝜃2x𝜔

z2 + (Ω + 𝜔y)

×
(
2𝜃̇z𝜃x −

(
𝜃2z + 𝜃2x

)
𝜔y − 2

(
𝜃z𝜔

x − 𝜃x𝜔
z
))

− 2𝜃z𝜃x𝜔
x𝜔z

)

(1.25)

Ed,4 = −
1

2
Idimd

(
𝜃̇2z − 𝜃̇2x − 2𝜃̇x𝜔

x − 2
(
𝜃̇z𝜃x + 𝜃̇x𝜃z

)
𝜔y + 2𝜃̇z𝜔

z +
(
𝜃2z − 1

)
𝜔x2

−
(
𝜃2z − 𝜃2x

)
𝜔y2 −

(
𝜃2x − 1

)
𝜔z2 + 2𝜃z𝜃x𝜔

x𝜔z

− 2
(
𝜃z𝜔

x + 𝜃x𝜔
z
)
𝜔y) cos 2Ωt

−
1

2
Idimd

(2𝜃̇z 𝜃̇x + 2𝜃̇z𝜔
x + 2

(
𝜃̇z𝜃z − 𝜃̇x𝜃x

)
𝜔y + 2𝜃̇x𝜔

z

+ 2𝜃z𝜃x

(
𝜔x2 − 𝜔y2

)
−
(
𝜃2z + 𝜃2x − 2

)
𝜔x𝜔z

− 2
(
𝜃x𝜔

x − 𝜃z𝜔
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The development of Equation (1.28) leads to the final expression for the kinetic 
energy:

 

 

 

 

 

• � Strain energy
The strain energy is not affected by the movement of the support because it only 
depends on the constraints and therefore the deformation of the shaft with respect 
to the support. In this calculation, only the deformations due to bending is taken 
into account (the effects of shear are neglected) (Dakel, 2013).

In the case of an Euler–Bernoulli beam, shear effects are neglected and relation-
ships between rotations θz and θx supposedly small and u and w displacements 
are expressed by:
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3.  Modelling of the rotor with the h-p version of the finite element

In the h-p version of the finite element method, with an assembly of the same 
way as the conventional version of the finite element method for multiple items, 
the error can be controlled not only by refining the mesh, but also by increasing 
the degree of shape functions (polynomial of degree p) of all elements (Lin & 
Hsiao, 2001).

In our study, we use the method of hierarchical finite elements with polynomial 
shape functions K-orthogonal generated by the Legendre differential equation 
(Bardell, 1996), combined with the classic method of finite elements, ensuring 
compatibility between the two versions. The rotating shaft is modelled by hierar-
chical 3D beam elements with Euler–Bernoulli beam type Each element is shown 
in Figures 4 and 5 with two nodes 1 and 2. In case of a stepped shaft, several 
elements may be used.

Local coordinates are related to the non-dimensional coordinates by the 
equation:
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Figure 4. Bar element with two nodes (nodes and internal displacement).
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In p version of the finite elements, the group of shape functions is composed of 
two parts, 

 

The first four functions are those of the finite element necessary for the description 
of displacement q1, q3, and rotations q2, q4 at the nodes of the element, so we use 
cubic Hermit shape functions (Bardell, 1996).

 

The other shape functions up to the maximum number of polynomial degree 
taken p, are the functions contributing to the internal displacement field, and are 
polynomial K-orthogonal type.

For this particular problem, there is a great advantage in the search for a set 
of hierarchical shape functions that are orthogonal second derivative, both for 
themselves and the four original cubic Hermit functions. Such an assembly may 
be derived from the form of special Rodrigues Legendre polynomials (Peano, 
1976); the generating function is mentioned below.
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Figure 5. Positions of the disc into the shaft (one element).
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The vector of generalised displacements is given by:
 

 

The vector of generalised displacements is given by:
 

The displacement vector {B} is given by:
 

where [N] is the shape functions matrix
 

3.1.  Elementary matrices

To obtain the elementary matrices of the shaft according to the h-p version of 
the finite elements, we must make a change in Cartesian coordinates to no-di-
mensional coordinates, the introduction of the matrices of the shape functions, 
and the Euler–Lagrange equations are applied to obtain the following system of 
equations (Boukhalfa & Hadjoui, 2010):
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In the same manner as the shaft to obtain the elementary matrices of the disc, 
mass and gyroscopic stiffness of the support, by applying the Lagrange’s equations 
on Equations (1.21–1.25), knowing that the disc is considered as a concentrated 
mass at a node (Figure 6).

We obtain the following matrices 
[
Med(t)

]
, 
[
Ced(t)

]
, 
[
Ked(t)

]
, and 

{
Fed(t)

}
 which 

are: elementary mass matrices, gyroscopic, stiffness generated by the movement 
of the support and the vector of the excitation force of the disc generated by the 
movement of the support.

3.2.  Elementary movement equation

Applying Lagrange equations to the discretised system by h-p version of the finite 
element method, we obtain the following differential equations:
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4.  Simulation and results

4.1.  Symmetrical on-board rotor with rigid bearing

A computer programme for determining the natural modes of on-board rotor 
has been developed and for validate this programme, we have the rotor shown 
in Figure 6.

Table 1 shows the characteristics of symmetric rotor used in the literary Lalanne 
and Ferraris (1998), Duchemin et al. (2006), Dakel (2013).

In the Table 2 we find the features used for modelling with the finite element 
h-p version.

The symmetrical shaft is modelled by three identical finite element Euler–
Bernoulli beam type. The symmetrical disc is located at node 2. The bearings 
are assumed to be rigid, generate a rotor-bearing at both ends and are located at 
nodes 1 and 4. Thus, the corresponding displacements are cancelled (Figure 6).

Figure 6. On-board symmetric rotor.

The rotor operates at a constant rotation speed Ω (rpm) and is subjected to the 
excitation of the constant rotary motion of the support: the rotation is constant 
around the axis Ox (or Oy) is given by ωx (or ωy). The equations of motion due 
to rotation ωx of the support are shown in Equation (3.1) and those due to ωy in 
Equation (3.2):
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To demonstrate the basic phenomena occurring in rotor dynamics with the move-
ments of the support and compare them to those related to the case of a fixed 
support, the analysis of the dynamic behaviour in continuous operation is per-
formed through Campbell diagram.

Moreover, the equations of motion (3.1) and (3.2) of on-board rotor are 
assigned parametrically (left side of the equations) by rotations of the support, 
while the translations of the support only have an influence on the vector of the 
external forces (second member). The dynamic behaviour is completely analysed 
in accordance with the rotation of the support.

4.2.  Campbell diagram

In the case where the rotor is symmetrical and subjected to a constant rotation of 
the support, the linear equations of motion (3.1) and (3.2) always have constant 
coefficients. It should be mentioned that a fixed support or a rotating support 
about the axis Oy leave the system isotropic, while rotation of the support about 
the axis Ox makes the system anisotropic. Furthermore, the sign of the components 
of damping and stiffness matrices depends on the direction and rotation of the 
support about Oy but not on the direction of the rotation of the support about Ox.

In the case of a positive direction (counter clockwise) of rotation of the support 
around Oy and any direction around de Ox, symmetrical stiffness matrices may lose 
their characteristic positive definite because of the presence of diagonal negative 
terms containing the angular velocity ωx or ωy.

To calculate the paper values of the system, we use Equations (3.1) and (3.2) 
without the second member, the results obtained are purely imaginary quantities 
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Table 1. Characteristics of symmetric rotor.

Density of the disc material  �
d
= 7800 kg/m3

Outer radius of the disc  r
d
= .15 m

Disc thickness  e
d
= .03 m

Position of the disc  yd = .4/3 m
Density of the shaft material  �

a
= 7800 kg/m3

Radius of the shaft  r
a
= .01 m

Length of the shaft  l
a
= .4 m

Young Module of the shaft  E
a
= 2 × 10

11 N/m2

Poisson coefficient of the shaft  υa = .3

Table 2. Modelling features in version h-p finite element.

Number of elements  nel = 03
Polynomial degree of elements  p = 10
Length of the elements  le = la/nel
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regardless of the constant angular velocity of rotation of the support in the area 
of interest ωx or �y ∈ [0;10Hz], the on-board rotor is stable for all modal forms 
considered included within its operating speed range Ω ∈ [0;6000 tr min] .

Natural frequency fr deduced from these eigenvalues depends on the speed of 
rotation Ω of the rotor and the angular velocity of rotation of the support about 
either Ox or Oy . They are represented with Campbell diagrams plotted in (Figure 10)  
for the rotor subjected to the angular velocity ωx or ωy. When the rotor of the 
support is fixed (ωx or ωy = 0), the system is isotropic and therefore the dynamic 
behaviour of the rotor is symmetrical, that is to say, the natural frequencies of 
each pair of forward and reverse precession modes are equal at rest (Ω = 0). Even 
though the natural frequency does not change greatly, rotation �x(or�y) of the 
support generates an asymmetry in the behaviour of the rotor.

4.2.1.  Interpretation of results and validation
A programme for calculating the natural frequencies and plotting Campbell dia-
grams was developed, using MATLAB programming language. After validating 
this programme, several examples were processed to determine the influence of 
angular perturbations of the support relative to the axes Ox and Oy and the loca-
tions of the discs on the rotor.

The results calculated in this article are handled with the h-p version of the 
finite elements method. It groups two methods, the classic version of the finite 
elements (h-FEM) and the p-version of the finite elements (p-FEM).

The advantage of using the h-p version of the finite element method in this 
paper is the ability to control both parameters of the previous versions (h-FEM 
and p-FEM). Knowing that if we fix the degree of polynomial in p = 4, and we vary 
the other one parametrizes (mesh degree h), the h-p version is converted into h 
version, and the found results are identical to those of the h version.

The same thing applies if we fix the mesh degree (h), and we vary the polyno-
mial degree (p), the found results are similar to those of the p-version of the FEM.

In Figures 8–12, we proceeded as follows:

• � Figures 8 and 11; we fix the number of elements (h-refinement) and we vary 
the polynomial degree-p.

• � Figures 9 and 12; we fix the polynomial degree-p and we vary the number 
of elements (h-refinement).

• � In the case of the Figure 10; we vary simultaneously both parameters 
(h-refinement and polynomial degree-p) using the following method: 
(pi = pi−1 + 1 and hi = hi−1 ∗ 2).

4.2.2.  Convergences of results
The results of the five bending modes for our model on-board rotor according to 
the number of shape functions are shown in Figure 7. The figure shows the rapid 
convergence to the exact values by increasing the number of shape functions. The 
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bending modes are identical for a number of hierarchical finite element equal to 3, 
it shows the accuracy of the method with a reduced number of the shape functions.

Figure 8.  Convergence of the first frequency based on the number of p hierarchical shape 
functions with a fixed number of elements, at a speed of 1500 rpm.

Figure 7. Convergence of the first five bending frequency according to the number of hierarchies 
of functions p (fixed support).

We notice that the convergence is very rapidly obtained for low frequencies 
(Figures 8 and 9) by increasing both parameters (h and p) of the version h-p. 
The gap between the results is very small and can be neglected; so to have good 
results for low frequencies, increasing the elements number (h-refinement) and the 
polynomial degree (p-refinement) are not necessary; we need to fix a parameter 
(either the number of elements -h or the polynomial degree-p) and varying the 
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other one until the convergence is obtained. This phenomenon is generally valid 
for the low frequencies, between the first and the fifth one.

For high frequencies (Figures 11 and 12), starting from the sixth one, increasing 
the elements number (h-refinement) and the polynomial degree (p-refinement) 
are necessary and gives better results.

In the Figures 8 and 11, the curves of convergence are traced by the fixation of 
the mesh degree h and the variation of the polynomial degree p, we notice that 
more we increase the number of elements (h-refinement) more the gap between 
the curves of convergence decreases.

In case we fix the degree of polynomial p and we vary the mesh degree h 
(Figures 9 and 12), we notice that the convergence is very low(weak) in the case 
or p = 4 (which represents the h version of FEM), and in the case or p ≥ 5 we have 
a fast convergence.

In Figure 10 we see that convergence is exponentially fast, However, we cannot 
provide a typical combination.

Figure 9. Convergence of the first frequency based on the number of elements (h), with a fixed 
polynomial degree (p) and a speed of 1500 rpm.

Figure 10. Convergence of the first frequency with a combination of the mesh degree-h and the 
polynomial degree-p with (pi = pi−1 + 1 and hi = hi−1 × 2) in a 1500 rpm rotational speed.
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4.2.3.  Interpretations of Campbell diagrams
Figure 13 shows the variation in the frequencies of the bending with versus the 
rotational speed (Campbell diagram) of the first two modes. The influence of the 
angular speed of the support taken in this example (�x = 0, 5, et 10Hz) is small, 
so better visualised the results on the graph, we used zooms in on two areas (see 
Figures 14 and 15).

We notice from these results that the influence of rotation of the support with 
respect to the Ox axis is very weak from the small angular rotations (5, 10 Hz), 
it is therefore concluded to have significant vibrations due to the rotation of the 
support along the Ox axis; these rotations must be as important.

Figure 12. Convergence of the seventh frequency based on the number of elements (h), with a 
fixed polynomial degree (p) and a speed of 1500 rpm.

Figure 11. Convergence of the seventh frequency depending on the number of p hierarchical 
shape functions with a fixed number of elements, at a speed of 1500 rpm.
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Figure 13. Campbell diagram for the first four frequencies of the rotor under the effect of the 
angular velocity of the support (�x = 0, 5, et 10Hz).

Figure 14. Expansion in zone 01 in Figure 12.

Figure 15. Expansion in zone 02 in Figure 12.
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4.2.4.  Comparison of results with other methods

• � The case for a fixed support
In the Tables 3 and 4, we notice a slight gap of the results between both methods 
in spite of the difference of the taken finite elements number, for the classical finite 
element method, we took six elements, while in h-p version we took just three 
elements, all it took is just an increased degree of the polynomial (p). Convergence 
in the case of the finite element version h-p can be obtained by combining the 
number of elements h and the polynomial degree p. With a reduced number of 
elements, we have accurate results by increasing the degree of the polynomial.

• � Table 5 represents the difference between the two methods when the sup-
port rotates at an angular velocity �x = 5, 10Hz about the axis Ox

We notice from Table 5, the h-p version of the finite element results is close to 
those of the classical version of the finite elements (h-FEM), knowing that in our 
example for version h-p it took only three elements and ‘10-degree’ polynomial, 
while in the classical version we took six elements for the discretization of the shaft.

Table 3. Intersection of frequency curves with the line f = Ω/60 in the Campbell diagram in the 
case where the support is fixed gives three critical speeds.

FEM version-h h-p version FEM
First indirect mode Critical speed 2456.58 rpm 245.504 rpm

Frequency 40.94 Hz 40.917 Hz
First direct mode Critical speed 2959.17 rpm 2955.784 rpm

Frequency 49.32 Hz 49.263 Hz
Second indirect mode Critical speed 4899.23 rpm 4898.429 rpm

Frequency 81.65 Hz 81.640 Hz

Table 4. Natural frequency depending on the rotational speed of the rotor and the fixed support 
(I and D is the reverse precision modes and direct respectively).

Ω (rpm) fr (Hz)

Support fixed

h-p-FEM/h-FEM (ε%)h-p version FEM h-version FEM
0  f I

1
45.57 45.61 .09

 f D
1

45.57 45.61 .09
 f I
2

12.595 12.596 .00
 f D
2

12.595 12.596 .00
1500  f I

1
42.90 42.93 .06

 f D
1

47.68 47.72 .09
 f I
2

10.679 10.679 .00
 f D
2

15.082 15.083 .01
3000  f I

1
39.70 39.72 .05

 f D
1

49.31 49.35 .09
 f I
2

92.98 92.99 .01
 f D
2

18.097 181 .02
4500  f I

1
36.16 36.18 .04

 f D
1

50.57 50.62 .11
 f I
2

83.56 83.57 .01
 f D
2

21.553 21.557 .02
6000  f I

1
32.60 32.61 .04

 f D
1

51.55 51.61 .11
 f I
2

77.31 77.32 .02
 f D
2

25.346 25.353 .03
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We also note that the behaviour of the rotor changes from the constant rotation 
of the rigid support which generates a slight asymmetry in the case of rotation 
around the Ox axis (ωx), in this case it is concluded that the rotation of the support 
around the axis Ox (ωx) does not affect a lot the behaviour of the rotor.

• � Table 6 and the Figure 16 represent the difference between the two methods 
when the support rotates at an angular velocity ωy around the axis Oy

Table 5. Natural frequency depending on the speed rotation of the rotor and the constant rotation 
of the support (I and D is the reverse precision and direct modes, respectively) �x

= 0, 5, 10 Hz.

Ω (rpm) fr (Hz)

ωx = 5 Hz

ε%

ωx = 10 Hz

ε%h-p version h-version h-p version h-version 
0 f

I

1
45.583 45.610 .06 45.580 45.607 .06

f
D

1
45.589 45.616 .06 45.603 45.629 .06

f
I

2
125.992 125.960 .03 125.991 125.959 .03

f
D

2
125.994 125.961 .03 125.999 125.967 .03

1500 f
I

1
42.915 42.938 .05 42.921 42.943 .05

f
D

1
47.696 47.726 .06 47.702 47.731 .06

f
I

2
106.811 106.793 .02 106.813 106.796 .02

f
D

2
150.880 150.830 .03 150.882 150.832 .03

3000 f
I

1
39.711 39.729 .05 39.716 39.734 .05

f
D

1
49.329 49.360 .06 49.334 49.365 .06

f
I

2
92.996 92.990 .01 92.998 92.993 .01

f
D

2
181.069 180.999 .04 181.071 181.002 .04

4500 f
I

1
36.170 36.183 .04 36.174 36.188 .04

f
D

1
50.592 50.625 .06 50.598 50.629 .06

f
I

2
83.570 83.575 .01 83.572 83.577 .01

f
D

2
215.666 215.575 .04 215.668 215.577 .04

6000 f
I

1
32.599 32.609 .03 32.603 32.613 .03

f
D

1
51.581 51.614 .06 51.587 51.619 .06

f
I

2
77.311 77.324 .02 77.314 77.326 .02

f
D

2
253.651 253.535 .05 253.653 253.537 .05

Table 6. Natural frequency depending on the speed rotation of the rotor and the constant rota-
tion of the support (I and D is the reverse precision and direct modes, respectively) �y

= 5, 10 Hz.

Ω (rpm) fr (Hz)

ωy = 5 Hz

ε%

ωy = 10 Hz

ε%h-p version h-version h-p version h-version 
0 f

I

1
46.315 46.342 .06 47.068 47.095 .06

 f D
1

44.875 44.903 .06 44.188 44.216 .06
 f I
2

126.086 126.054 .03 125.801 126.146 .27
 f D
2

125.898 125.864 .03 126.178 125.767 .33
1500  f I

1
44.026 44.049 .05 45.149 47.761 5.47

 f D
1

47.429 47.460 .06 47.183 50.028 5.69
 f I
2

107.007 106.990 .02 107.209 107.470 .24
 f D
2

150.825 150.775 .03 150.767 150.769 .00
3000  f I

1
41.094 41.112 .04 42.460 46.860 9.39

 f D
1

49.523 49.556 .07 49.725 55.169 9.87
 f I
2

93.396 93.391 .00 93.816 94.890 1.13
 f D
2

181.029 180.959 .04 180.985 180.961 .01
4500  f I

1
37.696 37.709 .04 39.161 44.368 11.74

 f D
1

51.248 51.282 .07 51.889 59.705 13.09
 f I
2

84.293 84.299 .01 85.059 87.687 3.00
 f D
2

215.630 215.538 .04 215.591 215.529 .03
6000  f I

1
34.164 34.173 .03 35.617 40.859 12.83

 f D
1

52.691 52.726 .07 53.758 63.747 15.67
 f I
2

78.451 78.466 .02 79.655 84.414 5.64
 f D
2

253.616 253.499 .05 253.577 253.478 .04
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We also notice that the behaviour of the rotor changes from the constant rota-
tion of the rigid support which generates an asymmetry in the case of rotation 
around the axis Oy (ωy), where we can see a large asymmetry, and amplification 
of the gyroscopic effect.

4.2.5.  Influence of angular velocities of the mobile support on critical speeds
To confirm previous results, in Figures 17–19, we see the change in speed of the 
intersection of the first indirect mode (Figure 17) and direct (Figure 18) with the 
line f = Ω∕60 with respect to the rotation of the support around the axis Ox (ωx)
(ωx = constant). We notice that the speed increases slightly even with big pertur-
bations along the Ox axis.

However, for perturbations along the Oy axis, we see in Figure 18 the importance 
of the difference of critical velocities with respect to the rotation around the axis 
Ox ω

x(ωx = constant).

Figure 16. Campbell diagram for the first four frequencies of the rotor under the effect of the 
angular velocity of the support (�y = 0, 5, et 10 Hz).

Figure 17.  Speed of the intersection of the first indirect mode with the right f = Ω∕60 with 
respect to rotation of the support according to the axis Ox (ωx)(ωx = constant).
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4.2.6.  Influence of the geometric shape of the rotary shaft:
To study the influence of the geometric shape of an on-board rotor, we used 
the same example taken above, we just changed the position of the disc and the 
bearings. The new system is shown in Figure 20 (rotor, free, bearings, bearings, 
and disc) (Figures 19 and 20).

In Figure 21 we can see the change in behaviour of on-board rotor.
Figure 22 shows the diagram of the first two frequencies for two rotations of the 

support (�x = 5, et 5Hz). Figure 23 shows the diagram of the first two frequencies 
for two rotations of the support (�y = 10, et 10Hz).

Figure 18. Speed of the intersection of the first direct mode with the right f = Ω∕60 with respect 
to rotation of the support according to the axis Ox (ωx)(ωx = constant).

Figure 19. Speed of the intersection of the first direct mode with the right f = Ω∕60 with respect 
to rotation of the support according to the axis Oy (ωy)(ωy = constant).
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Figure 20. On-board rotor (Free, Bearings, Bearings, Disc).
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Figure 21. Campbell diagram of the first two frequencies �x = 0;5;10 Hz.
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Figure 22. Campbell diagram of the first two frequencies �x = 5Hz and �y = 5Hz.
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5.  Conclusion

The vibrational behaviour of on-board rotors analysis using the method of the 
hierarchical finite elements (p version of the MEF) with functions with Legendre 
polynomials form, combined with the standard method of finite elements (h 
version of the FEM) is treated in this paper (Figure 23).

The calculation of energy different components of the on-board rotor, the 
application of the method of Lagrange, and introducing features of the h-p ver-
sion of the finite elements, has given us the equations of motion of the system. 
The calculation is done on an element, then after assembly will have the overall 
equation of the system.

A programme for calculating the natural frequencies and critical speeds was 
developed with MATLAB. The validation test programme shows the effective-
ness of the method; convergence is achieved for a number of polynomials equal 
to seven, and the differences with the results obtained by other authors are very 
small (of the order of ten thousandth for the first frequency in the case of small 
disturbance around the axis Ox ω

x = 5 Hz and a little more in the case ωx = 10 Hz).
Several examples are treated and this has allowed us to determine the influence 

of different geometric parameters of on-board rotor and also the influence of the 
movement of the support on the behaviour of the rotor.

This work has allowed us to reach the following conclusions:

• � In the case of the use of the MEF h version convergence is obtained start-
ing from the 6 elements, while in the case of the use of the p version, it is 
obtained starting from a polynomial degree p equal to 7. The calculation 
time is 02 s (Intel Cor2duo 2.5 GB, 2 GB RAM).

• � The convergence of results can be controlled by increasing the polynomial 
degree (number of shape functions) and also the number of elements. The 
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Figure 23. Campbell diagram of the first two frequencies ωx = 10 Hz, �y = 10Hz.
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difference in results between the two methods (h-p version and the classic 
version of h) is very small, but the benefit of h-p version is that you can 
control both parameters of the element (the polynomial degree and number 
of elements).

• � We conclude that the convergences can be classified in a following way:
• � h-version: convergence in an algebraic way.
• � h-p version: convergence in an exponential way, or it can be improved by 

a suitable combination of the parameters (mesh degree h and polynomial 
degree p).

• � The Legendre polynomial is used in this article, due to its very close approx-
imation of the deformed shafts.

• � The movement of the on-board rotor support amplifies the gyroscopic 
effect caused by the coupling of the displacements perpendicular to the axis 
of rotation, and creates an asymmetry in the movement of the rotor.

• � In the case of disturbances in the neighbouring of the first critical speed, 
the influence of rotation of the support around the axis Ox (ωx) is very low 
compared with the rotation of the support around the axis Oy (ωy).

• � From the results obtained in this work, we conclude that the rotation of 
the support around the axis parallel to the axis of rotation of the rotor has 
a great influence on the rigidity of the system and especially on the gyro-
scopic effect.

• � The geometric parameters also have an influence on the vibration behav-
iour of on-board rotor. It is noted that it causes frequency variations and 
therefore variations in the critical speeds depending on the disc position.
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