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Abstract

Continuum Damage Mechanics is successfully employed to describe the
behaviour of metallic materials up to the onset of fracture. Nevertheless,
on its own, it is not able to accurately trace discrete crack paths. In this
contribution, Continuous Damage Mechanics is combined with the XFEM
and a Cohesive Law to allow the full simulation of a ductile fracture process.
In particular, the Cohesive Law assures an energetically consistent transition
from damage to crack for critical damage values lower than one. Moreover,
a novel interpretation is given to the parameters of the cohesive law. A
fitting method derived directly from the damage model is proposed for these
parameters, avoiding additional experimental characterization.

Keywords: Ductile fracture, XFEM, cohesive law.

1 Introduction

Ductile fracture is the main failure mechanism in metals and therefore a
critical scientific and industrial concern. Although much has been achieved
in the field, many open questions remain due to the complexity of the
phenomenon. In particular, simulating transition from continuous damage to
discrete fracture is still a challenging issue.
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Ductile failure is characterized by localized plastic flow and by for-
mation and growth micro-voids within the material, which eventually
coalesce to form micro-cracks and subsequent macro-cracks [1]. As a
result, in general, ductile fracture modelling requires a three step approach,
namely, a description of the material behaviour prior to crack formation,
a criterion for the onset of cracking and an adequate methodology to
trace crack growth. Regarding the first step, two large families of mod-
els evolved, namely, Micro-Mechanical models and Continuous Damage
Models (CDM).

Micro-Mechanical models aim bringing a realistic description of the
ductile fracture process in terms of void nucleation, growth and coales-
cence. They were primarily developed by Gurson [2] and submitted to
further extensions. In particular, Tvergaard and Needleman proposed a better
representation of void growth and coalescence, which became known as
Gurson-Tvergaard-Needleman (GTN) model [3]. Nevertheless, GTN mod-
els remain phenomenological and the experimental characterization of its
parameters is not straightforward.

On the other hand, CDM are developed on a thermodynamically con-
sistent framework, where material degradation is evaluated through the
introduction of a damage variable. This damage concept was introduced
by Kachanov [4] and Rabotnov [5] and incorporated in later theories as an
internal variablle. Thus, micro-mechanical phenomena are dealt with in an
averaging way. Important contributions for the full establishment of CDM
are due to Lemaitre [6–8] and Chaboche [9, 10], in which damage and
plasticity are strongly coupled. CDM has the advantage of being consistent
with fundamental physical principles.

Both GTN and CDM have been extensively employed and compared and
good reviews are available in the literature, such as [1, 11, 12]. Nevertheless,
even in a numerical context, both approaches are unable to represent surface
decohesion and propagation of cracks in a structure. In order to overcome this
limitation, GTN and CDM have been combined with different methodologies
such as remeshing [13–19], element deletion technique [20, 21], smeared
crack model [22] or the eXtended Finite Element Method (XFEM) [23, 24].
This last option has been developed by the authors of this paper in the context
of CDM in reference [23], in which crack initiation and propagation are
governed by the evolution of the continuous damage variable. One of the
main advantages of the proposed approach is the possibility of crack growth
independently from the finite element mesh, in a path not necessarily known
a priori. Furthermore, the model was also able to handle several fracture
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locations in a single problem. In brief, in CDM, the damage variable, D
is considered 0 for a virgin material and 1 for a fully damaged material.
Therefore, in the developed model crack was initiated when a certain critical
damage, Dc, was achieved.

In theory, to ensure thermodynamical consistency in the model in use,
the transition from damage to fracture should occur when the material is
fully degraded, that is, for Dc = 1. At this point the damage energy release
would be equivalent to the energy necessary to create a crack surface [25].
However, setting the damage value to 1 leads to a singularity in the continuum
equations, with its natural numerical consequences. Thus, following previous
experimental work, critical damage is usually located between 0.2 and 0.5,
leaving and energy loss gap which should be fulfilled.

One possible solution to this problem is to add a cohesive law to the
original model. Previously, it was considered that once a crack is introduced,
the newly formed surfaces no longer interact, that is, the cracks were consid-
ered traction-free. A cohesive law is a traction-displacement relation, which
models the interaction between the two surfaces of a crack [26–30]. From
the micro-mechanical point view, it may be interpreted as material which is
not fully damaged and, consequently some connection between the two crack
surfaces remains.

In terms of macro-modelling, the transition from damage to fracture for
critical damage values lower than one could be compensated by the cohesive
law. This concept has been previously applied by Cazes et all. [31, 32],
in a formulation that does not require a pre-defined shape for a cohesive
law but in which the location of the crack must be known in advance. As
additional disadvantage, the model was only fully developed for 1D cases.
In this work, a shape for the cohesive law is assumed but its parameters are
fitted following energetic considerations, which constitutes one of the main
novelties of this approach. Here, the parameters which define the cohesive law
are not regarded as characteristic material parameters, but rather numerical
parameters, which are numerically fit to approximate an energetically consis-
tent transition from damage to fracture. Our approach is conceptually related
to the equivalent crack concept developed by Mazars and Pijaudier-Cabot
[25]. Nevertheless, contrary to these authors, we propose a global energetic
balance, rather than a local energy balance in the vicinity of the crack tip.
Furthermore, our approach does not require the use of quantities derived from
Linear Elastic Fracture Mechanics (LEFM), such as the characteristic fracture
energy. As a result, the present model incorporates CDM, XFEM and a
cohesive law, whose parameters are numerically fit directly from the damage
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model. Consequently, additional tedious experimental work that would be
necessary to characterize the cohesive law is avoided.

A model incorporating a cohesive law through XFEM in the GTN model
has been proposed in the literature [33]. Nonetheless, to the knowledge of the
authors is the first time that such a model is developed in the context of CDM.
Moreover, an interpretation of the parameters of the proposed cohesive law
is also presented in the context of CDM, rather than in the traditional LEFM
context.

In this way, in Section 2 the theoretical bases of the proposed methodol-
ogy are set. As this work is an extension of a previous publication, basic CDM
principles and XFEM implementation are summarized, while attention is
devoted to Cohesive law formulation. In Section 3 the main achievements of
the proposed methodology are illustrated through some numerical examples.
Finally, in Section 4 the main conclusions of this paper are outlined.

2 Methods

2.1 Continuous Damage Model

The present work is an extension of a previously published model. Hence,
the employed material model and the basic XFEM implementation are only
briefly described. Interested readers should consult reference [23] for more
details. Thus, following the CDM framework proposed by Lemaı̂tre, [8], the
free energy, ψ, for an isothermal process, is assumed to be a function of a set
of internal variables [34] as:

ψ = ψ(C,Cp, R,D) (1)

where C is the Cauchy-Green tensor, calculated from the deformation
gradient, F , as

C = FTF (2)

Cp is the covariant plastic metric, R is the isotropic hardening variable and
D is the damage variable. In turn, assuming multiplicative decomposition of
the Cauchy-Green tensor [35–37], the mixed variant elastic strain measure
may be obtained as:

Ce = CCp−1 (3)

The spatial configuration of the elastic left Cauchy-Green tensor, which is
useful to define the plastic flow, follows as:

be = FCp−1FT (4)



Understanding Cohesive Law Parameters in Ductile Fracture Initiation 55

Finally, from the free energy it is possible to derive the variables associated
to plastic flow, isotropic hardening and damage:

τ = ρ2be
∂ψ

∂be
(5)

X = ρ
∂ψ

∂R
(6)

Y = −ρ ∂ψ
∂D

(7)

In the above equations, τ represents the Kirchhoff stress tensor, X represents
the thermodynamic forces conjugated with isotropic hardening, Y stands for
damage energy release rate and ρ for mass density. The Green-Lagrange
strain tensor,E, and the second Piola-Kirchhoff stress, S, which are required
in the equilibrium equation terms, are defined as

E =
1

2
(C − I) (8)

S = F−1τF−T (9)

where I represents the identity tensor.
Additionally, a complementary energy dissipation potential ,φ, must be

defined, as ductile damage occurs simultaneously with large plastic strains. It
is specially convenient to consider both effects in a decoupled way defining
φ as:

φ = φp + φd (10)

where φp and φd are the energy potentials associated with plasticity and
damage, respectively. As a result, the evolution equations of the constitutive
model may be derived once these potentials are defined. For the plastic part,
assuming the strain equivalence principle [8], the von Mises yield function
may be adopted:

φp =
1

1−D

√
3

2
τ : τ − τy(R) (11)

where τy is the uni-axial yield stress. For the damage dissipation potential the
following function, based on the work of Lemaitre [8], is considered:

φd =
r

(s+ 1)(1−D)
[
−Y
r

]s+1 (12)
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where r and s are scalar material parameters associated with damage evolu-
tion. Finally, making use of the normality rule it is possible to determine the
evolution equations:

Lvbe = −2γ̇
∂φ

∂τ
be (13)

Ḋ = γ̇
∂φ

∂(−Y )
= γ̇

1

1−D

(−Y
r

)s
(14)

Ṙ = −γ̇ ∂φ
∂X

= γ̇ (15)

where Lv represents the spatial velocity Lie derivative and γ is the plastic
multiplier.

The presented model has been proven to successfully describe the
behaviour of ductile metals, at least until the onset of cracking [12]. Nev-
ertheless, when implemented on a finite element framework it suffers from
pathological mesh dependence [38]. Hence, it has been regularized using a
non-local integral formulation, whose details are described in reference [23].
Moreover, in the aforementioned work, to accurately capture crack growth
path, a discrete traction-free crack was introduced once the damage variable
reached a critical value. In this work, traction-free cracks are replaced by
cohesive cracks, following the formulation described on next subsection.

2.2 General Cohesive Law Formulation

In a domain containing a cohesive crack, the stress field must be related not
only to external loading but also to cohesive tractions, which are active in
the cohesive zone. An additional condition for the cohesive interface must be
satisfied together with the equilibrium equation, as described in the following
paragraph.

Considering a body containing a cohesive crack, represented in Figure 1,
the equilibrium equation for the static case is given by:

divxσ = 0 in Ω (16)

and the applied tractions, t̄, must satisfy

t̄ = σn at ∂Ωt (17)

In the cohesive zone, considering normal and tangential interactions as
represented in Figure 1(b), the cohesive tractions, t−co and t+co, are given by:

t+con = σn+ = −t−con = σn− (18)
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∂Ωcoh Ω

∂Ωt

∂Ωu

(a)

t+con

t+cot

t−cot

t−con

n+

n−

(b)

Figure 1 (a) Body containing a cohesive crack. (b) Detail of the cohesive crack.

and
t+co = (t+con + t+cot) = −t−co = −(t−con + t−cot) (19)

where n− and n+ are the normal vectors to the crack surfaces, as illustrated
in Figure 1(b). The cohesive tractions are considered to be a function of the
crack opening, ω, defined as:

ω = (u− − u+) at ∂Ωcoh (20)

Equation 20 may be split in a normal component and a tangential component
as follows:

ωn = ω · n
ωt = ω · t (21)

where t is a vector perpendicular to n and, consequently:

tcon = tcon(ωn)
tcot = tcot(ωt)

(22)

Finally, due to the additional condition introduced by the cohesive zone
interface, the weak form of the equilibrium equation is given by:∫

X (Ω)
σ : ∇xη dv +

∫
X (∂Ωcoh)

tco · ω(η) da =

∫
X (∂Ωt)

t̄ · η da (23)

for an admissible virtual displacement η. At this point, a constitutive law
for the cohesive zone should be formally defined. Shape and parameters of
such cohesive law are often related to the micro-mechanical mechanisms
underlying the so-called fracture process zone, that is, in the region where
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tco max

(a)

tco max

(b)

Figure 2 (a) Bilinear cohesive law. (b) Polynomial cohesive law.

fracture is likely to happen. Particle-matrix decohesion, void growth and
coalescence or solute segregation are examples of such mechanisms, which
subsequently give rise to macro-crack propagation.

In general, when the cohesive zone model is used to describe the complete
fracture process, the effect of micro-mechanical processes prior to material
separation is described by an increasing traction across the interface. The
maximum traction, tcomax, triggers the initiation of material separation and
consequently, the traction decreases and eventually vanishes allowing a com-
plete decohesion [28–30, 39, 40]. To accommodate those physical features,
cohesive traction-crack opening relation may be mathematically expressed
by a bilinear or a polynomial/exponential type law as represented in Figure 2
[29, 30, 40].

In the case of macroscopically homogeneous materials, which is the often
the case with ductile metals, the shape of the cohesive law is regarded to be of
secondary importance [41]. Additionally, in terms of a numerical simulation,
the effect of linear or exponential laws in the global material response is
qualitatively similar.

When the onset of fracture is triggered with some additional criterion, like
in this work, where macro-cracks are initiated when damage reaches a critical
value, the first part of the cohesive law vanishes. The cohesive law is only
used to model the interaction of the two surfaces of a crack until full material
separation. Considering in particular ductile metals, linear type and expo-
nential type of cohesive laws (Figure 3) are the mostly used [28, 30, 39–41].
In both types of laws, the maximum cohesive traction occurs at the crack
tip and its influence decreases away from it. The main difference is that, in
the linear case, there is a certain crack opening threshold from which the
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tco max

(a)

tco max

(b)

Figure 3 (a) Linear cohesive law. (b) Exponential cohesive law.

cohesive law stops acting, while in the exponential case the cohesive law is
permanently active (although, after a certain crack opening value its influence
is negligible). Hence, in this work an exponential type of law is adopted and
may expressed in the general form:

tco = tcomaxe
−ω0 ω (24)

and therefore is characterised by two parameters, the maximum cohesive ten-
sion, tcomax, discussed in the previous paragraphs and the shape factor, ω0.
Therefore, normal and tangential components of the cohesive tension are
considered as follows:

tcon = Fne
−ω0n ωn

tcot = Fte
−ω0t ωt

(25)

where Fn and Ft represent the maximum cohesive tension and ω0n and
ω0t are shape factors of the cohesive law for the normal and tangential
components, respectively. Alternatively, an exponential cohesive law may be
characterized by the maximum cohesive traction and the associated energy,
Γ, which corresponds to the area under the cohesive traction-crack opening
curve. However both descriptions are equivalent.

2.3 Characterization of the Cohesive Law Parameters

Traditionally the parameters of the cohesive law are considered to be charac-
teristic of a certain material and are often related to the fracture energy, Gf ,
defined as the amount of energy dissipated in the creation of an unit traction-
free crack. Here we proposed a novel approach, in which the parameters of
the cohesive law are not considered characteristic material parameters, but
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rather numerical parameters derivable from the damage model. The proposed
methodology is conceptually related to previous achievements in the liter-
ature, however materializes in a new way, avoiding the use of parameters
stemming from LEFM, which may not be adequate in a context of generalized
plastic deformation. In the following paragraphs, the relation with these
previous developments is described.

A straighforward way of characterizing a cohesive law was presented by
Alfaiate et al. [42]. In this work, the normal cohesive tension is given by the
following expression:

tn = ft0e
− ft0

GF
ωn (26)

where ft0 is the initial tensile strength of the undamaged material. As these
parameters, especially Gf are obtained through LEFM considerations, they
may not be adequate for ductile fracture. In fact, even the extensions of LEFM
to include plastic effects, such as the J-Integral, fail in describing the fracture
process in materials which deform substantially in the plastic regime.

Another interesting approach may be found in the work of Tvergaard and
Hutchinson [28], who studied ductile fracture using a Gurson-type model.
There, it was proposed that the energy necessary to create a macro-crack,
ΓF , is a function the energy required to grow and coalesce the voids in the
material, Γ0, that is

ΓF = ΓF (Γ0) (27)

with

Γ0 = τy
DV

2
(28)

In equation 28 τy is the yield strength and DV is the average void fraction.
The authors also observed that the intensive plastic strain in the vicinity of the
crack tip accelerates the nucleation of additional voids, which consequently
has the potential of significantly lowering the relative crack resistance. The
explicit form of the function ΓF is simultaneously dependent on the plastic
strain and on the void fraction, resulting in a traction-separation law equally
dependent on these phenomena. Establishing a comparison between the Gur-
son and the Lemaitre model, it follows that, in the later, the parameters of the
cohesive law should somehow be related to the damage variable, as well as
to plastic strain. Drawing from these two approaches, a first estimate for the
maximum cohesive traction Fn, may be given by:

Fn ≈ (1−Dc)τy (29)
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Figure 4 Changes in the cohesive response in function of (a) Fn (b) ω0.

where τy is the maximum yield traction (a property characteristic of the
material) and therefore the cohesive law is related to plastic straining and
damage. In terms of the shape factor, ω0, as it influences the shape of the
cohesive law, its value should ensure that the effects of the cohesive zone are
noticeable in the final response of the component. In Figure 4, the general
influence of the parameters in the cohesive tension-crack opening curve is
depicted.

Nevertheless, as the cohesive law is inserted with the objective of making
the transition from damage to fracture energetically consistent, this first
approximation should be optimized through an energy equivalence. Different
forms of such equivalence have been proposed in the literature.

Early crack propagation models, based on LEFM concepts assumed that
there is a certain amount of dissipated energy, which is material-specific
and is responsible for a certain crack extension. Fracture was triggered by
a single parameter such as Griffith fracture energy or stress intensity factor.
Even extensions of this theories to include crack tip plasticity still rely on a
single parameter and consider that the total amount of dissipated energy in a
deformation process is used to propagate cracks [30, 43].

In materials which exhibit substantial deformations prior to crack growth
at least two energy consuming processes should be considered, one related to
plastic deformation and another related to progressive material degradation,
that is, related to damage. In this context, Mazars and Pijaudier-Cabot [25]
developed the equivalent crack concept, in which the damage energy release
rate is equivalent to the crack surface energy, as follows:∫

V
−Y ḊdV = −GF Ȧ (30)
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In Equation 30 V is the overall volume of the structure, Y is the damage
energy release rate (as defined in 2), D is the damage variable, GF is the
fracture energy, and A is the area of the crack. One of the main limitations
of this approach is that requires the value of the fracture energy, which is a
parameter derived from the LEFM and its applicability in a ductile fracture
context may be questionable.

Keeping the concept of the above approaches, it is possible to avoid
the incorporation of additional material properties by considering a global
energy balance in the whole structure, rather than a local energy balance
associated to the fracture energy. In terms of a finite element implementation,
a local balance may be ambiguous in terms of the elements which should
contribute for the energy balance. That is, should all the elements which
reached critical damage in a certain region be considered for such an energy
balance, or only the elements which contain the crack. In addition, the direct
energy transfer from the damaged volume to the crack surface admits that
the micro-mechanical damage processes in that volume stops evolving and
that all the energy stored in the micro-structure is transmitted to the dominant
macro-crack, which is not necessarily true.

Thus, contrary to the previous solutions, and departing from a global
evaluation of the strain energy, as follows:

Γ =

∫
X (Ω)

σ : d dv (31)

a function, Γ = Γ(Dc), is constructed for traction-free cracks, in order to
approximate the value of Γ(Dc = 1). Then, departing from a certain value of
Dc < 1, a cohesive law will be added in order to meet the condition:

Γ(Dc < 1 + cohesive law) = Γ(Dc = 1) (32)

In practice, for a given domain, several numerical simulations are performed,
considering different critical damage values, that is, Dc = 0.1; 0.2; 0.3 and
so forth. In this way, it is possible to construct a function relating the strain
energy and the critical damage. Next, by interpolation, which may be of
different types, such as polynomial or exponential, the value of the strain
energy corresponding to Dc = 1 is determined. Finally, a lower value of
critical damage is selected, and the parameters of the cohesive law are fit
in order to meet the same value of strain energy. This process is clarified
throughout the numerical examples displayed on Section 3. The presence
of the cohesive law actually compensates for a transition from damage to
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(a)

p+

p−

(b)

Figure 5 (a) Point p on the crack surface. (b) Images of point p.

fracture for critical damage values lower than one. Before moving to the
numerical examples, this section devoted to methods is finalized by given
a brief note on the XFEM implementation.

2.4 Brief Note on the XFEM Implementation

In a problem where cracks are modelled with the XFEM, the implementation
of a cohesive law is straightforward [44]. A point p, located exactly on the
crack, may be considered to have two images when the crack opens: p+ on
one crack surface and p− on the other, as illustrated in Figure 5. For cracks
represented through the XFEM, the difference between p+ and p+ lays in the
value of the Heaviside function H , that is:

H(p+) = 1
H(p−) = −1

(33)

Consequently, the crack opening at point p is given by:

ω = (u(p+)− u(p−)) = 2

nsplit∑
j=1

Njaj (34)

or by

ω = (u(p+)− u(p−)) = 2

ntip∑
j=1

NkRbk (35)

for p located in a split or a tip element, respectively. A slipt element is an
element totally crossed by a crack, whereas a tip element is only partially
crossed by a crack. Consequently, aj and bk are the additional degrees of
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Figure 6 Gauss points used in the integration of a cohesive law.

freedom associated with split and tip elements, respectively. Besides the
Heaviside function, tip elements require an additional function, R, employed
precisely to model the terminus of the crack, and defined in terms of element
local coordinates, ξ̂ ,as follows:

R(ξ̂) =

{
3
(
ξ̂
lc

)2
+ 2( ξ̂lc )3 for ξ̂ ≤ 0

0 otherwise
(36)

In terms of numerical integration, two Gauss points per crack segment, per
element are employed, as schematically illustrated in Figure 6.

Having defined the main components of the proposed ductile fracture
model, numerical results are displayed in next section.

3 Results

In this section the methodology developed in the previous section is illus-
trated through some numerical examples. Firstly, it is intended to investigate
the influence of the presence of a cohesive law in crack initiation and
propagation. Thus, in the first example, a first guess for the cohesive law
parameters is employed and results are compared with the model containing
a traction-free crack presented in reference [23]. Afterwards, in a second
set of numerical examples, the full scheme developed to fit the cohesive
law parameters is illustrated. It should be noticed that the finite element
formulation is prepared to deal simultaneously with a normal and a tangential
cohesive laws. However, as in the problems addressed, the influence of the
normal cohesive law is dominant, the tangential part is neglected.
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(a) (b)

Figure 7 (a) Plane strain specimen (b) FEM mesh.

3.1 Transition from Damage to Fracture in a Plain Strain
Specimen

This first example addresses transition from damage to fracture in a plain
strain specimen. A first estimate for the parameters of the cohesive law is
employed, as described in the previous section:

tcon = Fne
−ω0 ω (37)

where Fn is chosen in such a way Fn ≈ (1 − Dc)τy, which corresponds to
Fn ≈ 200 MPa. In terms of ω0, as it influences the shape of the cohesive law,
its value should ensure that the effects of the cohesive zone are noticeable in
the final response of the component.

The plane strain specimen is illustrated in Figure 7, which was previously
analysed in the context of traction-free cracks. In the same figure it is
represented the finite element mesh employed, which has a 2205 elements.
Material properties are summarized in Table 1.

In the first analysis critical damage has the value of Dc = 0.4. The reac-
tion force-applied displacement curve of a traction-free crack is compared
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Table 1 Material properties of the cracked plate

Property Value

Elastic modulus E = 206.9GPa

Poisson’s ratio ν = 0.29

Damage exponent s = 1.0

Damage denominator r = 1.25MPa

Hardening function ty(R) = 450 + 129.24R+ 265(1− e−16.93R)MPa

Critical damage Dc = 0.4; 0.5

Non-local length lr = 1.6mm

Figure 8 Reaction force-applied displacement curves.

with the one containing a cohesive crack, considering Fn = 200 MPa and
ω0 = 0.5 mm−1. Results are displayed in Figure 8.

The cohesive law ensures a smoother transition from damage to fracture
and a smoother crack propagation, as a result the strain energy under the
reaction force-applied displacement curve increases. Comparing the results
with the case of a traction-free crack where Dc = 0.5, it can be observed in
Figure 9 that the curve corresponding to Dc = 0.5 may be approached by
the curve Dc = 0.4 enhanced by the cohesive law. This fact suggests that the
curve corresponding to the traction free crack Dc = 1 could be approached
by setting the cohesive parameters to the right values.
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Figure 9 Reaction force-applied displacement curves and respective influence of the
cohesive law.

Figure 10 Final crack opening in the plain strain specimen and respective damage contours.

To finalize this example, the final crack opening is illustrated in Figure 10
and crack evolution is illustrated in Figure 11 where, however, the effect of
the cohesive law is not so significant. The crack growth speed is still higher
for Dc = 0.4 combined with the cohesive law than for Dc = 0.5. Depending
on the particular application, it may be more important to have an accurate
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Figure 11 Influence of the cohesive law in the evolution of the crack length.

prediction of the load level/applied displacement at which the failure of the
component happens or an accurate prediction of the crack length evolution.
The important conclusion is that simulations with high critical damage may
be approached by simulations with lower critical damage, combined with a
cohesive law.

3.2 Calibration of the Parameters of the Cohesive Law: Plain
Strain Problem

Now the previous example is extended to illustrate the full approach towards
an energetically consistent transition from damage to fracture. Firstly, the
values of the strain energy involved in each one of the cases presented in the
previous example, namely traction-free crack with Dc = 0.4, traction-free
crack with Dc = 0.5 and cohesive crack with Dc = 0.4 are computed and
displayed in Table 2.

In terms of energy balance, the introduction of a cohesive law is indeed
equivalent to a rise in the critical damage value. To emphasise this fact, the
influence of the cohesive law for Dc = 0.6 and Dc = 0.7 are illustrated
in Figure 12. The respective values of the strain energy may be found in
Table 3. Choosing the values Fn = 80 MPa and ω0 = 1.0 mm−1, the
curve corresponding to a traction-free case with Dc = 0.7 is very well
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Table 2 Strain energy for Dc = 0.4 − 0.5

Case Strain Energy – J

traction-free Dc = 0.4 101.4

cohesive Dc = 0.4 121.7

traction-free Dc = 0.5 121.8

Figure 12 Reaction force-applied displacement curves and respective influence of the
cohesive law.

Table 3 Strain energy for Dc = 0.6 − 0.7

Case Strain Energy – J

traction-free Dc = 0.6 132.4

traction-free Dc = 0.7 139.6

cohesive Dc = 0.6, Fn = 80MPa, ω0 = 1mm−1 136.4

cohesive Dc = 0.6, Fn = 150MPa, ω0 = 0.5mm−1 140.1

approximated. In terms of energy balance, the choice Fn = 150 MPa and
ω0 = 0.5 mm−1 also produces good results, but the crack propagation phase
is over-smoothed, suggesting that approximations using lower values of the
strain energy are preferable to approximations using higher values of the
strain energy.

To achieve the energetically consistent transition from damage to fracture,
one must determine the strain energy for Dc = 1. In Figures 13 and 14



70 M. R. R. Seabra and J. M. A. César de Sá

Figure 13 Strain energy as a function of the critical damage. Correlation factor: R2 =
0.985.

Figure 14 Strain energy as a function of the critical damage. Correlation factor: R2 =
0.967.

the strain energy as a function of the critical damage value is represented,
together with two alternative fittings: an exponential function of the type
y = aebx and a polynomial function as y = ax3 + bx2 + cx + d. The
coefficients defining each function were determined using the least-squares
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Figure 15 Reaction force-applied displacement curves and respective influence of the
cohesive law.

method. Using the exponential function the strains energy value is Γ(Dc =
1) = 188.7 J, while using the polynomial function Γ(Dc = 1) = 186.4 J.
The proximity of the two values suggests that the real value of Γ(Dc = 1)
should be of this order of magnitude. Therefore, departing from a critical
damage value of Dc = 0.8, a cohesive law was added in order to meet
Γ(Dc = 0.8 + cohesivelaw) ≈ 187 J.

The best fit is obtained setting the parameters of the cohesive law to
Fn = 110MPa and ω0 = 0.01mm−1. The strain energy obtained is Γ(Dc =
0.8 + cohesivelaw) = 185.1 J, which is quite close to the expected value.
In Figure 15 it is possible to observe the difference between the traction-free
and the cohesive reaction force-applied displacement curves.

3.3 Calibration of the Parameters of the Cohesive Law:
Axisymmetric Problem

The proposed methodology for energetically consistent transition from dam-
age to fracture is now analysed for an axisymmetric example. The specimen
is represented in Figure 16, along with the corresponding finite element mesh,
with 2883 elements. The material properties are summarized in Table 4. The
final crack opening is depicted in Figure 17.
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(a) (b)

Figure 16 (a) Plane strain specimen (b) FEM mesh.

Table 4 Material properties of the axisymmetric notched specimen

Property Value

Elastic modulus E = 206.9GPa

Poisson’s ratio ν = 0.29

Damage exponent s = 1.0

Damage denominator r = 1.25MPa

Hardening function ty(R) = 450 + 129.24R+ 265(1− e−16.93R)MPa

Non-local length lr = 2.0mm

In this example, the strain energy is also expressed as a function of
critical damage, however, observing the distribution pattern, a logarithmic
fitting seams more adequate than the exponential fitting used in the previ-
ous example. Therefore, a fitting considering a logarithmic function of the
type y = a ln(x) + b and a fitting considering a polynomial function as
y = ax3 + bx2 + cx + d are respectively displayed in Figures 18 and 19 .
Accordingly it follows that Γ(Dc = 1) = 61568 J or Γ(Dc = 1) = 66667 J.
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Figure 17 Final crack opening in the axisymmetric strain specimen and respective damage
contours.

Figure 18 Strain energy as a function of the critical damage. Correlation factor: R2 =
0.999.

Once more the two values are relatively close and an attempt to reach
Γ(Dc = 1) is depicted in Figure 20.

Choosing the parameters of the cohesive law as Fn = 150MPa and ω0 =
1.0mm−1, the strain energy obtained is Γ(Dc = 0.75 + cohesivelaw) =
59644.6 J, which is an encouraging result, showing that the proposed
methodology is suitable for both plane strain and axisymmetric problems.
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Figure 19 Strain energy as a function of the critical damage. Correlation factor: R2 =
0.999.

Figure 20 Reaction force-applied displacement curves and respective influence of the
cohesive law.

4 Discussion

A methodology to describe ductile failure processes has been presented. It
incorporates a continuum approach suitable to describe the overall material
behaviour with a discontinuous approach which allows a good representation
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of surface decohesion and tracing of crack paths. In particular, three method-
ologies have been incorporated, namely, CDM, XFEM and a Cohesive law.
A cohesive law may be viewed as the interaction between the two surfaces
of a crack and may be used to model material which is not fully degraded.
Therefore, an energetically consistent transition from damage to fracture,
corresponding to Dc = 1 may be approximated by a simulation in which
Dc < 1 is enhanced by such law. Thus, constructing a function, Γ(Dc),
relating the strain energy with the critical damage value, it was possible to
estimate the strain energy associated withDc = 1. Subsequently, considering
Dc < 1, the parameters of a cohesive were adjusted in order to meet Γ(Dc =
1). In this way, a novel interpretation to the cohesive law parameters is
outlined. Instead of regarding them as characteristic material properties, they
become numerical parameters derived from CDM, in particular associated
with critical damage, that is the onset of damage in which a macrocrack
evolves in a structure. This feature has the advantage of avoiding specific
experimental work to characterize the cohesive law.

The proposed approach exhibit a good performance as illustrated in some
numerical examples. However, it assumes that the strain energy associated
to Dc = 1 follows the same trend of the strain energy for Dc < 1 and
the target value is determined using approximation techniques, which have a
certain error associated. As a result, there are still open questions related to
the determination of the cohesive parameters, especially because one single
energetic equivalence is used to fit two parameters. In the future, the proposed
methodology may be improved by determining the sensitivity of the full
model to the cohesive law parameters. We recall that the proposed ductile
fracture model features geometrical and material non-linearities, includes a
non-local formulation and a discontinuous formulation, and therefore the
calculation of the associated sensitivities is not a simple task. Nonetheless,
the model is conceptually successful.

Further experimental work is also being prepared. The proposed method-
ology is independent of the geometry and does not require previous knowl-
edge of the expected crack paths, being suitable for simulating virtually any
type of specimen.
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