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Abstract

In this paper, steady laminar boundary layer flow of a Newtonian fluid over
a flat plate in a uniform free stream was investigated numerically when
the surface plate is heated by forced convection from the hot fluid. This
flow is a good model of many situations involving flow over fins that are
relatively widely spaced. All the solutions given here were with constant fluid
properties and negligible viscous dissipation for two-dimensional, steady,
incompressible laminar flow with zero pressure gradient. The similarity solu-
tion has shown its efficiency here to transform the governing equations of
the thermal boundary layer into a nonlinear, third-order ordinary differential
equation and solved numerically by using 4th-order Runge-Kutta method
which in turn was programmed in FORTRAN language. The dimensionless
temperature, velocity, and all boundary layer functions profiles were obtained
and plotted in figures for different parameters entering into the problem.
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Several results of best approximations and expressions of important cor-
relations relating to heat transfer rates were drawn in this study of which
Prandtl’s number to the plate for physical interest was also discussed across
the tables. The same case of solution procedure was made for a plane plate
subjected to other thermal boundary conditions in a laminar flow. Finally,
for the validation of the treated numerical model, the results obtained are in
good agreement with those of the specialized literature, and comparison with
available results in certain cases is excellent.

Keywords: Similarity solution, boundary layer flow, isothermal flat plate,
dimensionless temperature, heat transfer rate, thermal boundary layer thick-
ness, Runge-Kutta method.

Nomenclature

Cp specific heat at constant pressure, [J kg−1K−1]
D diameter, [ms−1]
f e external force, [N]
g gravitational acceleration, [ms−1]
h heat transfer coefficient, [Wm−2K−1]
h average heat transfer coefficient, [Wm−2K−1]
k thermal conductivity, [Wm−1K−1]
L length, [m]
Nu Nusselt number
Nux local Nusselt number
P dimensionless pressure
p pressure [kg m s−2]
Pe Peclet number
Pr Prandtl number
Q heat transfer rate, [W]
q heat transfer rate per unit area, [Wm−2]
Re Reynolds number
T temperature, [K]
Tω temperature, [K]
t time, [s]
u velocity component, [ms−1]
u1 free-stream velocity, [ms−1]
v velocity component, [ms−1]
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w velocity component, [ms−1]
x coordinate direction, [m]
y coordinate direction, [m]
z coordinate direction, [m]

Greek letters

α thermal diffusivity, [m2s−1]
δ velocity boundary layer thickness, [m]
δT thermal boundary layer thickness, [m]
θ dimensionless temperature
µ dynamic viscosity, [kgm−1s−1]
υ kinematic viscosity, [m2s−1]
ρ density, [kgm−3]
η similarity variable, [m]
σ normal stress, [Nm−2]
τ shear stress, [Nm−2]

1 Introduction

The difficulty of mathematical modeling of the phenomenon of heat transfer
by convection is really due to the coupling of thermal and flow fields and
also the existence of non-linear Navier-Stokes equations of motion. In this
context, the investigations were focused on the problem of calculating the
rates of heat and mass transfer to or from an external flow surface. In such
a situation, the boundary layers develop freely, without constraints imposed
by adjacent surfaces. We know in the field of fluid mechanics, the classic
problem of the flow on a flat plate which generates a boundary layer structure
in various engineering processes. Blasius [1] was the first to approach in
1908 the concept of the steady laminar boundary layer of viscous flow on
a flat plate. The flow problem of the latter had been solved numerically by
Howarth [2]. After that, many researchers have analyzed this mechanism
analytically and numerically using the similarity transformation which has
been done in articles [3–11]. Similarity solutions have recently been adopted
by several authors in the field of heat transfer and in particular in the study of
boundary layers of flows [12–19]. Yevtushenko and Koniechny [20] obtained
an exact solution of a boundary value problem using the similarity procedure.
Similarity solutions have been established by Soong and Hwang [21] to
analyze mixed convection in rotating channels. Filipovic et al. [22] have
analytically investigated a boundary layer problem of laminar film using
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a similarity solution. Several analytical and numerical investigations have
been carried out by many authors whose solution similarity procedure has
been omnipresent [23–51]. Belhocine and Wan Omar [52, 53] have solved
analytically and numerically the problem of convective heat transfer in fully
developed laminar flow through a circular tube. Belhocine and Abdullah [54]
conducted numerically the heat transfer case of fully developed turbulent
flow in a circular tube with constant wall temperature and heat flow con-
ditions using the finite difference method. More recently, Belhocine and
Wan Omar [55] discussed analytically and numerically the similarity solu-
tion of the thermal boundary layer for laminar flow heat transfer using the
fourth-order Runge–Kutta method (RK4).

The aim of the investigation is to find out complete similarity solutions
for forced convective boundary layer flow over a flat plate. In this analysis,
we considered that the flow was assumed steady, two-dimensional, and lam-
inar flow of an incompressible fluid with zero pressure gradients under the
absence of body forces. These hypotheses allowed us of course to simplify
our thermal problem by reducing it firstly in the case of a flat plate and to
easily solve the governing Navier–Stokes equations for two dimensions flow
field. By adopting here the similarity transformation technique, the governing
equations together with the boundary conditions have been converted into the
ordinary differential equations which have been solved by the numerical pro-
cedure of Runge-Kutta of the fourth-order that we have them programmed on
FORTRAN. After that, all the numerical results obtained in the simulations
are plotted and the different characteristics of the flow field are analyzed.
Pertinent results of correlations of several parameters of heat transfer rate
are displayed analytically and discussed quantitatively. The same similarity
method was then exploited for the study of a flat plate has a uniform surface
temperature from which several results were drawn and discussed. Finally,
we found some results of previous work in which we were able to verify and
validate the numerical model that we approached while finding that it is in
excellent agreement with the results of the literature.

2 Navier-Stokes Equations

The set coupled nonlinear partial differential equations describing the motion
of a fluid are commonly called the Navier-Stokes equations. Generally,
these equations do not have exact analytical solutions except in the case of
boundary conditions for certain flowing fluids.
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We can define the Navier-Stokes equations as follows:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (1)

∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρvu)

∂y
+
∂(ρwu)

∂z

= −∂P
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρρx + fex (2)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρvv)

∂y
+
∂(ρwv)

∂z

= −∂P
∂y

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρρy + fey (3)

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρww)

∂z

= −∂P
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρρz + fez (4)

∂(ρe)

∂t
+
∂(ρue)

∂x
+
∂(ρve)

∂y
+
∂(ρwe)

∂z

= −
(
∂q̇x
∂x

+
∂q̇y
∂y

+
∂q̇z
∂z

)
−
(
∂ (Pu)

∂x
+
∂ (Pv)

∂y
+
∂ (Pw)

∂z

)
+

∂

∂x
(uτxx + vτxy + wτxz) +

∂

∂y
(uτyx + vτyy + wτyz)

+
∂

∂z
(uτzx + vτzy + wτzz) + ρ(gxu+ gyv + gzw) (5)

Where, Equations (1), (2), (3), (4), and (5) are respectively, the mass
conservation equation, the momentum conservation equations in the three
directions x, y, z, the energy conservation equation.

For a steady laminar flow of variables, u, v, w, p, T independent of time.
For a flow having a constant density, the continuity equation will be written
like this:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (6)
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The fluid is assumed to be Newtonian and the net force is derived from
the normal pressure forces and viscous shearing forces for two-dimensional
flow which are given by the following expressions:

σx = 2µ
∂u

∂x
(7)

σy = 2µ
∂v

∂y
(8)

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
= τyx (9)

For steady constant fluid property flow, the Navier-Stokes equations will
take the following form:

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ υ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(10)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ υ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
(11)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ υ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
(12)

As the properties of the fluid are assumed to be constant, it is clear that
the system of Equations (10), (11), and (12) does not depend on temperature
and can be solved separately from the energy equation in order to derive the
distribution of pressure and speed.

But, in this case, too, the energy equation is given by the expression:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

υ

Pr

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
(13)

Several practical flows can be represented with great accuracy by assum-
ing the two-dimensionality of this flow; i.e. here it is assumed that the axes
can be placed only one of the speed components, as here the w component
is zero.

To this end, and since the study of two-dimensional flows forms the core
of the study of the problem of complicated three-dimensional flows, our study
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here focuses only on the analysis of a purely two-dimensional flow. For a
steady two-dimensional flow, the following governing equations managing
the pressure and velocity fields can be solved by imposing the zero value of
the component w.

∂u

∂x
+
∂v

∂y
= 0 (14)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ υ

(
∂2u

∂x2
+
∂2u

∂y2

)
(15)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ υ

(
∂2v

∂x2
+
∂2v

∂y2

)
(16)

The objective of the analysis is to obtain heat transfer rates in external
laminar flows by exploiting the governing equations derived previously. On
the external surface of a body shown in Figure 1, external flows initiate a
flow, which is particularly infinite in extent.

A good model has been chosen to show an indirect solution method for
several situations involving flow on a flat plate aligned with the flow will be
suitably examined in which the physical properties of the fluid are consid-
ered constant with the two-dimensional flow in all analytical and numerical
solutions, which are detailed in the contribution.

In the energy equation, the dissipation is considered negligible in this
work and the solutions examined in the equations, in this case, the energy
and the complete Navier-Stokes one are entirely based on the use of the
differential equations describing the boundary layers.

Flow over body 
surface  

Flow size is large considering 
the body dimensions  

Figure 1 External flow diagram.
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3 Problem Definition

3.1 Case of Laminar Flow Over An Isothermal Plate

We consider the problem of the flow of a fluid having a velocity u1 on a flat
plate with which a uniform temperature of Tω is imposed on its total surface
which is in front of the body is distinct from that of the fluid T1. The fluid
flow situation is clearly shown in Figure 2.

3.1.1 Mathematical formulation
In order for the boundary layer assumptions to be appropriate, we consider
the Reynolds number to be reasonably high and that the flow is quite two-
dimensional. In other words, we assume that the plate is extended if taking
into account its longitudinal distance. Applying these assumptions, we can
write the governing equations describing the problem as:

∂u

∂x
+
∂v

∂y
= 0 (17)

∂u

∂x
+ v

∂u

∂y
= υ

(
∂2u

∂y2

)
(18)

u
∂T

∂x
+ v

∂T

∂y
=

υ

Pr

(
∂2T

∂y2

)
(19)

Writing these equations shows us that the solution on a flat plate of
thickness is zero for an inviscid flow is that the velocity flow is everywhere
the same and equivalent to the velocity ’of the free undisturbed flow u1. This

Flat Plate at Uniform 
Temperature  Tω Uniform Flow 

u
vy 

x

u1 , T1 

Figure 2 Fluid flow situation over a flat plate.



Numerical Simulation of Laminar Boundary Layer Flow Over 345

means that if the viscosity is negligible, a flat plate aligned with the flow will
have no impact on the flow. And as a result of this, everywhere the pressure
gradient, dp/dx, is zero.

Logically, to obtain the solution of the boundary layer for the flow on a
flat plate, the velocity outside the boundary is assumed equal to ul and the
pressure gradient is neglected everywhere. Commonly, a pressure gradient
exists significantly in the case of a real plate of finite thickness but only
near the leading edge. Since the equations of the boundary layer are not
appropriate in the velocity of the leading edge, in this zone, the longitudinal
gradients of temperature and velocity being comparable to the lateral ones
and we will neglect this effect here.

In Equation (18), by definition, the kinematic viscosity, υ, is expressed by
the following relation:

υ =
µ

ρ
(20)

We also recorded in the insertion of Equation (19) the following notation:

k

ρ Cp
=

υ

Pr
(21)

By introducing the following boundary conditions, we can solve the
equations going from (17) to (19)

y = 0, u = 0, v = 0, T = Tω

y large: u→ u1, T → T1 (22)

We can see that the Equations (17) and (18) which express the velocity
distribution are not related to the temperature because the physical properties
of the fluid are already considered constant.

In order to obtain the velocity distribution, the latter two can be solved
separately from Equation (19). The temperature distribution of Equation (19)
can be obtained therefore, after obtaining the velocity distribution. Therefore,
through this distribution, we can determine the heat transfer rate.

3.1.2 Similarity solution
We have used here the similarity solution method which is initially based
as an assumption, by considering that all the values of x are similar to the
profiles of the boundary layers. In other words and as shown in Figure 3, the
velocity profiles for various values of x are all similar.
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Velocity Profiles at Various 
Coordinates in Boundary Layer

Flow  

v

u
y δ 

Boundary 
Layer 
Edge  

Figure 3 Velocity boundary layer development on a flat plate.

We have assumed that the velocity profile remains geometrically similar
and takes the following functional form:

u

u1
= function

(y
δ

)
(23)

In this sense, the velocity profiles have been assumed to be similar and
the velocity at a certain distance y from the wall and the thickness of the local
boundary layer are a function of x.

By applying the assumptions of the boundary layer, we can impose the
following form:

δ

x
= o

(
1√
Rex

)
(24)

Here, the Reynolds number Rex is a function of x, and x represents the
characteristic distance.

Replacing Equation (24) and the expression of Reynolds number (u1x/υ)
in Equation (23), we get:

u

u1
= F

(y
x

√
Rex

)
= F

(
y

√
u1
υ x

)
(25)

We can therefore define new dependent and independent variables, F and
η respectively in this way:

u

u1
= F (η) (26)

η =
y

x

√
Rex = y

√
u1
υ x

(27)

Where η is commonly called the similarity variable.
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We can integrate the continuity Equation (17) with respect to y by using
the boundary conditions of Equation (22), we get this:

v = −
∫ y

0

∂η

∂x
dy = −

√
x υ

u1

∫ η

0
u1

dF

dη

∂η

∂x
dη (28)

By differentiating the similarity variable η with respect to x, we can also
show that

∂η

∂x
= −1

2

y

x

√
u1
x υ

= − η

2x
(29)

By substituting in Equation (28), we can draw:

v =
1

2

√
υ

x u1

∫ η

0

dF

dη
η dη (30)

In order to solve this integral and given its form, it suffices to create
another function f which depends on F by the following relation

df

dη
= f ′ = F (31)

By replacing the variables of Equation (31) in Equation (30), we then
obtain

v

u1
=

1

2

√
υ

x u1
(η f ′ − f) (32)

In the next step, we consider the moment Equation (18) which will be
written in the form(

u

u1

)
∂(u/u1)

∂η

∂η

∂x
+

(
v

u1

)
∂(u/u1)

∂η

∂η

∂y
=

(
v

u1

)
∂2(u/u1)

∂η2

(
∂η

∂y

)2

(33)

However, from Equation (31), we have:

u

u1
= f ′ (34)

Using Equation (34) to reduce Equation (33), we can derive the following:

f ′f ′′
(
−1

2

y

x

√
u1
x υ

)
+

[
1

2

√
υ

x u1
(ηf ′ − f)

]
f ′′
√
u1
x η

=
v

u1
f ′′′
( u1
x υ

)
(35)
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After the simplifications, we will have:

2f ′′′ + f f ′′ = 0 (36)

Finally, Equation (36) can take the following way:

2
d3f

dη3
+ f

d2f

dη2
= 0 (37)

Now the hydrodynamic boundary layer problem of finding the veloc-
ity profile has been reduced to solving a third-order nonlinear ordinary
differential equation.

The boundary conditions provided in Equation (22) will take the follow-
ing form according to the similarity function terms:

y = 0, u = 0, becomes η = 0, f ′ = 0

y = 0, v = 0,becomes η = 0, f =

y is large: u→ u1, becomes η is large, f ′ → 1 (38)

We therefore have in terms of similarity variables, one boundary condi-
tion imposed on large values of η and two boundary conditions at η = 0.
Using these boundary conditions, the resolution of Equation (36) has become
relatively easy to find.

In order to find the variation of f with η, we use the first two boundary
conditions reported in Equation (38) whose approach is based on the value of
f ′′ on the wall and then we numerically solve Equation (36).

3.1.3 Numerical solution procedure
To solve this problem, we resorted to the use of an iterative method which
is mostly adopted here called Newton’s method. In other words, if f ′∞ is the
value of f ′ for large η and if f ′′ω is the value of f ′′ at η = 0, then an excellent
evaluation of f ′′ω is:

f ′′ω +
f∞ − 1

d(f ′∞)/d(f ′′ω)

The solution methodology requires us to simultaneously write Equa-
tion (36) in three first order differential equations like this:

2h′ = −0.5 fh

g′ = h

f ′ = g
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T

y 

δt 
Thermal 
Boundary Layer  

T1 

T1 
T1 

Tω x 

Free Streem  δt (x) 

Figure 4 Thermal boundary layer development on an isothermal flat plate.

Where this system of equation is subject to the following boundary
conditions

η = 0, g = 0; η = 0, f = 0; η large, g → 1

The solution method therefore, includes penetrating the value of η to zero
and then integrating the system of equations.

Then, we exploited Newton’s method in order to progress gradually
towards h at η = 0 which gives g → 1 for η large. As an application, the
value of d(f ′∞)/d(f ′′ω) is arrived at by obtaining f ′∞ using a singular value
of f ′ω and then incrementally f ′ω by a small amount, then by obtaining a new
value of f ′∞ and then using for the derivative by a finite difference technique.

The thermal boundary layer develops on an isothermal flat plate if surface
temperatures differ and the free fluid stream, just as the velocity boundary
layer develops in the presence of fluid flow over a surface (Figure 4).

So far we have determined the velocity profile, now our concern is
focused on finding the temperature field from the previous Equation (19).
In the present situation since the temperature of the wall is quite uniform,
we assume that the velocity profile is similar to that of the tempera-
ture. Therefore, we introduce the following dimensionless variable of the
temperature:

θ =
Tω − T
Tω − T1

(39)

We therefore consider that the variable θ is related only to that of
similarity, η, since the thickness of the thermal boundary layer is equiva-
lent to x/

√
Rex.
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The energy Equation (19) will take the following form since T1 and Tω
are constants

u
∂θ

∂x
+ v

∂θ

∂y
=

υ

Pr

∂2θ

∂y2
(40)

And in this case, the boundary conditions will be:

y = 0: θ = 0

y large: θ → 1 (41)

Consider that θ varies as a function of η and after making the changes and
derivatives in the Equation (40), we will have:

f ′
dθ

dη

∂η

∂x
+

[
1

2

√
υ

x u1
(ηf ′ − f)

]
dθ

dη

∂η

∂y
=

1

Pr

v

u1

∂2θ

∂η2

[
∂η

∂y

]2
(42)

By making the necessary simplifications, Equation (42) reduces to

θ′′ +
Pr

2
θ′f = 0 (43)

Where the latter is subject to the following appropriate boundary
conditions:

η = 0: θ = 0

η large: θ → 1 (44)

By confirming the hypothesis of similarity of the temperature field, and
as we had done for the case of velocity, the partial differential equation
governing the temperature distribution was reduced to a single ordinary
differential equation.

Using the boundary conditions of Equation (44), we can solve Equa-
tion (43) whose solution procedure is now easier to follow and it will be
written as follows:

1

θ′
d

dη
θ′ = −Pr

2
f (45)

By integrating this equation, we get

θ′ = c1exp

[
−Pr

2

∫ η

0
fdη

]
(46)
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Where c1 represents the constant of integration to be determined which
then gives.

The integration of Equation (46) will guide us to:

θ = c1

∫ η

0

[
exp

(
−Pr

2

∫ η

0
fdη

)]
dη + c2 (47)

A second integration constant c2 has appeared in Equation (47) and
is equal to zero because in accordance with the boundary conditions of
Equation (44) we have (η = 0; θ = 0). Moreover, the constant c1 is obtained
by using the second boundary conditions of Equation (44), and it will take
the following expression:

c1 = 1

/∫ ∞
0

[
exp

(
−Pr

∫ η

0
fdη

)]
dη (48)

By taking into account the null value of c2 and then replacing Equa-
tion (48) in Equation (47), we get the final solution of θ as:

θ =

∫ η
0

[
exp

(
−Pr

2

∫ η
0 fdη

)]
dη∫∞

0

[
exp

(
−Pr

2

∫ η
0 fdη

)]
dη

(49)

Knowing the function f determined by the speed, we can easily determine
θ as a function of η and Equation (36) is written as:

f ′′′

f ′′
= −f

2
(50)

The integration of this tends towards

logef
′′ = −1

2

∫ η

0
fdη + constant

Whence

exp

[
−1

2

∫ η

0
fdη

]
=
f ′′

c3
(51)

Hence c3 is a constant. We integrate this equation, we will have∫ η

0
exp

[
−Pr

∫ η

0
fdη

]
dη =

∫ η

0

(
f ′′

c3

)Pr
dη =

1

cPr3

∫ η

0
(f ′′)

Pr
dη

(52)
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Introducing these important results into Equation (49) entails

θ =

[∫ η
0 (f ′′)Prdη

]
[∫∞

0 (f ′′)Prdη
]

=

[∫∞
0 (f ′′)Prdη −

∫∞
η (f ′′)Prdη

]
[∫∞

0 (f ′′)Prdη
]

= 1−

[∫∞
η (f ′′)Prdη

]
[∫∞

0 (f ′′)Prdη
] (53)

Thus, for any selected value of the Prandtl number Pr, we can obtain the
prediction of the dimensionless temperature θ as a function of the similarity
variable η.

Since the velocity gives us the variation of f ′′ with η, we can easily find by
this, the variation of θ with η. For large high values of η, outside the boundary
layer, the value of f ′′, equal to d(u/ul)/dη is remarkable tends towards zero.

In order to obtain the similarity contours, we have developed a program in
FORTRAN language to solve our problem on the prediction of the velocity
field and that of temperature at the same time. We used the Runge-Kutta
method to solve the system of equations analyzing the velocity profile. Fig-
ure 5 represents the schematic flowchart of the operation of the FORTRAN
code (inputs/outputs) and converges to the numerical solution of the problem.

3.1.4 Runge-Kutta 4th order rule for differential equation
The fourth-order Runge – Kutta method is used for solving ordinary differ-
ential equations (ODE). It uses dy/dx function for x and y, and also needs the
initial value of y, i.e. y(0). It finds the approximate value of y for given x. The
Runge-Kutta method RK4 requires 4 evaluations of f and four coefficients k1,
k2, k3, and k4. The following formula [yn+1 = yn+h/6(k1+2k2+2k3+k4)]
is used to compute next value yn+1 from previous value yn. The value of n
are 0, 1, 2, 3, . . . (x − x0)/h where h is step height and xn+1 = xn + h For
solving ODE.

Figure 6 shows the flow chart representing the code programmed for the
solution of the ODE using Runge–Kutta 4th order method.



Numerical Simulation of Laminar Boundary Layer Flow Over 353

Start  

HWrite &Read DETA,N, Pr 

Input Initial Values 
INTR=1, HGUESS(INTR)=1.0 

F(1)=0.0 

G(1)=0.0 

H(1)=HGUESS(INTR) 

DO  I=2, N 
F(I)=F(I-1)+G(I-1)*DETA 
G(I)=G(I-1)+H(I-1)*DETA 

H(I)=H(I-1)-F(I-1)*H(I-1)*DETA/2.0 

FPIN(INTR)=G(N) 

INTR.EQ.1 
INTR=2 
HGUESS(INTR)= 

HGUESS (1)-10-6 

INTR.GT.200 

ABS(1.0-
FPIN(INTR)) 

.LT.5*10-7 

INTR=INTR+1 
DGUESS=+(FPIN(INTR-1)-1.0)*(HGUESS(INTR-1)- 

&  HGUESS(INTR-2))/(FPIN(INTR-2)-FPIN(INTR-1)) 
        HGUESS(INTR)=HGUESS(INTR-1)+DGUESS 

T(1)=0.0 
DO I=2, N 

T(I)=T(I-1)+DETA*(P(I)+P(I-1))/2.0 

DO  I=1, N 
T(I)=T(I)/T(N) 

ETA= (I-1)*DETA 

TGRAD=(T(2)-T(1))/DETA 

Print Output Results 
(ETA, F, dF/DETA, 

D2F/DETA2, THETA) 

STOP 

DO  I=1, N 
P(I)=H(I)**PR 

Write’ INTR 
(Convergence, Iterations) 

Yes No 

Yes 

Yes 

ENDIF 

Figure 5 Flowchart of the FORTRAN code giving similarity solution results for laminar
boundary layer flow over an isothermal flat plate.
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Figure 6 Flowchart of the Runge–Kutta 4th order method in FORTRAN.
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3.2 Case of Laminar Flow Over Flat Plates with Other Thermal
Boundary Conditions

3.2.1 Mathematical formulation and similarity solution
We have previously discussed the similarity solution of a plate subjected to a
uniform surface temperature, of which we had:

Tω − T1 = constant

Moreover, other solutions of similarity with other thermal boundary
conditions can be achieved for a flat plate by holding that its tempera-
ture is variable as a function of the abscissa x. The boundary conditions
on the temperature do not influence the resolutions of the velocity field
and are considered identical to those for the uniform temperature and we
consider here:

Tω = T1 + Cxn

From where:
Tω − T1 = Cxn (54)

Where C and n are also constants.
The nondimensionalization of the temperature used here is defined by:

θ =
Tω − T
Tω − T1

= 1− T − T1
Tω − T1

(55)

And again, since we have assumed that θ is independent of the similarity
variable, η.

Tω−T1 is variable in this case as a function of x because of what we have:

T − T1 = (1− θ)(Tω − T1)

We can therefore write the energy Equation (19) as a function of θ as

−u ∂
∂x

[(1− θ) (Tω − T1)] + v
∂θ

∂y
(Tω − T1) =

[ υ
Pr

] ∂2θ
∂y2

(Tω − T1)

(56)

And the boundary conditions will become

y = 0: θ = 0

y large: θ → 1 (57)
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Equation (72) will take the following form and this after having used the
relations of the derivatives of the velocity obtained later

f ′
dθ

dη

∂η

∂x
− ηf ′ (1− θ)

x
+

[
1

2

√
υ

u1x

(
ηf ′ − f

)] dθ
dη

∂η

∂y

=
1

Pr

υ

u1

d2θ

dη2

[
∂η

∂y

]2
(58)

After simplifications, we obtain the following equation:

θ′′ + ηPrf ′(1− θ) +
Pr

2
θ′f = 0 (59)

Subject to the boundary conditions which take the following form:

η = 0: θ = 0

η large: θ → 1 (60)

As we had previously found, the governing partial differential equation
for the temperature field was transferred to an ordinary differential equation
by introducing the similarity variables. The assumption of the temperature
contours which are identical was thus verified.

The dimensionless temperature variation θ as a function of the similarity
variable η can be predicted by solving the equation in question for all selected
values of Pr and η.

Thanks to a FORTRAN program that we have well elaborated by all the
required data, we were able to reach the solution results of the speed profile
and again the same method to solve Equation (59).

The rate of heat transfer to the wall is known by its formula:

qω = −k ∂T
∂y

∣∣∣∣
y=0

(61)

Finally, and after using Equation (55), we therefore have:

qωx

k(Tω − T1)
= θ′|η=0

√
Rex (62)

For each imposed value of Pr and η, θ′|η=0 will take a characteristic
value. It subsequently appears the proportionality of qω to (Tω − T1)/x0.5.
However, in the case where n takes the value of 0.5, this indeed corresponds
to the uniformity of heat flux on the surface of the plate.
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In other words, for a flow on a flat plate that is subjected to a heat flux
of uniform area, the similarity solution of the governing equation is always
exists.

4 Results and Discussion

4.1 Flat Plate in Laminar Flow

Subsequently, we can find the evolution of f and f ′, as a function of η whose
curve is well illustrated in Figure 7. Generally, the fluid velocity is zero at
the plate surface and increases gradually away from the plate toward the free
stream value satisfying the boundary conditions. We can see that the desired
speed profile is in good agreement with the experimental investigations
observed. Although reducing the two original partial differential equations
governing the velocity components, u and v, into a single ordinary differential
equation gives us a reliable justification for the hypothesis of similar velocity
contours. Physically in the boundary layer, there is no distinct “edge” and for
it to have dominant viscosity effects there must be some measure of distance
from the wall.

For this purpose, it is practically to determine the thickness of the bound-
ary layer δu, also the distance from the wall at which u reaches at less than
1% of the velocity of the free stream, i.e., to define δ as the value of y at
which u = 0.99 ul. According to the result schematized in Figure 7, we can
see that u = 0.99 u1. This means that, when η = 5 then f ′ = 0.99 which
means by the definition of η that the thickness of the boundary layer δu can
be evaluated by:

δu

√
u1
υx

= 5

From where
δu
x

=
5√
Rex

(63)

Table 1 presents the computational results of the numerical simulation
with a fixed value Pr = 1, for the function f(η) and its derivatives
(f ′(η), f ′′(η)) and dimensionless temperature θ(η). Selected results are pre-
sented, from which useful information may be extracted. The x-component
velocity distribution from the third column of the table is plotted in Fig-
ure 8(a). For different values of the Prandtl number; representative temper-
ature distributions for Pr = 0.7,1,3, and 10 are shown in Figure 8(b). Thermal
effects penetrate farther into the velocity boundary layer with decreasing
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Figure 7 Velocity profile versus the similarity variable for the boundary layer on a flat plate.

Prandtl number and transcend the velocity boundary layer for Pr < 1. An
important consequence of this solution is quite remarkable, for Pr = 0.6.

Figure 9 depicts the non-effect of Prandtl number on the fluid velocity
profile. In other words, the fluid velocity distribution is independent of the
Prandtl number values. This result is quite normal because the previous
differential equations describing the velocity field do not contain any trace
of this number.

In our simulation, the function f(η) was evaluated for the laminar
boundary layer along with a flat plate with zero incidence. Table 2 shows
the comparison between the dimensionless velocity values obtained by Bla-
sius [1] and those of the present method. The velocity profile is obtained in
dimensionless form by plotting u/u1 as a function of the numerical values
grouped together in this table

The results of the numerical investigation with the Blasius solution are
presented in Figure 10. This result clearly shows satisfactory agreements with
the results of Blasius’ solution.

Thanks to this FORTRAN program, some specific variations of the
dimensionless temperature θ as a function of the variable η for different
values of Pr have been plotted in Figure 11. The Prandtl number relates
the rates of diffusion of heat and momentum. Prandtl number signifies the
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Table 1 Computational table showing the function f(η), its derivatives f ′(η), f ′′(η) and
the dimensionless temperature results θ(η)

η f(η) f ′(η) f ′′(η) θ(η)

0.000000 0.000000 0.000000 0.330308 0.000000
0.010000 0.000000 0.003303 0.330308 0.003309
0.020000 0.000033 0.006606 0.330308 0.006617
0.030000 0.000099 0.009909 0.330308 0.009926
0.040000 0.000198 0.013212 0.330308 0.013234
0.050000 0.000330 0.016515 0.330308 0.016543
0.060000 0.000495 0.019818 0.330307 0.019851
0.070000 0.000694 0.023122 0.330306 0.023160
0.080000 0.000925 0.026425 0.330305 0.026468
0.090000 0.001189 0.029728 0.330304 0.029777
0.100000 0.001486 0.033031 0.330302 0.033085
0.200000 0.006276 0.066059 0.330246 0.066168
0.300000 0.014368 0.099078 0.330087 0.099240
0.400000 0.025760 0.132074 0.329770 0.132289
0.500000 0.040451 0.165029 0.329241 0.165296
0.600000 0.058435 0.197919 0.328447 0.198237
0.700000 0.079704 0.230717 0.327336 0.231083
0.800000 0.104247 0.263387 0.325859 0.263800
0.900000 0.132050 0.295892 0.323966 0.296349
1.000000 0.163094 0.328186 0.321612 0.328685
2.000000 0.644028 0.627550 0.266425 0.628267
3.000000 1.387772 0.844516 0.161869 0.845069
4.000000 2.295155 0.954988 0.064627 0.955236
5.000000 3.272244 0.991467 0.015973 0.991532
6.000000 4.268533 0.998976 0.002388 0.998986

thickness of the thermal boundary layer and thickness of the hydrodynamic
boundary layer, depending on whether it is equal to one, or more than one,
or less than one. If it is equal to one, it signifies that the thickness of the
thermal boundary layer is equal to that of the velocity boundary layer. The
buoyancy force exerted by a fluid on a body is equal to the weight of the fluid
displaced by the body and it is due to the increase of pressure with depth in
a fluid. From Figure 11 we observed that a lower temperature and thinner
thermal boundary layer thickness correspond to an increase in the Prandtl
number. An enhancement in the Prandtl number implies to higher momentum
diffusivity and lower thermal diffusivity. The rise in temperature allows the
fluid to increase the velocity profile due to the effect of buoyancy; the effects
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Figure 8 Similarity solution for laminar flow over an isothermal flat plate. (a) x-component
of the velocity. (b) Temperature distributions for Pr = 0.7, 1, 3, and 10.
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Figure 9 Independence of the Prandtl number on the velocity profile in the flat plate
boundary layer.

Table 2 Comparison of f ′(η) between our numerical results and Blasius’s results with
Pr = 0.7

η df(η)/dη Present Method df(η)/dη Blasius [1]
0 0 0
0.5 0.165029 0.1659
1 0.328186 0.3298
1.5 0.48471 0.4868
2 0.62755 0.6298
2.5 0.749263 0.7513
3 0.844516 0.846
3.5 0.912053 0.913
4 0.954988 0.9555
4.5 0.979284 0.9795
5 0.991467 0.9915
5.5 0.996865 0.9969
6 0.998976 0.999

of the heat sink on velocity and temperature profiles play oppositely. This
in fact shows the thinning of the thermal boundary layer, which is mainly
due to the fact that the buoyancy force improves the fluid velocity and
increases the boundary layer thickness with the decrease in the value of
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Figure 10 Comparison of the present model with Blasius [1] for the derivative func-
tion f ′(η).

Pr. As is well known, the presence of buoyancy enhances the mixing and
exchange of the fluid between the near-wall region and the region outside
in the unstable boundary layer flow. Hence, convective surface heat transfer
enhances thermal diffusion while an increase in the Prandtl number and the
intensity of the buoyancy force slows down the rate of thermal diffusion
within the boundary layer. For a value of the Prandtl number is equal to 1,
the profile is similar to that represented by the variation of f ′ with η which
was illustrated in Figure 7.

Figure 12 depicts the three dimensionless temperature distribution θ
versus η and f ′ in steady-state heat transfer over a flat plate model.

It will be checked according to the results given in Figure 11, if the
thickness of the thermal boundary layer δT is determined similarly to the
thickness of the velocity boundary layer as being the wall spacing over which
θ tends to 0.099, from where it reaches less than 1% of its free stream value,
so we have

δT
x

=
∆(Pr)√
Rex

However
δu
x

=
5√
Rex
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Figure 11 Dimensionless temperature profile θ versus similarity variable, η, for different
values of Prandtl number Pr for boundary layer on a flat plate.
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Figure 12 3D Contour plot of dimensionless temperature θ versus. the similarity variable η
and the velocity profile u/u1.
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Figure 13 Variation of temperature profile function θ with respect to the velocity profile
u/u1 for several values of Pr.

This leads to the following writing:

δT
δu

= ∆(Pr)

Figure 13 shows the variation of dimensionless temperature θ versus
dimensionless velocity profile u/u1 for different Prandtl numbers (Pr). How-
ever, in this figure, an increase in Prandtl Pr number decreases skin friction
but also increases the rate of heat transfer to the plate surface. This is
attributed to the fact that as the Prandtl number decrease, the thermal bound-
ary layer thickness increases, causing a reduction in the temperature gradient
at the surface of the plate.

We can say by this that the relation of the two boundary layer thicknesses
is related only to the Prandtl number. According to the results shown in
Figure 11, as the Prandtl number is less than one, the thermal boundary layer
is thicker than the speed boundary layer and when Pr is greater than one, it is
thinner than the speed boundary.

The rate of heat transfer to the wall can be expressed as:

qω = −k∂T
∂y

∣∣∣∣
y=0

(64)
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Using Equation (39), we can derive this

qω
k(Tω − T1)

=
∂θ

∂y

∣∣∣∣
y=0

=
dθ

dη

∣∣∣∣
η=0

∂η

∂y
(65)

This gives
qωx

k(Tω − T1)
= θ′|η=0

√
Rex (66)

We obtain
Nux = θ′|η=0

√
Rex (67)

Obviously, Re and Nu are respectively the local Reynolds and Nusselt
numbers based on the x-coordinate. Because, for known Pr, θ is dependent
on η, θ′|η=0 is only related to Pr and we can get it using the solution of θ as
a function of η. We can define:

A(Pr) = θ′|η=0 (68)

We can deduce from Equation (67) the following:

Nux = A(Pr)
√
Rex (69)

Our calculation results of the function A for different Pr values are
obtained and summarized in Table 3.

Subsequently, integration on the whole plate is essential to acquire the
whole rate of heat transfer. Moreover, after having gained the compact
approximate relation A, it is compared to the function 0.332Pr1/3. Figure 14
represents this comparison for various Prandtl Numbers: 0.6, 0.7,. . . and 15.

Table 3 Estimated values of A as a function of the values of the Prandtl number
Pr A = θ′|η = 0 0.332 Pr1/3

0.6 0.276 0.280

0.7 0.293 0.295

0.8 0.307 0.308

0.9 0.320 0.321

1.0 0.332 0.332

1.1 0.344 0.343

7.0 0.645 0.635

10.0 0.730 0.715

15.0 0.835 0.819
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Figure 14 Comparison in order to roughly estimate the function of A.

From the results cited in the table, we can visibly see that the values of
function A vary in the vicinity of Pr1/3 and, we can consider that the results
given in the table of A are very similar and close to those of the second
column, we can get the following approximate expression:

A = 0.332 Pr1/3 (70)

For values greater than 1 or very different from those in the table, the cal-
culation error of the approximate equation is remarkable and very important.
Presently, in practice, our thermal problem is possibly related to the rate of
total heat transfer starting with the whole surface than to the rate of local heat
transfer. We now consider that from a plate of length L, there is a total heat
transfer rate. We assume by the hypothesis that the flow is two-dimensional
since the unit width of the plate is considered here. The total heat transfer rate
per unit of width will obviously depend on the local heat transfer rate, by:

Qω =

∫ L

0
qωdx (71)

Nevertheless, Equation (66) inevitably presents the local heat transfer
rate then:

qω = Ak(Tω − T1)
√
u1
xυ

(72)
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By replacing and doing the integral, Equation (71) becomes

Qω = 2Ak(Tω − T1)
√
u1L

υ
(73)

If the entire plate has an average heat transfer coefficient h, its expression
can be defined as

h =
Qω

L(Tω − T1)
(74)

Therefore, given that for the plate its unit width is taken into account,
Equation (73) deduces:

h =
2Ak

L

√
u1L

υ
(75)

So, for the whole plate, the relation of the mean Nusselt numberNuL can
be formulated as:

NuL = 2A ReL
1/2 (76)

Where ReL is the Reynolds number based on the length of the plate, L.
In what follows, we will see that for the entire surface of the plate, the

average transfer rate is twice the local heat transfer rate at the end of the plate
(x = L).

From the approximate expression of the function A given in Equa-
tion (70), the formulas for local and average Nusselt numbers are therefore:

Nux = 0.332 Pr1/3 Rex
1/2 (77)

Nux = 0.664 Pr1/3 ReL
1/2 (78)

These correlation formulas provide the fruit of results which are com-
pletely in agreement with the experimental investigations.

4.2 Flat Plate in Laminar Flow with Other Thermal Boundary
Conditions

The results of the numerical solutions for f(η) and its derivatives, as well
as the dimensionless temperature θ are given in Table 4(a-b-c-d) for fixed
Prandtl numbers of 0.7 and by varying the exponent n (0, 0.5, 1, 1.5). We can
notice according to the results gathered in this table that for a fixed Prandtl
number, both f ′′(η) and θ(η) increase as an exponent n increases.

The variations of the shear stress profiles f ′′(η) versus dimensionless
velocity f ′(η) for several values of Pr is represented in Figure 15. We can
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Table 4 Computational results outputs of the FORTRAN code
(a) n = 0. Pr = 0.7

η f(η) f ′(η) f ′′(η) θ(η)

0.000000 0.000000 0.000000 0.292681 0.000000
0.010000 0.000017 0.003321 0.292681 0.002927
0.020000 0.000066 0.006641 0.292681 0.005854
0.030000 0.000149 0.009962 0.292681 0.008780
0.040000 0.000266 0.013282 0.292681 0.011707
0.050000 0.000415 0.016603 0.292681 0.014634
0.060000 0.000598 0.019923 0.292680 0.017561
0.070000 0.000814 0.023244 0.292679 0.020488
0.080000 0.001063 0.026565 0.292679 0.023414
0.090000 0.001345 0.029885 0.292677 0.026341
0.100000 0.001660 0.033206 0.292676 0.029268
0.200000 0.006641 0.066408 0.292636 0.058534
0.300000 0.014941 0.099599 0.292528 0.087793
0.400000 0.026560 0.132764 0.292319 0.117036
0.500000 0.041493 0.165885 0.291974 0.146252
0.600000 0.059735 0.198937 0.291460 0.175425
0.700000 0.081277 0.231890 0.290744 0.204537
0.800000 0.106108 0.264709 0.289795 0.233566
0.900000 0.134213 0.297354 0.288582 0.262487
1.000000 0.165572 0.329780 0.287074 0.291273
2.000000 0.650025 0.629766 0.251085 0.563780
3.000000 1.396810 0.846045 0.176605 0.780110
4.000000 2.305748 0.955519 0.092679 0.913756
5.000000 3.283276 0.991542 0.034886 0.974595
6.000000 4.279623 0.998973 0.009289 0.994495
(b) n = 0.5. Pr = 0.7

η f(η) f ′(η) f ′′(η) θ(η)

0.000000 0.000000 0.000000 0.405895 0.000000
0.010000 0.000017 0.003321 0.405889 0.004059
0.020000 0.000066 0.006641 0.405872 0.008118
0.030000 0.000149 0.009962 0.405843 0.012176
0.040000 0.000266 0.013282 0.405803 0.016235
0.050000 0.000415 0.016603 0.405751 0.020292
0.060000 0.000598 0.019923 0.405688 0.024349
0.070000 0.000814 0.023244 0.405613 0.028406
0.080000 0.001063 0.026565 0.405527 0.032462
0.090000 0.001345 0.029885 0.405430 0.036516
0.100000 0.001660 0.033206 0.405322 0.040570

(Continued)
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Table 4 Continued
(b) n = 0.5. Pr = 0.7

η f(η) f ′(η) f ′′(η) θ(η)

0.200000 0.006641 0.066408 0.403634 0.081027
0.300000 0.014941 0.099599 0.400878 0.121261
0.400000 0.026560 0.132764 0.397104 0.161168
0.500000 0.041493 0.165885 0.392361 0.200649
0.600000 0.059735 0.198937 0.386699 0.239610
0.700000 0.081277 0.231890 0.380172 0.277960
0.800000 0.106108 0.264709 0.372834 0.315617
0.810000 0.108772 0.267982 0.372058 0.319342
0.900000 0.134213 0.297354 0.364741 0.352502
1.000000 0.165572 0.329780 0.355949 0.388542
2.000000 0.650025 0.629766 0.243290 0.690851
3.000000 1.396810 0.846045 0.128082 0.874506
4.000000 2.305748 0.955519 0.050915 0.960172
5.000000 3.283276 0.991542 0.015041 0.990329
6.000000 4.279623 0.998973 0.003260 0.998232
(c) n = 1. Pr = 0.7

η f(η) f ′(η) f ′′(η) θ(η)

0.000000 0.000000 0.000000 0.480339 0.000000
0.010000 0.000017 0.003321 0.480327 0.004803
0.020000 0.000066 0.006641 0.480293 0.009606
0.030000 0.000149 0.009962 0.480235 0.014409
0.040000 0.000266 0.013282 0.480155 0.019211
0.050000 0.000415 0.016603 0.480052 0.024012
0.060000 0.000598 0.019923 0.479927 0.028812
0.070000 0.000814 0.023244 0.479779 0.033610
0.080000 0.001063 0.026565 0.479609 0.038407
0.090000 0.001345 0.029885 0.479418 0.043203
0.100000 0.001660 0.033206 0.479205 0.047996
0.200000 0.006641 0.066408 0.475913 0.095769
0.300000 0.014941 0.099599 0.470632 0.143112
0.400000 0.026560 0.132764 0.463528 0.189834
0.500000 0.041493 0.165885 0.454767 0.235762
0.600000 0.059735 0.198937 0.444513 0.280737
0.700000 0.081277 0.231890 0.432929 0.324620
0.800000 0.106108 0.264709 0.420176 0.367284
0.900000 0.134213 0.297354 0.406412 0.408621
1.000000 0.165572 0.329780 0.391790 0.448537
2.000000 0.650025 0.629766 0.228319 0.759156

(Continued)
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Table 4 Continued
(c) n = 1. Pr = 0.7

η f(η) f ′(η) f ′′(η) θ(η)

3.000000 1.396810 0.846045 0.098599 0.917418
4.000000 2.305748 0.955519 0.031937 0.977942
5.000000 3.283276 0.991542 0.007789 0.995454
6.000000 4.279623 0.998973 0.001422 0.999287
(d) n = 1.5. Pr = 0.7

η f(η) f ′(η) f ′′(η) θ(η)

0.000000 0.000000 0.000000 0.537569 0.000000
0.010000 0.000017 0.003321 0.537551 0.005376
0.020000 0.000066 0.006641 0.537499 0.010751
0.030000 0.000149 0.009962 0.537413 0.016125
0.040000 0.000266 0.013282 0.537293 0.021499
0.050000 0.000415 0.016603 0.537139 0.026871
0.060000 0.000598 0.019923 0.536952 0.032242
0.070000 0.000814 0.023244 0.536732 0.037610
0.080000 0.001063 0.026565 0.536479 0.042976
0.090000 0.001345 0.029885 0.536194 0.048339
0.100000 0.001660 0.033206 0.535877 0.053700
0.200000 0.006641 0.066408 0.531011 0.107069
0.300000 0.014941 0.099599 0.523280 0.159806
0.400000 0.026560 0.132764 0.512991 0.211639
0.500000 0.041493 0.165885 0.500445 0.262328
0.600000 0.059735 0.198937 0.485937 0.311662
0.700000 0.081277 0.231890 0.469750 0.359459
0.800000 0.106108 0.264709 0.452161 0.405565
0.900000 0.134213 0.297354 0.433433 0.449853
1.000000 0.165572 0.329780 0.413816 0.492222
2.000000 0.650025 0.629766 0.212696 0.803448
3.000000 1.396810 0.846045 0.078429 0.941535
4.000000 2.305748 0.955519 0.021477 0.986537
5.000000 3.283276 0.991542 0.004453 0.997598
6.000000 4.279623 0.998973 0.000701 0.999672

notice from this figure that the shear stress profile though initially increases
with n and Pr but decreases for large value velocity.

Variations of θ′|η=0 as a function of η for different Prandtl number values
Pr derived from the FORTRAN calculation code are soon represented in
Figure 16.
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Figure 15 Variation of function f ′′ with f ′ for various values of n and Pr.
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Figure 16 Variation of θ′|η=0 as a function of n for different values of Pr.
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Figure 17 Effect of n on temperature profiles.

For various values of the parameters that we have played on the sim-
ulation such as the number of exponents (n) and the number of Prandtl
(Pr) in order to see their influence, temperature profiles are depicted in
Figures 17–18 respectively.

According to the theory of boundary layer flow, the numerical results
show that an increase in the Prandtl number results in a reduction in the
thickness of the thermal boundary layer and, in general, a lower average
temperature within the boundary layer. The logic is that low values of Pr are
equivalent to increasing the thermal conductivity of the fluid, and therefore
the heat is able to disperse away from the heating surface more quickly than
for large values of. Pr. The Prandtl number controls the relative thickening of
thermal boundary layers and momentum in thermal problems.

Figure 19 illustrates the simultaneous variation of dimensionless temper-
ature profiles θ(η) with velocity field, both for different values of n and of Pr.
We can see that the temperature field is rapidly increasing near the boundary
layer by increasing the number of Prandtl. Physically speaking, the Prandtl
number compares the speed of thermal phenomena and hydrodynamic phe-
nomena in a fluid. A high Prandtl indicates that the temperature profile in
the fluid will be strongly influenced by the velocity profile. A low Prandtl
indicates that heat conduction is so fast that the velocity profile has little
effect on the temperature profile.
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Figure 18 Effect of Pr on temperature profiles.
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Figure 19 Plots of dimensionless temperature profiles for different Prandtl numbers and n
(0, 0.5, 1, 1.5).
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4.3 Computational Model Validation

In order to validate our numerical model which we performed on the flat plate,
we carried out an in-depth search in the literature in which we came across
several research works [1–11] which were similar to the one we treated,
we have appropriately collected cases by case the numerical results from
these investigations where we have been able to summarize them globally
in Table 5.

The third-order nonlinear differential Equation (37) with boundary con-
ditions (38) was solved numerically using the fourth-order Runge-Kutta
technique using FORTRAN programming. The numerical results of the
present study are compared with published work by previous researchers and
also are plotted in Figure 20. From this figure, we can see that the current
results of this simulation are in good agreement with the exact solutions
of Blasius [1] for the values f ′(η), as well as for the previous numerical
investigations of the other authors [2–11]. The numerical results show here,
the efficiency of the procedure which we followed, and the precision of
the proposed method for the resolution of the nonlinearity of the governing
equation of the problem.

Table 5 Comparison of the present results with published results [1–11] for f ′(η)

η

df(η)/dη
Present
Work

df(η)/dη
Blasius

[1]

df(η)/dη
Howarth

[2]

df(η)/dη
Wan

Zaimi
et al. [3]

df(η)/dη
Ganji

et al. [4]

df(η)/dη
Cortell

[5]

0 0 0 0 0 0 0

1 0.328186 0.3298 0.32979 0.33 0.32978 0.32978

2 0.62755 0.6298 0.62977 0.63 0.62976 0.62977

3 0.844516 0.846 0.84605 0.848 0.84452 0.84605

4 0.954988 0.9555 0.95552 0.955 0.9028 0.95552

η

df(η)/dη
Yu and

Chen [6]

df(η)/dη
Chang

et al. [7]

df(η)/dη
Karabulut

and
Kiliç [8]

df(η)/dη
Majidian
et al. [9]

df(η)/dη
Esmaeilpour

and
Ganji [10]

df(η)/dη
Fathizadeh

and
Rashidi [11]

0 0 0 0 0 0 0

1 0.32978 0.32979 0.3267 0.3300826 0.3462538 0.3494253

2 0.62977 0.62979 0.6241 0.6296405 0.6622097 0.6687189

3 0.84604 0.84608 0.8392 0.8455199 0.8854328 0.8947068

4 0.95552 0.95556 0.9489 0.960857 0.9762106 0.9826929
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Figure 20 Numerical model validation and comparison of the velocity profiles with other
research work.

In order to further strengthen the validation of our model, we also found
other research in the literature that is related to the topic of scientific contribu-
tion. Thus, a comparison with other methods of solutions was entirely carried
out namely; the Homotopy Perturbation Method (HPM) [9] described pre-
viously, differential transform method (DTM) [56], Laplace Transformation
and New Homotopy Perturbation Method (LTNHPM) [57], Quartic B-Spline
Method (QB-SM) [58], Power Technique of approximation series-Padé (PS-
Padé) [59]. The results data of these investigations were collected from the
literature and they are now summarized in Tables 6 and 7 with our numerical
simulation results for approximation values of f(η), and f ′(η), respectively.

Figure 21 depicts the profile of function f(η) for the different methods of
solutions including that of ours. From this figure, we see that these methods
from this figure, we see that these methods converge each of them, and the
shapes of the curves are almost the same, and the gaits are almost the same.
The results are found to be in good agreement. The results show that the
method we performed is an efficient mathematical tool which can play a very
important role in nonlinear science.

Figure 22 shows the variation of velocity profiles (f ′(η)) with η. In this
figure, the numerical results of our model are compared with the solution
results of the research work that was performed previously. As we notice the
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Table 6 Comparison of f(η) between some numerical results and our results
Present HPM [9] DTM [56] LTNHPM QB-SM [58] PS-Pade

η Work [57] h = 0,01 [59]
0 0 0 0 0 0 0
0.4 0.02576 0.0265894 0.02656 0.02656 0.02656 0.026715
0.8 0.104247 0.1062224 0.10611 0.10611 0.10611 0.106727
1.2 0.234809 0.2381818 0.23795 0.23795 0.23795 0.239332
1.6 0.415768 0.4206587 0.42032 0.42032 0.42032 0.422749
2 0.644028 0.6503809 0.65002 0.65002 0.65002 0.653742
2.4 0.914934 0.9225139 0.92229 0.92228 0.92229 0.927492
2.8 1.222442 1.230937 1.23098 1.23098 1.23098 1.237797
3.2 1.559624 1.568863 1.56909 1.56909 1.56909 1.577606
3.6 1.919377 1.929627 1.92952 1.92952 1.92952 1.93975
4 2.295156 2.307278 2.30574 2.30575 2.30574 2.317668
4.4 2.681509 2.696739 2.69236 2.69242 2.69236 2.705933
4.8 3.07433 3.09348 3.08532 3.08718 3.08532 3.100462
5 3.272244 3.293258 3.28327 3.29272 3.28327

Table 7 Comparison of f ′(η) between some numerical results and our results
η Present Work HPM [9] DTM [56] LTNHPM [57] QB-SM [58] h = 0,01
0 0 0 0 0 0
0.4 0.132073 0.1329106 0.13276 0.13276 0.13276
0.8 0.263387 0.2649775 0.26471 0.26471 0.26471
1.2 0.391951 0.3940826 0.39378 0.39378 0.39378
1.6 0.51462 0.5169439 0.51676 0.51676 0.51676
2 0.62755 0.6296405 0.62976 0.62977 0.62976
2.4 0.726917 0.7284483 0.72898 0.72898 0.72898
2.8 0.809775 0.8108053 0.81151 0.81151 0.81151
3.2 0.874771 0.8760235 0.87608 0.87608 0.87608
3.6 0.922444 0.9253044 0.92333 0.92333 0.92333
4 0.954988 0.960857 0.95552 0.95553 0.95552
4.4 0.975593 0.9845695 0.97587 0.97639 0.97587
4.8 0.987667 0.997382 0.98779 1.00322 0.98779
5 0.991467 0.9999982 0.99154 1.06671 0.99154

bundles of curves are perfectly blended, there was good agreement between
the present investigation and those of previous works.

The solution method of the present work has been compared by the
results of the analytical solution [8]. The value of the non-dimensional steam
function f(η) for various values of η, including the percentage of accuracy
of the solution are all grouped together in Table 8.
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Figure 21 The comparison of f(η) between our results and previous studies.
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Figure 22 The comparison of f ′(η) between our results and previous studies.
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Table 8 Comparison of calculated values of f(η) with published analytical solution [8]

η f(η) Present Study f(η) Analytical Solution Error %

0.000000 0.000000 0.0000 0.00

1.000000 0.163094 0.1556 4.59

2.000000 0.644028 0.6060 5.90

3.000000 1.387772 1.3518 2.59

4.000000 2.295155 2.2502 1.96

5.000000 3.272244 3.2117 1.85

6.000000 4.268533 4.1974 1.67

5 Conclusions

In this investigation, we have performed a numerical solution of the full
Navier-Stokes and energy equations for flat plate flow in order to obtain
heat transfer rates for situations involving external laminar flows. The thermal
problem that we have treated of fluid over a flat plate aligned with the flow is
a good model of situations that are of great practical importance. In order to
easily solve these complex equations, the physical properties of the fluid were
assumed to be constant and the flow was assumed two-dimensional as well
as the dissipation effects in the global energy equation have been neglected,
whose most of the solutions have been based on the use of the boundary layer
equations.

Therefore, we have analyzed essentially two cases namely, one similarity
solution for flow over an isothermal plate has a uniform surface tempera-
ture and another similarity solution for flow over a flat plate subjected to
other thermal boundary conditions whose temperature varies with the spatial
variable. Thus, we have resorted in this study to the exploitation of the
similarity solution which uses as a starting point the assumption that the
boundary layer profiles are similar to all the values of the spatial variable x.
The governing equations describing the problem including the boundary
conditions acting on the laminar boundary layer on the horizontal flat plate
were reduced after the nondimensionalization phase of the solution of a set
of nonlinear, coupled, partial differential equations for the unknown velocity
and temperature field. The numerical solutions of the derivative equations
were obtained using the fourth order Runge-Kutta method which were pro-
grammed under the Fortran language. The numerical results show a good
agreement with the exact solution of Blasius equation and consistent with
prior published results. The accuracy of the proposed method is higher than
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other approximation analytical solutions; hence suggests that the proposed
method is efficient and practical. Several results have been discussed in depth
according to their physical interpretations and important correlations have
been relevantly drawn from this study, such as the velocity and temperature
profile, the thermal boundary layer thickness, the heat transfer rate, the
analytical expressions, local and mean Nusselt numbers.

The parameter involved in this study significantly affect the flow and
heat transfer. The following conclusions can be drawn as a result of the
computations:

• The temperature increases with increasing the Prandtl number.
• The Prandtl number is independent of the velocity profile in the flat plate

boundary layer.
• The rate of heat transfer increases with increasing the Prandtl number.
• The increase of Prandtl number reduces the velocity along the plate

Finally, the numerical results of the model characterizing the behavior
of the laminar boundary layer on a flat plate were validated and show that
they were in good agreement with other previous investigations and they
clearly reveal the effectiveness of the proposed approach. Mathematically,
this analytic approach has general meanings and can be applied to solve many
other non-similarity boundary-layer flows in fluid mechanics. The numerical
results strongly display the efficiency and accuracy of the proposed method
in solving the nonlinear equation.
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