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Abstract

Impact problem associated with water entry of a wedge has important appli-
cations in various aspects of naval architecture and ocean engineering. In
the present study, the 2DOF (2 Degrees of Freedom) wedge impact problem
into the water with various wedge deadrise angles and impact velocities is
investigated using Weakly Compressible Smoothed Particle Hydrodynamics
(WCSPH) method. Artificial viscosity and density correction are used to cre-
ate stability and also to prevent the penetration of fluid particles into the solid
boundary. Solving the impact problem is very time-consuming, therefore
extracting new mathematical relations can be very useful to calculate some
important and applicable parameters in a certain range of wedge angles and
impact velocities. In the present research, some new dimensionless applicable
relations using the Buckingham 7 theorem are extracted to investigate impor-
tant parameters such as acceleration and slamming force in general cases of a
wedge impact problem. Then, these mathematical relations are validated by
the results obtained from the simulations.
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1 Introduction

The study of water impact is one of the complicated problems in various fields
of engineering especially in ocean engineering and naval architecture. One
of the main concerns is to calculate the impact force which is exerted on the
floating bodies in the water entry impact problem using dynamic equations of
motion [1]. The impact of flying boats, seaplanes, and speedboats on the sea
surface can be roughly modeled as a wedge impact problem into the water.

The water impact problem was first investigated by Von Karman
(1929) [2]. He used the momentum and the added mass theory to estimate
the impact force during a seaplane landing without considering the effect of
water pile-up during impact. Wagner [3] developed Von Karman’s analysis by
taking into account the effect of water pile up during the impact phenomenon.
Dobrovol’skaya [4] used similarity flow solutions for wedges. Divitiis and
de Socio [5] used a physico-mathematical model of a potential singularities
distribution together with the solution of the nonlinear free-surface problem.
Korobkin [6] improved the impact force prediction by using the higher-order
terms in the Bernoulli equation together with the generalized Wagner model
and the Logvinovich model [7] and compared the results with experiments.
Also, he showed that the Logvinovich model has better results.

Solving this problem using the mesh-based Eulerian-Lagrangian meth-
ods is cumbersome and time-consuming. The experimental studies are also
expensive, thus obtaining some mathematical relations to calculate the max-
imum acceleration of the wedge and the impact force which is exerted on
the wedge is very useful to save time and expenses. In the present study,
the simulation results of the WCSPH method are used to derive general
mathematical relations for calculating the force which is exerted on a wedge
impacting into the water. Smoothed particle hydrodynamics was proposed by
Luci [8], Gingold, and Monaghan [9] in 1977. This method was firstly used
for simulating astrophysical phenomena such as star formation. This method
developed and extended to other applications gradually until the 21st Century
[10-20].

Yettou et al. [21] conducted an experimental study to investigate the water
impact of the symmetrical wedge in 2006. Oger et al. [22] simulated the
wedge water entry using the WCSPH method in 2006. They calculated the
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force exerted on the wedge by projecting the particles on the wedge surface
and also they used pressure interpolation to calculate the pressure on the par-
ticles of the wedge surface. Kai et al. [23] and Gong et al. [24] simulated the
wedge water entry with the WCSPH method, but they calculated the pressure
on the wedge surface using an equation of state and also the non-reflective
boundary treatment in 2009 and 2011 respectively. Gong et al. investigated
the impact problem at different velocities, from 2 m/s to 7 m/s. In 2013, Kouk-
ouvinis et al. [25] used the SPH-ALE' method to simulate a 2D wedge water
entry problem. The SPH-ALE method was firstly introduced by Vila [26].
In this method, the Eulerian forms of the conservation laws are combined
with the Lagrangian forms. Sun [27] simulated the wedge impact problem
for several different wedge masses, deadrise angles, and impact velocities
using the SPH method. Farsi and Ghadimi [28] simulated the wedge impact
problem at deadrise angels between 10° and 81° using the SPH method.
Amicarelli et al. [29] simulated a 2D symmetric and asymmetric wedge
water impact problem using the WCSPH method. They used the boundary
force proposed by Monaghan for calculating the force exerted on the wedge
surface. Also, Chen and Li [30] used a repulsive force relation to calculate the
force exerted on the wedge surface in 2016. Cheng et al. [31] used a higher-
order boundary element method (HOBEM) for the investigation of wedge
water impact in the presence of waves in 2018. In 2019, Chen et al. [32]
studied wedge-water entry near a single piece of ice using computational
fluid dynamics and a Wagner type theoretical model. Wen et al. [33, 34]
studied the wedge impact problems with varying speed in 2020 and 2021.
They observed a linear relationship between the pressure coefficient and a
dimensionless variable from which they derived an approximate solution for
wedge impact with several deadrise angles. These studies included numerical
(VOF) and theoretical methods to provide a fast and accurate prediction of
the pressure on wedge surfaces.

In this study, the experimental and numerical results of Zhao et al. [35]
are used to validate the results.

In the present research, an in-house C+-+ code that is based on the
WCSPH method is prepared and validated using the experimental data of
the under-gate flow problem. Also, the wedge water impact problem is
simulated and validated. Moreover, the effects of different wedge deadrise
angles (between 15° and 60°) and also different impact velocities (between
6.16 m/s and 14.73 m/s) are investigated. It should be mentioned that in all

! Arbitrary Lagrangian Eulerian.
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simulations the wedge mass is 241 kg. The main goal of the present research
is to introduce some applicable relations using new dimensionless parameters
to express the important parameters such as acceleration and slamming force
in the general case of the wedge impact problem.

2 WCSPH Method

There are several methods for discretizing the governing equations in the
WCSPH method. In the present study, Equations (1) and (2) are used for
discretizing continuity and momentum equations respectively [22]:

Dp;

D1 = myili; - ViWy )
J

DO Sy (2 2y | vaws + @)

Dt j AV J J

where ;; = 4; —;, m and II are the particle mass and the artificial viscosity
respectively. The index j is related to the neighbor particles.
Artificial viscosity in the form of Equation (3) is used to reduce the
numerical noise and unphysical oscillations [23]:
—QnCijfbiy
Il = Pij v 3)
0 Usj - Ti5 > 0
where 11;; and k; are calculated according to Equations (4) and (5).
ki + kj tij - Tij
2 F;Zj + n?
ki — |div(d@;)]
" |div(@;)| 4 /Sty : St 41074 /h
In general, fij and f;; is considered as fi — f; and (f; + f;)/2, respec-
tively. Also, oy = 0.04 and n = 0.1 h and Sr is the shear rate stress
tensor.

In the WCSPH method, fluid is considered as a weakly compressible
fluid, and pressure is calculated using the following equation of state [36]:

|2

(&)
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where Kk = poc%/fy, v = 7.0, cg = 10 Uy and Uy is of the order of the
maximum possible velocity of particles [23]. ¢g has a direct effect on the
fluid compressibility and time step.

To move the particles and also to smooth the noise inherent in the WCSPH
method, Equation (7) which is called the XSPH method [23] is used.

dr T
|:7”:| = i; — 5ijgWij, e=0.5 (7)
dat |, 7 Pij

The modified cubic spline kernel function (Equation (8)) is used in this
study. This kernel function exhibits better stability than the simple cubic
spline kernel function [37].

@ —6g+6 0<r<h
W(r,h) =aq{ (2—¢q)° h<r<2h 8)
0 r > 2h

where q = |7;|/h and ag = 1/(37h?).

Choosing a suitable time step is particularly important, because using an
inappropriate time step, leads to particle instability and solution divergence.
The time step should be small enough to prevent numerical instability [38].
The stability conditions regarding viscosity and inertia are satisfied according
to Equation (9) [39].

h o \% p2
At = 0.10mi n
t = 0.10min <Cmax Ta < fi,mam> ' D ) )

The parameters Cpyqr, Umaz and f; are the maximum sound speed, the
maximum velocity, and acceleration of the particles.

Since the WCSPH method is prone to pressure noise, the density correc-
tion method should be used to obtain a smooth pressure field. Equations (10)
and (11) lead to a zeroth-order density correction which means a constant
density can be captured accurately [40].

PR = mWy (10)
J

Wij = <y (11)
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A repulsive force as in Equation (12) which is proposed by Monaghan is
used to prevent fluid particles from entering the solid boundaries [19].

pm =" ((%)p B (%)U mi <r )

0 |71 > 7o

where p; = 12, po = 6 and Dy = gH.

The initial space between particles is rg, H is the depth of the still water
and g is the gravity acceleration.

This repulsive boundary condition is used in the wedge water entry test
cases. For the under-gate flow test cases, the image boundary condition is
used [39]. Using Equation (13) the hydrostatic pressure field can be imposed
on the fluid particles initially.

1/vy
vgh(2)> (13)

P = po (1 +

0
po is the initial density of the fluid and A (z) is the depth of each particle below
the free surface [19].

The predictor-corrector time advancing algorithm is used and at first, the
velocity, density, and position are calculated for the time At/2, and afterward,
the velocity, density, and position of the particles are corrected for the time
t + At/2. Therefore, a second-order solution in time is obtained [40]. The
pressure at the boundary surface of the wedge is calculated by interpolating
the pressure of fluid particles adjacent to the wedge. From the pressure
distribution, the force exerted on the wedge, the acceleration, the velocity,
and the position of the wedge are calculated [22].

The slamming coefficient in the wedge-water impact problem is defined
as in Equation (14):

2F
0o Vlg Lw

where L,, is the width of the wedge base, V,, is the wedge impact velocity
and F' is the total force exerted on the wedge.

Cs (14)

3 Dimensionless Relations

In general, there are three primary dimensions including mass (M), time
(T), and length (L) in impact problems. To use the Buckingham 7 theorem,
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Table 1 Dimensions of related parameters in wedge impact problems
Parameter a Vw Ly, Hy, m p t 0 F
Dimension LT~? LT™! L M ML? T — MLT?

all parameters involved must be written in the form of these three primary
dimensions. It should be noted that in the present study, wedge mass is fixed
and is not used in any relations. Table 1 shows all important parameters in
terms of primary dimensions.

It should be noted that € is a dimensionless parameter and tan(6) relates
the wedge base (L,,) and the wedge height (H,,). In the following, several
mathematical relations are extracted using the Buckingham 7 theorem con-
sidering the effect of parameters on each other. In short, there are two general
conditions:

1. The impact velocity is directly related to the maximum acceleration and
is inversely related to the time of maximum force on the wedge.

2. The size of the deadrise angle is directly related to the time of maximum
force on the wedge and is inversely related to the maximum acceleration.

In short, if the impact velocity increases, the maximum acceleration also
increases, but the time of maximum force on the wedge decreases. Also,
increasing the deadrise angle makes the wedge sharp, so that it can enter
the water more easily. Therefore, the maximum acceleration on the wedge
decreases, and the time of the maximum force on the wedge increases.

3.1 Non-dimensional Acceleration

In this study, the symmetrical impact problem is investigated, so the hori-
zontal acceleration is calculated close to zero. Also, since the wedge mass is
fixed, so the wedge mass does not enter into relations.

Acceleration is one of the dependent parameters which depends only on
the impact velocity and the geometry of the wedge such as the deadrise angle,
wedge base, and wedge height. On the other hand, it is clear that H,, =
Ly tan(0) /2. Therefore, Equation (15) can be written for acceleration:

a:f(Lun une) :f(kuVw) (15)

Therefore, dimensionless acceleration can be represented by Equa-
tion (16):

a* = aHiy Vi, — (L°T) = (LT ) (L) (LT~ 1Y (16)
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where 7 and j are unknowns which must be calculated by equating the
exponents of L and T.

Finally, 7 and 7 are obtained as 1 and —2, respectively, so the general form
of the dimensionless acceleration is as follows:
aH, alL

*—qH, Vo2 =% 2% an(0 17
@ = aluVy” = a7 = oy tan(0) 1n
It should be noted that the parameter a is the total vertical acceleration of
the wedge which is equal to —9.81 m/s? before the impact. To start a* from
zero, a is replaced by a + |g|, so that the dimensionless acceleration a* is due
to the hydrodynamic force which is exerted on the wedge by the fluid and is

as follows: ( DL
* a+ g w

3.2 New Dimensionless Force Coefficient

The slamming coefficient is a dimensionless force coefficient but depends
on the deadrise angle. It is necessary to define a new dimensionless force
coefficient that is independent of the deadrise angle. According to the second
condition in Section 3, the size of the deadrise angle is inversely related
to the maximum acceleration and therefore to the force exerted on the
wedge. Therefore a new dimensionless relation is created by multiplying
the slamming coefficient by tan(6) as in Equation (19). Moreover, this new
dimensionless relation is very useful, as shown in the results section later.

. 2F
Cs* = Cstan(f) = mtan(ﬁ) (19)

F is the total force exerted on the wedge and pyg is the initial density.

3.3 Non-dimensional Time

Similar to acceleration, another dependent parameter can be time and is
shown as Equation (20):

t= f(LUM Vi, 9) = f(HUM Vw) (20)
Using Table 1, dimensionless time can be represented by Equation (21):

t* = tHiy Vi, — (LT°) = (T)(L) (LT 1)
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By equating the exponents of L and T, ¢ and j are obtained to be —1 and
1, respectively, so the general form of the dimensionless time is as follows:

_tVy 2tV

t* =T
H,  Lytan(0)

(22)
Constant numbers in dimensionless relations can be removed without any
problems as in Equation (23):

Vi

=
Lytan(6)

(23)

4 Results and Discussion
4.1 Validation

In this study, the two test cases of under-gate flow and wedge water entry are
used to validate the code and simulations.

The under-gate flow problem is of importance due to the study of wave
behavior and free surface dynamics. The under-gate flow test case consists of
a water column with a non-dimensional height and width of 1 which flows
under a gate with a height of 0.2357. Figure 1 shows the profile of a fluid free
surface and it is consistent with the results of the finite volume method using
the VOF scheme to track the free surface profile [41].

The non-dimensional length, height, time, and pressure are calculated
using X* = z/L, Z* = z/H, T* = t(co/H) and P* = P/(pgH)

T=a. L T8 B

*_WCsPH A e WCsPH

08 08
N 05 - 05
06 - 06

e 03 sl ‘ 03

i 02
02 02
01 0.1
0 0 o M 0

0 0.5 1 1.5 2 25 3 35 4 o 05 1 15 2 25 3 35 4
x* Xe

Figure 1 Comparison of the free surface in fluid flow under the gate using the WCSPH
method and the VOF [41] method.
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L 0.00058m

0.001 m

Figure 2 Geometry of a wedge with 30° deadrise angle along with the initial distance of
particles.

respectively, where, H is the initial height and L is the initial width of the
water column.

The second problem which is used to validate the code is the wedge-water
impact problem. The total number of particles used in this case is equal to
2949002, of which 63001 particles belong to the wedge geometry. The initial
distance between the fluid particles is very important in the SPH method,
and selecting an inappropriate value for this parameter causes instability and
divergence in the solution. Figure 2 shows a wedge with 30° deadrise angle
and the initial distribution of fluid particles with a constant distance equal to
0.001 m. The distance between vertical and horizontal particles on the wedge
is not the same and is 0.00058 m and 0.001 m, respectively. The wedge has
two degrees of freedom and can move vertically and horizontally.

In the present study, the wedge impact problem in a 2.4 m wide reservoir
with a water depth of 1.2 m is investigated. The weight of the wedge is 241 kg
and the base length of the wedge is 0.5 m. The wedge deadrise angle is
/6 and its impact velocity is 6.15 m/s. The initial wedge velocity is set
to 6.09 m/s, and the wedge tip is initially 0.04 m above the free surface.
Therefore, the wedge velocity reaches 6.15 m/s when it impacts the water
surface. Also, the speed of sound is set to 61.5 m/s based on ¢y = 10 Uyy.
It should be noted that the force exerted on the wedge is calculated for a
wedge with 0.2 m depth as in experiments [35]. Figure 3, shows the initial
hydrostatic pressure distribution in the water.

Figure 4 shows the dimensionless acceleration-time curves of the wedge
motion for three different initial fluid particles distance and is compared with
the numerical method (B.E.M) and experimental results of [35]. The figure
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Figure 3 The initial hydrostatic pressure distribution at time zero.

shows that at the initial distance of the fluid particles equal to 0.003, there
is a large fluctuation in acceleration, but reducing the distance eliminates the
oscillations, but the maximum amount of acceleration in the three curves is
almost the same. Therefore, a distance of 0.001 is a suitable distance, and
therefore in all simulations, the initial distance of the fluid particles is set to
0.001 m.

At first, the wedge falls freely therefore its acceleration is equal to the
gravity acceleration which is downward and assumed to be negative. When
the wedge impacts the water surface, an upward force is exerted on it and
it causes firstly that the wedge acceleration decreases in a very short time
and reaches zero. After that, the direction of the acceleration changes from
negative to positive, and also the acceleration can increase in a positive
direction.

As it is depicted in Figure 4, the B.E.M. [35], and the present numerical
results are coincident with each other at the start and end of the time interval
and the maximum difference is at dimensionless time 0.34.

After this time, the difference between numerical and experimental results
increases because of the three-dimensional effects which are shown in [42].
The WCSPH method is prone to noise in the calculation of density which
makes the numerical results noisy. In this study this unphysical noise is
removed as far as it is possible, using the density correction techniques.
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7 Present dx=dy=0.002 m
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0.6
"

Figure 4 Comparison of the present dimensionless acceleration-time results using different
initial fluid particles distances with experimental and B.E.M. results of [35].

7.5
55 +
35 F
o 0
15 1 & Experiment
! WCSPH
i —BEM
O A
-1 -0.5 0 0.5 1

zf
Figure 5 Comparison of the present results for the pressure coefficient on the wedge surface
at the dimensionless time of 0.34 with the experimental and B.E.M. results of [35].

The pressure coefficient at the dimensionless time of 0.34 is compared
with the numerical (B.E.M) and experimental results of [35] in Figure 5. It
shows that in maximum value the result of the WCSPH method coincides
with the experimental value well.
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Figure 6 Comparison of the present vertical velocity versus time with experimental
ones [35].

The non-dimensional pressure coefficient and the parameter Z f are cal-
culated using Equations (24) and (25). When the parameter Z f is equal to —1
it refers to the tip of the wedge and when it equals to O it refers to the points on
the lateral edges where the water free surface contacts with the wedge also,
Z f > 0 refers to the parts of the wedge which are out of the water.

P
Cp = 0.5p0 V> 24
A
Zf=— " 25
f Vi (25)

The variable V;(t) is the velocity of the wedge at each time instant.
Figure 6 shows the non-dimensional vertical velocity (V* = V/V,,) versus
time which is compared with the experimental results of [30].

As time proceeds, the difference between numerical values and experi-
mental results increases, mainly due to the three-dimensional effects. In three
dimensions, after the wedge impacts into the water, fluid particles are thrown
away from four sides of the wedge but in 2-D simulations, it occurs only
from two sides of the wedge. This means that fluid has more freedom in 3-D
to escape from the wedge during the impact problem which leads to a smaller
slamming force and higher wedge velocity.



318 J. Gerdabi et al.

4.2 The Effect of Different Wedge Deadrise Angles

In this section the effect of four wedge deadrise angles of 7/12, 7/6, 7/4
and 7 /3 on pressure, acceleration, and force coefficient are investigated for
the wedge impact velocity of 6.18 m/s. Also, some general mathematical
relations are derived for the calculation of the peak acceleration and force
coefficient. The free surface profile and pressure contours during the impact
problem of a wedge with different wedge deadrise angles and also different
wedge velocities are depicted in Appendix 1. As it is obvious from these
figures if the wedge deadrise angle reduces or the impact velocity increases,
the pressure distribution around the wedge and the force which is exerted
on the wedge increase. The fluid particles escape tangential from the lateral
edges of the wedge. This phenomenon causes some particles to go away
from the other fluid particles, therefore there are not enough particles in their
neighborhood and the density cannot be calculated correctly. This is shown
in figure (a) of Appendix 1. Figure 7. Shows the dimensionless acceleration

30 i i i i i
#=60°
——0=45°
25 1 6=30°
——=15°
20 1 -
£15 1 -
3
10 -
5 e -
D 4 -
0 0.01 0.02 0.03 0.04 0.05 0.06

t(s)

Figure 7 Dimensionless acceleration versus time for different wedge deadrise angles in the
impact velocity of 6.18 m/s.
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0 T T T T T T
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
tfs)

Figure8 Slamming coefficient versus time for different wedge deadrise angles in the impact
velocity of 6.18 m/s.

versus time for different wedge deadrise angles at the same impact velocity
of 6.18 m/s. As the wedge deadrise angle reduces, both acceleration and force
increase, and their behaviors are much noisier. As the wedge deadrise angle
decreases the wedge shape resembles more to a flat plate; hence, the wedge
cannot enter into the water easily, and therefore, the impact pressure and
force increase. As mentioned before the WCSPH method is prone to noise
in density calculation since the fluid is assumed to be slightly compressible.
To reduce noise, the sound speed should be set so that the density variation
remains less than one percent. Figure 8 shows the slamming coefficient for the
different wedge angles when the wedge impact velocity is 6.18 m/s. When the
force increases, the wedge velocity decreases, and the slamming coefficient
increases according to Equation (14).

Using the new dimensionless form of acceleration and time as in Equa-
tions (18) and (23), Figure 7 can be re-sketched as shown in Figure 9. It is
depicted in Figure 9 that using these new dimensionless parameters causes
all curves of acceleration for different wedge angles to coincide with each
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Figure 9 New dimensionless acceleration versus dimensionless time for different wedge
deadrise angles in the impact velocity of 6.18 m/s.

other approximately and the dimensionless parameters are independent of
the wedge angles. Also using Equations (19) and (23), Figure 8 can be
re-sketched as shown in Figure 10.

The maximum force, acceleration, and impact force coefficient which is
exerted on the wedge and also the time related to the maximum force are
provided in Table 2.

Calculating the maximum impact force in the wedge water entry is one
of the most important problems in ocean engineering and naval architec-
ture; hence, in this section, it is tried to implement practical relations to
estimate the peak loads in the impact problem without needing cumbersome
simulations.

Table 2, shows that the wedge deadrise angle has no significant effect
on the maximum impact force coefficient, maximum acceleration, and the
time related to these values. Therefore, the average of each column can be
accepted as a single value for the maximum acceleration, maximum impact
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Figure 10 New impact force coefficient versus dimensionless time for different wedge
deadrise angles in the impact velocity of 6.18 m/s.

Table 2 Maximum force, impact force coefficient, dimensionless acceleration, and the
dimensionless time of the maximum force at the impact velocity of 6.18 m/s

6° t; F(kN) Cs;kna:c a:nax

15 0390 12.575 1.765  0.457

30 0.346 5.56 1.68 0.436

45 0.350 3.074 1.61 0.417

60 0.347 2.00 1.815 0470

force coefficient and the related time with a reasonable error in the impact
velocity of 6.18 m/s and are as follows:

at,,. ~ 0.445 + 6.7% (26)
Cst pw ~ 17175 + 6.8% 27)
£~ 0.3583 £ 8.1% (28)

4.3 The Effect of Wedge Impact Velocity

In this section, in a constant wedge deadrise angle of 30 degrees, the effect
of the wedge impact velocity for different velocities of 6.18, 9.79, 12.73,
and 14.73 m/s is investigated. Figure 11 shows the dimensionless wedge
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Figure 11 Dimensionless acceleration versus time for different impact velocities in the
wedge deadrise angle of 30°.

acceleration versus time. Also, the free surface profile and the pressure
contours are depicted in Appendix 1. According to Figure 11, increasing the
wedge impact velocity increases the wedge acceleration while the time of
reaching the maximum value decreases. Also, Figure 12 shows the slamming
coefficient versus time and it is interesting to note that the maximum value
of the slamming coefficient in all velocities is fairly the same, but in higher
velocities, the maximum values occur sooner.

Using new Equations (18) and (23), Figure 11 can be re-sketched as in
Figure 13 and it is depicted that all curves approximately coincide with each
other and only the curve related to the impact velocity of 14.73 m/s has a
little difference. Therefore, it can be assumed that the new dimensionless
acceleration is independent of the impact velocity.

The maximum values of force, impact force coefficient, dimensionless
acceleration, and related time of maximum force are tabulated in Table 3 and
are used to derive the relations for calculating the peak values. According
to Table 3, the maximum force exerted on the wedge increases and happens
sooner when increasing the impact velocity. Similar to Table 2, some relations
for the acceleration, impact force coefficient, and time of the peak load can be
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Figure 12 Slamming coefficient versus time for different impact velocities in the wedge
deadrise angle of 30°.
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Figure 13 Dimensionless acceleration versus dimensionless time for different impact veloc-
ities in the wedge deadrise angle of 30°.
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Figure 14 Impact force coefficient versus dimensionless time for different impact velocities
in the wedge deadrise angle of 30°.

Table 3 Maximum force, impact force coefficient, and acceleration at the dimensionless
time of the maximum force in the wedge angle of 30°

ty F(KN) CShes Qhas Ve (m/s)
0.346 5.56 1.68 0.436 6.18
0.331 14.356 1.73 0.448 9.79
0.339 24.32 1.735  0.449 12.73

0.355 34.11 1.815 0470 14.73

derived from Table 3. Through averaging the values in Table 3, the following
values are obtained with the maximum relative error of about 4 percent for
the dimensionless acceleration, impact force coefficient, and the time of the
maximum force respectively.

¥, A 0.451 + 4.25% (29)
Cstpw ~ 174+ 4.1% (30)

t; ~ 0.3423 + 3.6% 3D
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Table 4 Average values of impact force coefficient, dimensionless acceleration, and the
dimensionless time of maximum impact force coefficient in different conditions

Conditions t, Cshaz  Omaz
Variable wedge angle  0.3583  1.7175  0.445
Variable velocity 0.3423 1.74 0.451
Average 0.350 1.729  0.448

4.4 The Unique Maximum Values

In this part, the results of Sections 4.2 and 4.3 are used to introduce average
unique maximum values for three dimensionless parameters of a*, Cs*, and
t*. The first and second rows of Table 4 show the average values of these
parameters in constant velocity with different wedge angles and constant
deadrise wedge angle with different velocities, respectively. Also, the last
row shows the average of these values from rows 1 and 2 as the final results.

Therefore, the final values of these parameters can be expressed as
follows:

g = 0.448 (32)
Cshaw ~ 1.729 (33)
t5 ~ 0.350 (34)

Now it is possible to obtain some equations for maximum acceleration
and slamming coefficient by setting Equation (18) equal to a,,, ~ 0.448

max
and Equation (19) equal to C's; ~ 1.729 respectively and it leads to

Equations (35) and (36):
0.896V2
max — v — 35
“ Lytan(6) 91 (33)
1.729
CSmaz = ——— 36
y tan(0) (36)

Equation (36) shows that the slamming coefficient is independent of the
impact velocity.

Also by combining Equation (14) with Equation (36), the maximum force
as in Equation (37) is obtained for the maximum force which is for a wedge
with 1.0 m depth. Also one can obtain this equation by multiplying both sides
of Equation (35) by the wedge mass.

pOLwV£

Fraz = 0.8645
e tan(0)

(37
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Finally by setting Equation (23) equal to ¢, ~ 0.350, Equation (38) can
be obtained for the time of the peak load exerted on the wedge.

L
t, = 0.35V—wtan(9) (38)

w

4.5 Introducing Unique Equations for the Dimensionless
Parameters in a 2-D Wedge-Water Impact

Two parameters, the wedge deadrise angle 6, and the impact wedge veloc-
ity V,, are the premier parameters in investigating the wedge water entry
problems. In this section general relations are proposed to calculate the
most important parameters in the wedge water impact problems. In the
previous sections, some relations and values are derived for acceleration,
impact force coefficient, and the time when the peak load is exerted on the
wedge. To derive these relations, at first, the wedge impact velocity is kept
constant and the wedge angle is changed then the wedge angle is considered
constant and the wedge impact velocity is varied. It is expected to have
general relations for new dimensionless acceleration a*, and dimensionless
impact force Cs* versus dimensionless time ¢*. Therefore using curve-fitting
techniques to all curves of constant velocities and constant wedge deadrise
angles a unique and general relation for a* and C's™ versus ¢* are presented
in Equations (39) and (40):

*

~ —0.03449¢** + 0.1139¢** — 0.07211¢*2 4 0.01365¢* — 0.00005024
%5 — 0.6189¢t* — 0.00984¢*3 + 0.1145¢*2 — 0.04703¢* + 0.007497
(39)

—0.1031¢* 4 0.431¢*3 — 0.2873¢*2 4 0.05643t* — 0.000197

t*5 — 0.5116t*4 — 0.1081¢*3 + 0.1474¢*2 — 0.05248¢* + 0.008138
(40)

Cs* =

Figures 15 and 16 show the comparison of the results of Equations (39)
and (40) with experimental results of [35] which are non-dimensionalized
using Equations (18), (19), and (23). They show good agreements between
both curves until the maximum values, where they deviate from each other
due to the three-dimensional effects.
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Figure 15 Comparison of the results of Equation (39) with the non-dimensionalized results
of the present simulations and with the experiment [35].
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Figure 16 Comparison of the results of Equation (40) with the non-dimensionalized results
of the present simulations and with the experiment [35].

5 Conclusion

At first, the present numerical method and the code are validated using the
experimental and previous numerical results of two test cases of under-gate
flow and wedge water entry problems. Then the effects of the wedge deadrise
angle and the wedge impact velocity on the acceleration of the wedge and
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the force which is exerted on the wedge are investigated. The results show
that by reducing the wedge deadrise angle in a constant impact velocity the
acceleration and the impact force increase. Also increasing the impact veloc-
ity in a constant wedge deadrise angle leads to an increase in the pressure,
acceleration, and impact force. In the present study, some new dimensionless
parameters are defined to find some general relations for expressing the
dimensionless wedge impact force and dimensionless acceleration. These
new parameters have been used in both cases of constant impact velocity
with different wedge deadrise angles and constant wedge deadrise angles in
different velocities for a 241 kg. There was a little difference between the
coefficients due to round-off errors and curve fitting, therefore by combining
these values using the averaging method, unique relations are achieved.
Finally using all data, new and unique relations for the new dimensionless
impact force and acceleration are presented and compared with experiments.
It shows that these new relations can calculate the force and acceleration of a
wedge water entry problem independent of wedge shape and velocity within
the range of the conventional wedge shape, which is mostly used in marine
architecture and for seaplanes. But in general, it is better not to use these
relations at very high impact velocities, or deadrise angles close to zero or
90°. At these critical points, more research is needed to ensure the use of the
proposed relations.

Appendix 1: Free surface deformation and the pressure distribution contours
in the impact problem for different wedge deadrise angles and velocities.

B=15°, (=0.009 s, Vm=6.16 m/s Pmssum(?a)x1 )\ 0*

0.6 0.8 1 T2 1.4 1.6
X(m)

@
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