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Abstract

In the present study, a pore-scale multicomponent lattice Boltzmann method
(LBM) is employed for the investigation of the immiscible-phase fluid dis-
placement in a homogeneous porous medium. The viscous fingering and
the stable displacement regimes of the invading fluid in the medium are
quantified which is beneficial for predicting flow patterns in pore-scale
structures, where an experimental study is extremely difficult. Herein, the
Shan-Chen (S-C) model is incorporated with an appropriate collision model
for computing the interparticle interaction between the immiscible fluids and
the interfacial dynamics. Firstly, the computational technique is validated by
a comparison of the present results obtained for different benchmark flow
problems with those reported in the literature. Then, the penetration of an
invading fluid into the porous medium is studied at different flow conditions.
The effect of the capillary number (Ca), dynamic viscosity ratio (M ), and
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the surface wettability defined by the contact angle (θ) are investigated on the
flow regimes and characteristics. The obtained results show that for M < 1,
the viscous fingering regime appears by driving the invading fluid through
the pore structures due to the viscous force and capillary force. However, by
increasing the dynamic viscosity ratio and the capillary number, the invading
fluid penetrates even in smaller pores and the stable displacement regime
occurs. By the increment of the capillary number, the pressure difference
between the two sides of the porous medium increases, so that the pressure
drop ∆p along with the domain at θ = 40◦ is more than that of computed for
θ = 80◦. The present study shows that the value of wetting fluid saturation
Sw at θ = 40◦ is larger than its value computed with θ = 80◦ that is
due to the more tendency of the hydrophilic medium to absorb the wetting
fluid at θ = 40◦. Also, it is found that the magnitude of Sw computed
for both the contact angles is decreased by the increment of the viscosity
ratio from Log(M) = −1 to 1. The present study demonstrates that the
S-C LBM is an efficient and accurate computational method to quantitatively
estimate the flow characteristics and interfacial dynamics through the porous
medium.

Keywords: Porous media, immiscible fluids, fingering regimes, lattice
Boltzmann method.

1 Introduction

Studying fluid transport through porous media is crucial for the determination
of flow characteristics and patterns in many industrial applications, such as
the core part of fuel cells, filters, microfluidics, and oil recovery from reser-
voirs. However, investigating the interfacial dynamics of multicomponent
multiphase flows in complex pore-scale geometry is a most challenging prob-
lem [1]. The experimental setup for this type of fluid flows is expensive and
time-consuming. Also, the traditional macroscopic computational methods
based on the Navier-Stokes (N-S) equations need efficient meshing algo-
rithms and massive computational resources for the simulation of multiphase
flows in porous geometries [2]. Therefore, in recent decades, researchers
have shown a great interest in mesoscopic techniques, such as the lattice
Boltzmann method (LBM) [3, 4]. The remarkable versatility of LBM makes
this method widely used for the simulation of fluid flows in applications
involving interfacial dynamics in porous geometry. The kinetic nature of the
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LBM allows to model of the phase separation, interparticle interactions, and
interfacial phenomena in multiphase flows [5–7]. Also, in contrast with the
N-S based flow solvers, multiphase models based on the LBM do not need
any additional algorithms for tracking or capturing the interfacial dynamics in
pore-scale complex geometries that make them more efficient computational
methods for multiphase flows.

Several models based on the LBM are employed for the simulation of
multiphase flows [8–12]. Among these models, the pseudopotential Shan-
Chen (S-C) model [9, 10] is most famous for modeling two immiscible
fluids transport through a heterogeneous porous medium due to its capa-
bility for simulation of multicomponent multiphase flows and simplicity in
implementation with appropriate accuracy and performance [13]. The S-C
LBM, however, needs to employ a combination of an appropriate forcing
scheme and a collision operator to accurately predict the flow properties in
porous media and preserve the numerical stability in the interfacial region,
particularly for two-phase flows at high-density ratios [14]. The multi-
relaxation-time (MRT) collision operator [15, 16] is an efficient technique
that can sophistically reduce numerical instabilities at the liquid-gas inter-
face and allows the LBM to achieve high density and viscosity ratios.
Kuzmin et al. [17] have investigated the advantages of dealing with the
MRT collision operator in the study of capillary effects and the formation
of the droplets. Yu and Fan [18] have shown that using the MRT-LBM
leads to a considerable reduction in the spurious currents in the interfacial
region of two-phase flows. Recently, the MRT S-C LBM is also imple-
mented for studying various flow problems, e.g. the simulation of two-phase
flow through porous media [19, 20]. The unphysical dependency of the
magnitude of the density ratio to the value of the viscosity ratio is also
a drawback of the S-C LBM that can be eliminated by incorporating an
appropriate forcing scheme, such as the exact difference method (EDM)
[21, 22].

By applying these improvements, the S-C LBM can be used for studying
the fluid flow characteristics in porous geometries. Pan et al. [23] have shown
that the unphysical dependency of the relative permeability of a porous
medium on the viscosity of the fluid is significantly reduced by incorporating
the MRT collision operator in the LBM-based simulations. Huang et al. [24]
performed a numerical experiment by employing the color gradient model
and the MRT collision operator to simulate immiscible binary fluids in a
porous geometry. Their findings show that the MRT collision operator can



278 E. Ezzatneshan and R. Goharimehr

dramatically increase the numerical stability of the model. Gao et al. [25]
have also demonstrated the capability of the S-C LBM for predicting the
two-component fluid dynamics in pore-scale geometry. Recently, Xu and
Liu [26] have implemented a color-gradient MRT-LBM to study the fluid flow
characteristics such as the relative permeability in realistic Berea sandstone.
Ju et al. [27] also have employed a color-gradient MRT-LBM for studying the
effect of different density ratios and porous structures on the fluid distribution
characteristics in a two-dimensional domain.

In all the aforementioned works based on the S-C LBM, the depen-
dency of the density and viscosity ratios is not eliminated in the simulation
of multiphase flows through porous media. This unphysical dependency
can seriously impact the accuracy of the numerical results, particularly for
the two-phase flow simulations at high-density ratios [28]. In the present
paper, the implementation of a two-component S-C LBM by using the MRT
collision operator is considered to ensure the stability of the numerical
solutions presented. Also, the EDM forcing scheme is employed to elim-
inate the dependency between the density and viscosity ratios that brings
the accuracy of the numerical results closer to the physical flow structures
expected. The capability and performance of the present computational
technique based on the multicomponent LBM are examined by validation
of different multicomponent fluid flow problems with considering the wet-
tability effects. Then, the characteristics and structure of multicomponent
fluid flow through a porous medium are studied at different flow condi-
tions and the obtained results are discussed from the physical point of
view.

The rest of the paper is organized as follows: A brief overview of the
numerical scheme applied based on the S-C LBM is presented in Section 2.
Section 3 deals with the results obtained based on the present study. The vali-
dation of the computational technique and the discussions made based on the
resolved flow patterns are provided in Section 3. Finally, some conclusions
are summarized in Section 4.

2 Numerical Method

The governing equations of the S-C LBM [9, 10] implemented for the sim-
ulation of binary fluids dynamics in a two-dimensional (2D) computational
domain are presented in this section. Herein, the MRT collision operator and
EDM forcing scheme are used to improve the stability and accuracy of the
numerical method employed. The governing equation of the standard single
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relaxation time (SRT) LBM with EDM forcing scheme is given as [28]:

fσa (x + ea∆t, t+ ∆t) = fσa (x, t)− 1

τσ
[fσa (x, t)− fσ,eqa (x, t)]

+ fσ,eqa (ρ,uσ,eq + ∆uσ)− fσ,eqa (ρ,uσ,eq) (1)

where fσa (x, t) is the particle distribution function which demonstrates the
distribution of particles with the velocity ea in position x at time t. The lattice
speed c = ∆x/∆t is the ratio of the lattice space ∆x to the time step ∆t and
τσ is the relaxation time for each component that is related to the kinematic
viscosityυσ = c2s(τ

σ − 0.5∆t). The superscript σ defines each component
and the subscript a indicates the discrete velocity directions. According to the
2D lattice structure D2Q9 employed in the present work, the set of discrete
velocities ea is defined as:

ea = c

 (0, 0), a = 0
(±1, 0), (0,±1), a = 1− 4

(±1,±1) a = 5− 8
(2)

The right-hand side of Equation (1) represents the SRT collision operator
which leads the system to the local Maxwellian equilibrium on the time scale
τσ. The fσ,eqa (x, t) is equilibrium particle distribution function for component
σ, which is defined as:

fσ,eqa (x, t) = waρ
σ

[
1 +

ea · uσ,eq

c2s
+

(ea · uσ,eq)2

2c4s
− (uσ,eq)2

2c2s

]
(3)

The speed of sound cs for the LBM in D2Q9 framework is equal to
1/
√

3 [29], and wa is the weighting coefficient, where w0 = 4/9, w1−4 =
1/9 and w5−8 = 1/36. The macroscopic flow properties, including the den-
sity and velocity of the component σ-th, can be obtained using ρσ =

∑
a f

σ
a

and uσ =
∑

a eaf
σ
a/ρ

σ, respectively. The equilibrium local velocity uσ,eq in
Equation (3) is defined as:

uσ,eq =

∑
σ

(∑
a
fσa ea
τσ

)
∑

σ
ρσ

τσ

(4)

The term ∆uσ in the EDM forcing scheme is also used to impose the
interaction force between the components in the numerical solution by

∆uσ =
∆tFσ

ρσ
(5)
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where the total interaction force Fσ is a combination of the fluid-fluid
cohesion force Fσc , the fluid-solid adhesion force Fσads, and the external body
force Fb [30]:

Fσ = Fσc + Fσads + FB (6)

The Fσc is given as [31]:

Fσc (x, t) = −Gcψσ(x, t)
∑
a

waψ
σ(x + ea∆t, t)ea (7)

where Gc is the cohesive force coefficient which indicates the attractiveness
(repulsiveness) of the interaction force between particles of component σ
and σ. It should be noted that by adjusting the Gc, various surface tension
between the components can be achieved [30, 31]. Similarly, the adhesive
force between particles of each component and the solid surface is defined
as [31]:

Fσads(x, t) = −Gads,wallψσ(x, t)ψσwall
∑
a

was(x + ea∆t)ea (8)

The indicator s is used to turn the adhesion force on for the solid nodes
by = 1, and turn it off on the fluid nodes by s = 0 in the numerical solutions
performed. The mean-field potential functionψ defines the relevance between
the interaction strength and the mass of the particles. In the S-C model, ψ
depends on the local density ρ as [10]:

ψ = ρ0

(
1− exp

(
−ρ
ρ0

))
(9)

In the represented formulation, the ψσwall is also calculated by Equa-
tion (9), where instead of solid wall density, the adhesion parameterGσads,wall,
determines the wettability of the surface. It is shown that the adhesion
parameter for the wetting component should be negative but having the same
absolute value for the non-wetting component [30–33].

For the incorporation of the MRT collision operator in the LBM presented
in Equation (1), the right-hand side of the equation is rewritten as:

fσa (x + ea∆t, t+ ∆t) = −M−1(mσ
a(x, t)− Sσ[(mσ

a(x, t)−mσ,eq
a (ρ,ueq)]

+mσ,eq
a (ρ,ueq + ∆uσ)−mσ,eq

a (ρ,ueq)) (10)

Herein, ma = fa ∗M and meq
a = feqa ∗M are the distribution function

and the equilibrium distribution function in moment space, respectively. The
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transformation matrix M and the relaxation matrix S can be defined as
follows [40]:

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


(11)

S = diag(s1, s2, s3, s4, s5, s6, s7, s8, s9) (12)

where the values of s1, s4 and s6 should be nonzero in order to maintain the
influence of the trapezoidal integration in Equation (10) [15]. In the present
work, these parameters are set to be s1 = s4 = s6 = 1, s2 = s3 = 0.8,
s5 = s7 = 1.2 and s8 = s9 = 1/τσ.

3 Results and Discussions

In this section, the results obtained based on the present numerical algorithm
are presented for the simulation of the two immiscible fluids dynamics
through a porous medium with various wetting conditions. At first, a vali-
dation study is performed to demonstrate the accuracy and performance of
the computational model implemented based on the S-C LBM. Herein, three
well-known benchmark multicomponent fluid flow systems are considered;
(I) the phase separation phenomenon is studied to demonstrate the stability
and robustness of the present solution methodology for the simulation of such
a complex flow problem, (II) the equilibrium state of a droplet placed on a
flat surface is modeled to validate the intrinsic contact angle computed based
on the S-C LBM by considering different wetting conditions, and (III) the
capillary intrusion of a liquid into a pore channel is investigated to verify
the Washburn’s law. The latter test case is used to evaluate the capability
of the numerical model for the prediction of interfacial dynamics in the
penetration process of the liquid phase into pores of a medium. After ensuring
the accuracy and efficiency of the present algorithm, it is employed to study
the liquid mobility and imbibition into the porous medium by considering
different wetting conditions, and the results obtained are discussed from the
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physical point of view. It should be noted that all flow parameters in the
present study are in the lattice unit [34].

3.1 Model Validation

The phase separation phenomenon can be occurred in a multicomponent fluid
flow system when the interparticle interaction force drives a fluid drops to
coalescence and separate from another one. The parameter Gc is responsible
for controlling the interaction force between the components in the S-C LBM.
By changing the magnitude of Gc, the capability of the present numerical
scheme based on the S-C LBM is demonstrated for simulation of the phase
separation phenomenon in a 2D square domain with periodic boundaries. The
flow-field is discretized with 200 × 200 lattice nodes and the simulation is
initialized by a random density distribution. Herein, two immiscible fluids
are considered in the system, where ρ1 and ρ2 are the main and dissolved
densities of fluid 1 and fluid 2 respectively. Accordingly, the initial density
in the flowfield is computed by ρi = ρ1 + ρ2. The present simulation is
performed for ρi = 2.06 and the parameter Gc can be varied from zero until
6, where the numerical instabilities occurred.

Figure 1 demonstrates the sequence of the phase separation presented
by the density field for two dynamic viscosity ratios of M = µ1

µ2
= 1,

10 and 10000 at Gc = 3. With beginning the simulation, the coalescence
phenomenon occurs and the two fluids start to separate in the form of small
droplets and ligaments. The small droplets coalescence and form a larger
region filled with each fluid as the time evolves. The results obtained by
applying the S-C LBM show that the phase separation is slow for the system
with the low viscosity ratio M = 1. As shown at the given time T = 1000
in Figure 1, the coalescence phenomenon has generated big slugs in the two-
phase flowfield at the higher viscosity ratio M = 10 and 10000. However,
at the same time for the mixture with M = 1, the small droplets are still
adhering to each other and form ligaments. This flow treatment can be due
to the smooth dynamics of the interfacial region of heavy drops through the
lighter fluid when the viscosity ratio is high. In contrast, when two fluids have
similar viscosity, the dynamics of the small droplets of one fluid suspended
in another fluid are slow that postpones the coalescence process. It should
be noted that the simulation of the multicomponent system at the very high
dynamic viscosity ratio M = 10000 is presented to show that the S-C LBM
method by employing the MRT collision operator is numerically stable for
investigation of complex multicomponent fluid flows.
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Figure 1 Computed density field of phase separation in a multicomponent system at dif-
ferent dynamic viscosity ratios. The coalescence process started quickly for higher viscosity
ratios.

The occurrence of the phase separation phenomenon depends on the
magnitude of Gc [35]. Figure 2 illustrates the obtained results for the vari-
ation of the density of fluid 1 and the smaller dissolved density of fluid 2
by changing the magnitude of Gc. The parameters presented in this figure
are scaled according to the initial density ρi. As can be seen in Figure 2,
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Figure 2 The phase separation phenomenon occurs by increment of Gc that controls
interaction force between different components. With the appearance of interfacial region due
to phase separation, surface tension also increases.

the scaled density value in the flow domain ρ/ρi remains constant for
0 ≤ Gcρi ≤ 4.2 that indicates the phase separation does not occur in this
condition. Consequently, the surface tension γ computed based on the present
simulation is zero due to the lack of the interfacial region in the flow domain.
At Gcρi = 4.2, a weak interaction force appears between the components,
so that it hardly preserves the shape of the initialized small droplets. By
increasing of Gcρi, the intense interaction force leads the small droplets to
coalescence in the shape of ligaments and the phase separation occurs. By
formation of an interface between two fluids, the value of surface tension
increases that confirms the existence of a two-phase flow system. The present
study shows that by increasing Gcρi, the magnitude of the scaled density of
the system reaches to the constant value of ∼1 that verifies the accuracy of
the present method based on the findings in the literature [35, 36]. It should
be noted that increment of the interaction force by increasing of Gc causes
the formation of droplets with higher surface tension and sharper interface
which both of them impact the numerical stability of the solution.

For a 2D fluid droplet suspended in another fluid, the surface tension γ
causes a pressure difference ∆p between the outside and inside of the droplet.
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Figure 3 Satisfaction of Laplace law by present results obtained for phase separation
phenomenon at different interaction forces imposed by Gc.

The Laplace law [37] defines a linear relationship between γ and ∆p for a
certain droplet radius R as:

∆p = pin − pout =
γ

R
(13)

For evaluation of the accuracy of the present model for predicting the
flow characteristics of the phase separation phenomenon studied, the surface
tension of the obtained results for the large droplets after coalescence is
verified by the Laplace law. Figure 3 compares the computed values for ∆p
versus 1/R by setting various Gc. The linear relation between these two
parameters in this figure shows that the present numerical results based on S-
C LBM satisfy the Laplace law. The slope of the line represents the value of
the surface tension of the multicomponent system studied which is obtained
0.1587, 0.206, and 0.319 for Gc = 3, 4 and 5 respectively.

The accuracy and capability of the present S-C LBM for imposing the
wetting condition are investigated by the simulation of the equilibrium state
of a droplet on a solid wall. Herein, a droplet with radiusR = 45 is initialized
tangentially on the bottom wall of a rectangular computational domain with
the grid size of 450×150. The density distribution is defined by a hyperbolic
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Figure 4 Comparison of contact angle obtained by present numerical method for equilib-
rium state of a droplet on a flat surface with that reported by Huang et al. [30] at different
wetting conditions.

function to preserve the stability of the numerical solution at the beginning
of iterations [13]. The adhesion parameter Gσads,wall is incorporated to define
the wettability of each component on the wall surface that is defined by the
contact angle θ. For the wetting component, Gσads,wall is set to be negative,
but the same absolute magnitude should be set for the non-wetting component
[33, 38, 39], Gσads,wall = −Gσads,wall. Figure 4 shows the equilibrium state of
the droplet on the bottom wall at different wetting conditions. The spreading
of the droplet on the surface by increasing the adhesion coefficient is obvious
in this figure. The obtained results for the contact angle by using the present
S-C LBM are also compared with those reported by Huang et al. [30] in
Figure 4 which shows a good agreement.

Washburn’s law [40] is also considered to validate the accuracy of the
present numerical scheme for the predicting of the interface dynamics in the
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pore-scale due to the capillary effect. In this problem, the capillary intrusion
of a fluid with surface tension γ into a single 2D channel with width D and
length L is computed. The analytical solution of the 2D Washburn equation
is defined as follows [41]:

x(t) =
γDcos(θ)

6µL
td

[
exp

(
− t

td

)
+

t

td
− 1

]
+ x0 (14)

where td = ρD2/12µ is the average transition time, x0 is the initial position
of the interface, and θ is the contact angle. Herein, a rectangular computa-
tional domain with the grid size of 700×200 is provided for this problem with
the periodic boundary condition in the x-direction, and the wall boundary
condition is imposed on the top and bottom sides. A channel with the length
and width of L = 400 and D = 15, respectively, are placed in the middle
of the domain. Initially, the flowfield is filled with two immiscible fluids.
The fluid with the dynamic viscosity of µσ fills the left rectangular reservoir
with the length of 200, and the fluid with the dynamic viscosity of µσ fills
the channel and space in the right end of the computational domain. In the
present study, the dynamic viscosity ratio is set to be M = µσ

µσ
= 1, the

surface tension is γ = 0.158, and the contact angle of the wetting fluid
with the wall surface is θ = 32.86◦. Figure 5(a) shows the computational
domain after T = 25000 iterations, where the fluid with higher dynamic
viscosity penetrates into the channel due to the capillary effect. Figure 5(b)
demonstrates the comparison of the instantaneous interface position obtained
based on the present numerical solution with that of the analytical solution
obtained from Equation (14). The present results are in good agreement with
the analytical solution that shows the capability and accuracy of the S-C
LBM employed for the simulation of multicomponent fluid flow patterns and
characteristics in pore-scale geometries.

3.2 Fingering Structure of Immiscible Fluids Flow Through
Porous Media

The description of the immiscible displacement in a porous medium is pro-
vided in this section according to the simulation results obtained for fingering
structures by the present S-C LBM. In addition to the dynamic viscosity ratio
M , the capillary number, Ca, is the effective dimensionless number that is
defined as [42]:

Ca =
unwµnw
γcos(θ)

(15)
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(a)

(b)

Figure 5 Results obtained based on present numerical scheme for Washburn’s problem
at µσ

µσ = 1 and θI = 32.86◦. (a) Capillary intrusion of liquid phase into a pore channel
at T = 25000, and (b) instantaneous variation of interface position in comparison with the
analytical solution.

In this relation, µnw and unw are the dynamic viscosity and velocity of the
advancing non-wetting fluid, respectively, and is the fluid-fluid contact angle.
For the investigation of two-component flow transport through a porous
medium, a homogeneous porous geometry is generated by a distribution of
randomly shaped obstacles in a domain with 1000× 300 grid resolution. The
geometry of the porous medium used in the present study and the boundary
conditions of the flow domain is shown in Figure 6. The area of the obstacles
is roughly equal to 150, the throat height is between 4 and 7, and the pore
space area will is about 400. The velocity inlet and pressure outlet boundary
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Figure 6 Geometry and boundary conditions of porous medium used in the present study.

Figure 7 A schematic of fingering structures in a domain.

conditions are imposed in the left and right boundaries, respectively, and the
top and bottom sides are considered periodic. The wetting fluid is defined by
the higher density (red color) which invades the non-wetting fluid with lower
density (blue color) in the flow domain. Such an invasion produces some
fingering regimes (see a schematic view in Figure 7), that their origin can
be the surface or geometrical characteristics of a porous medium in nature.
Herein, the fingering regime occurs for the wetting fluid flow through the
porous medium considered due to the random generation of the shape of
obstacles and the wetting condition of the solid surfaces.

Figure 8 illustrates the two-component fluid flow patterns, simulated by
the present numerical model at various viscosity ratios and capillary numbers,
which are represented in a logarithmic scale at θ = 40◦. All simulations are
performed at Gc = 3, which leads to γ = 0.158. As it can be seen for
Log(M) = −1 (M < 1), some fingers move toward the downstream of
the domain by a driving force produced by the viscous force of the invading
fluid and capillary forces. This regime is known as viscous fingering [42]
which is distinguished by increasing the capillary number. When the effect
of the capillary force becomes dominant, the invaded fluid (wetting fluid) can
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Figure 8 Two immiscible fluids flow patterns in the porous medium obtained by present
simulations for different flow conditions with θ = 40◦.

penetrate more pores, rather than moving to downstream and as a result, the
saturation of the invading fluid decreases (Figure 8, (a)–(d)). By increasing
the dynamic viscosity ratio, Log(M) = 1 (M > 1), the present solution
results in Figure 8, (e)–(g), show that the invading fluid occupies more pores
in the media. For higher capillary numbers with Log(M) = 1, the fingers
stretch all around the domain in any arbitrary directions and the invading
fluid penetrates even in smaller pores. In this case, the moving interface
of the invading fluid is flattened that is known as the stable displacement
regime [42]. It should be noted that the detached drop of the invading fluid
observed in Figure 8(c) can be explained by the fluid flow through the
medium the non-wetting nature of the invading fluid. The present numerical
solution demonstrates that the invading fluid tends to leak out of the porous
medium after reaching the right side of the medium. The leaking red fluid then
forms a cap in the leak site. At this point, the surface tension tends to reshape
the grew cap into a circle, while the non-wetting nature of the invading fluid
makes a large contact angle between the cap and the obstacle that enhances
the reshaping process. Therefore, the formed cap tends to become a droplet,
which the fluid flow through the medium separates it from the leak site and
pushes it downstream.
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Figure 9 Two immiscible fluids flow patterns in the porous medium obtained by present
simulations for different flow conditions with θ = 80◦.

A similar study is carried out for the porous geometry when the contact
angle of obstacles is set to be θ = 80◦. For this case, the fingering patterns
captured by employing the S-C LBM are presented in Figure 9. The compar-
ison of fingering structures obtained with the hydrophilic wetting condition
is considered for the solid surfaces at θ = 40◦ and 80◦ shows homologous
flow treatment through the porous medium. The fingering structure and the
displacement pattern of the invading fluid obtained based on the present
study in Figures 8 and 9 are categorized as the viscous fingering and stable
displacement, depending on the capillary number and the viscosity ratio
between two fluids. In Figure 10, the phase diagram is used to describe these
flow structures by Log(M) and Log(Ca) in comparison with the schematics
reported in the previous works [43, 44]. In this figure, the results obtained
for θ = 40◦ and 80◦ are presented by letters a − i and a′ − i′, respectively,
according to the labels of Figures 8 and 9. In the range of magnitudes set
for M and Ca, the displacement patterns captured in the present study are
compatible with those reported in the literature [43, 44] that shows the present
numerical method is accurate enough for the simulation of immiscible flow
structures through porous media.

Figure 11 demonstrates the present results for instantaneous two immis-
cible fluids flow displacement at different times for Log(M) = −1 and



292 E. Ezzatneshan and R. Goharimehr

Figure 10 Results obtained for displacement pattern of invading fluid in porous medium by
present S-C LBM in comparison with the schematic of phase diagram presented by Zhang
et al. [43] and Lenormand et al. [42].

Figure 11 Instantaneous displacement pattern of two immiscible fluids flow through porous
medium obtained by present simulations for flow condition Log(Ca) = −1.84 and
Log(M) = −1 at θ = 80◦.
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Log(Ca) = −1.84 at θ = 80. The invading fluid flow regime has the char-
acteristics of both the stable displacement and the viscous fingering pattern
since the fingers are thicker and occupy the neighboring pores. However, in
some parts of the domain, the interface of the invading fluid cannot penetrate
into the space between the irregular pore-scale geometry. This behavior can
be explained by the relation of the threshold pressure pc:

pc =
2γcos(θ)

r
(16)

where r is the pore throat diameter. The threshold pressure defines that the
invading fluid does not penetrate into a pore area unless the capillary pressure
of the fluid exceeds the throat threshold pressure. For a system where the
non-wetting fluid contact angle lower than 90◦, the throat threshold pressure
is positive and resists against the fluid penetration. In the present study shown
in Figure 11, the invading fluid has a contact angle θ = 80◦. Therefore, the
non-wetting fluid only penetrates the pores that their throats are wide enough
(larger pore throat diameter r) to reduce the threshold pressure. As a result,
the direction of the flow displacement in the porous medium is irregular.
In other words, the invading fluid pursues the paths that have the minimum
resistance pressure, and this leads to the fingers that are distributed all over
the domain.

The effects of the contact angle, capillary number, and viscosity ratio are
studied on the flow characteristics, particularly on the pressure difference
between downstream and upstream of the porous medium, ∆p, and the
wetting fluid saturation, Sw. These properties are computed based on the
present solutions when the first finger of the invading fluid touches the outer
side of the porous medium for each case, which is called breakthrough [42].
Figure 12 compares the pressure drop ∆p versus the capillary number at two
contact angles of θ = 40◦ and 80◦ for Log(M) = −1 and 1. This figure
shows that by the increment of the capillary number, the pressure difference
between the two sides of the porous medium increases. The pressure drop
∆p along the porous medium at θ = 40◦ is more than that of computed for
θ = 80◦ at both the viscosity ratios considered. Also, it is obvious that the
difference between the values of ∆p obtained for these two contact angles
increases at higher capillary numbers. The reason for this flow treatment can
be explained by the threshold pressure of the pore throat that resists against
the invading fluid when the obstacles of the medium are more hydrophilic.
The comparison of the variation of ∆p versus capillary number between
the results presented in Figure 12(a) and 12(b) demonstrates that the fluid
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(a)

(b)

Figure 12 Comparison of pressure difference ∆p at the breakthrough moment for flow
condition (a) Log(M) = −1, and (b) Log(M) = 1 with various capillary numbers.
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(a)

(b)

Figure 13 Comparison of wetting fluid saturation Sw versus pressure difference ∆p at the
breakthrough moment for flow condition (a) Log(M) = −1, and (b) Log(M) = 1.
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Figure 14 Comparison of breakthrough time versus pressure difference obtained based on
present solution at two contact angles considered for porous medium.

displacement in the stable regime at Log(M) = 1 produces a larger pressure
difference in comparison with the viscous fingering regime at Log(M) =
−1. It can be concluded that the main reason for filling the most part of the
pore domain with the invading fluid at the stable displacement regime is due
to this higher pressure difference between the upstream and downstream of
the medium that overcomes the throat threshold pressure.

The pressure difference variation is also related to the wetting fluid
saturation Sw in the porous medium. Figure 13 demonstrates the variation
of Sw computed based on the present solution for two flow conditions with
Log(M) = −1 and 1. It can be seen that for a given contact angle, a lower
saturation of the wetting fluid causes a higher pressure difference. Indeed, the
low saturation value indicates that the medium is not filled with the wetting
fluid due to the resistance of the pore throat against the penetration of the
invading fluid that results in the high-pressure difference. Also, the value of
Sw at θ = 40◦ is larger than its value computed with θ = 80◦ that is due
to the more tendency of the hydrophilic medium to absorb the wetting fluid
at θ = 40◦. The results presented in Figure 13(b) show that the magnitude
of Sw computed for both the contact angles is decreased by the increment of
the viscosity ratio from Log(M) = −1 to 1. This computed result for Sw
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(a)

(b)

Figure 15 Comparison of wetting fluid saturation Sw at the breakthrough moment for flow
condition (a) Log(M) = −1, and (b) Log(M) = 1 with various capillary numbers.
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confirms that the invading fluid penetrates into more pore-scale spaces of the
medium at the stable displacement regime.

The present study also shows that the breakthrough time is affected by
the pressure difference magnitude along with the porous medium. Figure 14
demonstrates the solution time at the breakthrough condition as a function
of the pressure difference for the cases studied in the previous figures. This
figure indicates that the breakthrough time increases with the increment of
the pressure difference for both the contact angles of θ = 40◦ and 80◦. The
value of breakthrough time computed for the lower contact angle, θ = 40◦,
is higher than that obtained for θ = 80◦. Indeed, the intense hydrophilic
property of the medium at θ = 40◦ slows down the penetration of the fingers
of the invading fluid into the pores. It should be noted that the lower pressure
difference obtained for θ = 80◦ (see Figure 12) allows the invading fluid
to gently occupy the pore domain before reaching the downstream of the
medium. In contrast, as seen in Figures 8 and 9, there are more remained
patches of the wetting fluid in the porous medium when the contact angle
is set to be θ = 40◦. Therefore, at this flow condition, the invading fluid
can quickly find its way to the downstream in the fingering form rather than
distributing over the medium.

Finally, the variation of the wetting fluid saturation Sw is presented as a
function of the capillary number in Figure 15 for the flow conditions with
Log(M) = −1 and 1. This figure illustrates that Sw decreases by increasing
the capillary number for both the contact angles considered. As the capillary
number increases, the viscous force becomes dominant in the domain and
pushes the invading fluid through the porous medium. Therefore, the invading
fluid pressure overcomes the throat threshold pressure in the most part of
the medium and penetrates in larger space of pores that causes significant
decrement of the wetting fluid saturation. Also, the wetting fluid saturation for
each case with θ = 40◦ is higher than the corresponding value with θ = 80◦

that is related to the higher hydrophilic tendency of the medium at lower
contact angles.

4 Conclusion

This study is performed to investigate the displacement pattern of two
immiscible fluids in a homogeneous porous medium using the numerical
computation based on the S-C LBM. Herein, the MRT collision operator
with EDM forcing scheme are employed to provide an efficient and numeri-
cally stable technique for the simulation of fluid flows through the complex
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pore-scale geometry. The numerical method is validated by considering dif-
ferent benchmark multicomponent fluid flow problems. The agreement of
the present results with the available data in the literature shows the ability
and accuracy of the S-C LBM employed for the simulation of interfacial
dynamics in contact with the solid surface. Then, the simulation results for
the fingering dynamics of the immiscible fluids in the porous medium are
presented. This study deals with the viscous fingering and stable displacement
regimes. These flow structures are quantified by considering the effect of
the capillary number (Ca), dynamic viscosity ratio (M ), and the contact
angle (θ). The obtained results show that for M < 1, the viscous fingering
regime appears by driving the invading fluid through the pore structures due
to the viscous force and capillary force. However, by increasing the dynamic
viscosity ratio and the capillary number, the invading fluid penetrates even in
smaller pores and the stable displacement regime occurs. By the increment
of the capillary number, the pressure difference between the two sides of the
porous medium increases, so that the pressure drop ∆p along the domain
at θ = 40◦ is more than that of computed for θ = 80◦. The present study
shows that the value of wetting fluid saturation Sw at θ = 40◦ is larger
than its value computed with θ = 80◦ that is due to the more tendency
of the hydrophilic medium to absorb the wetting fluid at θ = 40◦. Also,
it is find that the magnitude of Sw computed for both the contact angles is
decreased by the increment of the viscosity ratio from Log(M) = −1 to 1.
The present study demonstrates that the S-C LBM is an efficient and accurate
computational method to quantitatively estimate the flow characteristics and
interfacial dynamics through the porous medium.
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