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ABSTRACT
Dynamic analysis of microbeams based on the modified strain
gradient elasticity theory (MSGT) is carried out in this study.
MSGT theory comprises additional material length scale para-
meters to effectively capture the size effect. Beams with fixed-
fixed, simply supported and fixed-free boundary conditions are
analysed. Additionally, frequency analysis for beams based on
modified coupled stress and continuum theory is also presented
by neglecting one or more length scale parameters. Results
obtained for various theories in the present analysis are com-
pared with those available in literature. Differential quadrature
method (DQM) is employed to perform the analysis. Two differ-
ent techniques are presented for implementing different
boundary conditions of beam. It is shown that frequencies
obtained from the strain gradient theory are higher when com-
pared to the frequencies predicted by modified coupled stress
theory and classical theory, when beam thickness becomes
comparable to the length scale parameter. Besides, we also
show that implementation of DQM is simple, accurate and
robust in solving vibrational problems of different nature.
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1. Introduction

Microelectromechanical systems- and nanoelectromechanical systems-based
sensors and actuators widely use microbeams/nanobeams as the sensing
element. Mechanical properties of beams and plates constitute working prin-
ciples of these sensors and actuators. Owing to the small size of these beams,
size-dependent effects greatly influence dynamic characteristics (Fleck,
Muller, Ashby, & Hutchinson, 1994; Lam, Yang, Chong, Wang, & Tong,
2003; Stlken & Evans, 1998). As a result, for improved and accurate perfor-
mance, it is vital to capture the size effect associated with these low dimen-
sional beams. The continuum theory fails to capture this size effect on
microstructures due to absence of any material length scale parameter in the
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governing equation. In order to overcome break down of classical theory, the
non-classical continuum theories like nonlocal elasticity theory (Eringen &
Edelen, 1972), modified couple stress theory (MCST) (Yang, Chong, Lam, &
Tong, 2002), modified strain gradient elasticity theories (MSGT) (Lam et al.,
2003), etc., have been proposed which contain one or more material length
scale parameters to capture the size effects. MSGT captures effects related with
dilation gradient vector, deviatoric stretch gradient tensor and symmetric
rotation tensor. MCST is a special case of MSGT when two of the three effects
such as dilation gradient vector and deviatoric strech gradient tensor are
neglected. Therefore, in this paper, we focus on the modified strain gradient
theory for the analysis and compare it with MCST and classical theory.

Differential quadrature method (DQM) proposed by Bellman, Kashef, and
Casti, (1972) is an efficient method to solve differential equations using just a
few grid points. The pioneering works in the application of DQM have been
used to solve structural mechanics problems (Bert, Jang, & Striz, 1988; Bert,
Wang, & Striz, 1994; Bert, Xinwei, & Striz, 1993; Wang & Bert, 1993; Wang,
Striz, & Bert, 1993, 1994). However, it has also been used to solve fluid- and
thermal-related problems (Shu, 1991; Shu & Richard, 1992; Shu & Richards,
1990, 1992; Tornabene, Marzani, Viola, & Elishakoff, 2010). In the past,
researchers have used DQM to solve vibrational problems associated with
different structural elements such as beams, plates, rods, shells amongst
others. Shu and Du (1997) used DQM to find the frequencies of beams and
plates with clamped and simply supported boundary conditions. Murmu and
Pradhan (2009) used DQM to study vibration response of non-uniform
cantilever beams using nonlocal theory. Janghornan (2012) studied the vibra-
tion characteristics of tapered nanowires with simply supported as well as
clamped boundary conditions using nonlocal elasticity theory. Danesh,
Farajpour and Mohammadi (2012) studied the small-scale effect of tapered
nanorods using nonlocal elasticity theory. Chang (2012) and Simsek (2012)
studied the vibrational characteristics of nonuniform as well as non-homo-
genous nanorods using nonlocal elasticity theory. Jang, Bert and Striz, (1989)
used DQM to carry out the static analysis of beams, columns, membranes and
plates with different end conditions. Al Kaisy, Esmaeel and Nassar, (2007)
used DQM to study longitudinal vibrations of non-uniform nanorods.

MCST has also been used to study the static and dynamic behaviour of
microbeams. Yang et al. presented modified couple stress approach for
vibrational analysis of beams (2002). It comprises an additional internal
material length scale parameter related with symmetric rotation tensor. Park
and Gao (2006) studied characteristics of cantilever beams using MCST
theory. Akgoz and Civalek (2013) again used MCST to study dynamic pro-
blems of non-uniform cantilever beams. Ma, Gao and Reddy, (2008) used
MCTS to study vibrational characteristics of Timoshenko beam. Salamat-
Talab, Nateghi and Torabi, (2012) also used MSGT to analyse functionally
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graded beams with simply supported end conditions. Lam et al. (2003)
proposed MSGT which uses an additional equation pertaining to equilibrium
of moments of couples in addition to the classical equilibrium equation of
moments and forces to govern the behaviour of higher order stresses (Chong,
2002; Lam et al., 2003). Whereas, MCST considers conventional equilibrium
of force and moments, Kong, Zhou, Nie and Wang (2009) used MSGT to
study the static and dynamic characteristics of cantilever beams. Their analysis
incorporated three additional material length scale parameters to capture size
effects related with dilation gradient vector, deviatoric stretch gradient tensor
and symmetric rotation tensor. However, their analysis was limited to canti-
lever beams.

In this paper, we present vibrational analysis based on MSGT for beams
with different boundary conditions. We solve the governing equation using
DQM and also discuss the techniques for implementing different boundary
conditions. We show that implementation of DQM is simple, accurate and
fast. We first describe different non-classical and classical theories.
Subsequently, we briefly discuss DQM and apply it to reduce the governing
equation to its discrete form. Finally, we compute the first three frequencies
for all types of beams based on different theories and compare the change in
frequencies to describe the size-dependent effects.

2. Formulation

In this section, we rewrite the governing equation of motion and the asso-
ciated boundary conditions of Euler-Bernoulli beams with different end
conditions based on MSGT as described by Kong et al. (2009) with the
correction proposed by Akgoz and Civalek (2012). Subsequently, we write
the governing equations and boundary conditions in their equivalent discre-
tised forms using DQM. The terms comprising spatial derivative are replaced
with their equivalent weighted coefficients as discussed earlier. We start with
the governing equation in the differential form followed by the boundary
conditions.

2.1. Governing equation

The governing equation based on modified strain gradient theory for a
beam subjected to external load intensity q is derived using the extended
Hamilton’s principle by taking variation of energies as (Akgoz and Civalek,
2012; Kong et al., 2008, 2009)
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δ

ðt1
t2

ðT � U �WÞdt
2
4

3
5 ¼ 0; (1)

where T is kinetic energy, U is strain energy and W is work done by
external forces.

The strain energy,U, of a deformed isotropic solid occupying the volumeΩ
can be written by considering the behaviour of higher order stresses as (Kong
et al., 2009)

U ¼ 1
2

ð
Ω
σij�ij þ piγi þ τ̂ijkη̂ijk þms

ijχ
s
ijdv

� �
: (2)

Considering the length scales l0 related with change in volume of material
(dilatation gradient, γi or �mm;i), l1 associated with change in shape of the
material or body distortion (deviatoric strech gradient tensor η̂ijk) and l2
related with strain rate (symmetric rotation gradient tensor, χsij), the

stresses can be written in terms of classical material parameters k (bulk
modulus) and μ (shear modulus), and nonlocal length scales l0, l1 and l2 as

σij ¼ kδij�mm þ 2μ�
0
ij
; pi ¼ 2μl20γi; τ̂ijk ¼ 2μl21η̂ijk;m

s
ij ¼ 2μl22χ

2
ij; (3)

where �
0
ij ¼ �ij � 1

3 �mmδij is deviatoric strain, �ij is strain tensor, δij is

Kronecker delta function.
Using expression of strain tensors as described by Kong et al. (2009)

along with the correction mentioned by Akgoz and Civalek (2012), we
write the strain energy based on MSGT for a slender beam subjected to
bending as (Akgoz and Civalek, 2012; Kong et al., 2009)

U ¼ 1
2

ð0
L

Sðwð2ÞÞ2 þ kðwð3ÞÞ2
h i

dx; (4)

where w is transverse deflection, wð1Þ ¼ @wðx;tÞ
@x , wð2Þ ¼ @2wðx;tÞ

@x2 , wð3Þ ¼ @3wðx;tÞ
@x3 ,

. . .,wðnÞ ¼ @nwðx;tÞ
@xn , and S and K are defined as

S ¼ EI þ 2μAl20 þ
8
15

μAl21 þ μAl22; K ¼ Ið2μl20 þ
4
5
μl21Þ: (5)

The kinetic energy, T, can be written as

T ¼ 1
2

ð0
L

ρAð _wÞ2dx; (6)
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where _w ¼ @wðx;tÞ
@t €w ¼ @2wðx;tÞ

@t2 , I and A are the moment of inertia and
cross-sectional area, respectively.

The corresponding expressions of δU, δT and δW due to external force
q, boundary shear force V, boundary classical and non-classical bending
moments M and Mh are (Kong et al., 2009)

δU ¼
ð0
L

Swð4Þ � kwð6Þ� �
δwdxþ �Swð3Þ þ kwð5Þ� �

δwjL0

þ½Swð2Þ � Kwð4Þ�δwð1ÞjL0 þ Kwð3Þδwð2ÞjL0

; (7)

δT ¼ δ
1
2

ð0
L

ρA _wð Þ2dx
2
4

3
5; (8)

δW ¼
ð0
L

qðxÞδwðx; tÞdxþ ½Vδw�L0 þ ½Mδwð1Þ�L0 þ ½Mhδwð2Þ�L0: (9)

Using Equations (7), (8), (9) in Equation (1), we obtain the governing
equation of beam based on MSGT as

Swð4Þ x; tð Þ � kwð6Þðx; tÞ þ ρA€ωðx; tÞ þ qðxÞ ¼ 0 (10)

and the boundary conditions satisfy the equations

VðLÞ � Swð3ÞðLÞ þ kwð5ÞðLÞ
h i

δwðLÞ � Vð0Þ � swð3Þð0Þ � kwð5Þð0Þ
h i

δwð0Þ ¼ 0

½MðLÞ þ Swð2ÞðLÞ � Kwð4ÞðLÞ�δwð1ÞðLÞ � ½Mð0Þ þ Swð2Þð0Þ � Kwð4Þð0Þ�δwð1Þð0Þ ¼ 0

½MhðLÞ þ Kwð3ÞðLÞ�δwð2ÞðLÞ � ½Mhð0Þ þ Kwð3Þð0Þ�δwð2Þð0Þ ¼ 0: (11)

● It is to be noted that when two material parameters related with
dilatation gradients and deviatoric stretch gradients become zero, i.e.
l0 ¼ l1 ¼ 0, then the governing equation reduces to that of MCST as

ðEI þ μAl22Þwð4Þðx; tÞρA€wðx; tÞ þ qðxÞ ¼ 0; (12)

and the boundary condition can be written as

VðLÞ � ðEl þ μAl22Þwð3ÞðLÞ
h i

δwðLÞ � Vð0Þ � ðEl þ μAl22Þwð3Þð0Þ
h i

δwð0Þ ¼ 0

MðLÞ � ðElþ μAl22Þwð2ÞðLÞ
h i

δwð1ÞðLÞ � Mð0Þ � ðElþ μAl22Þwð2Þð0Þ
h i

δwð1Þð0Þ ¼ 0:

(13)
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● When all the material parameters l0 ¼ l1 ¼ l2 ¼ 0, then the governing
equation reduces to that of classical theory

ðEIÞwð4Þ þ ρA€wðx; tÞ þ qðxÞ ¼ 0 (14)

and the boundary condition reduces to

VðLÞ � Elwð3ÞðLÞ
h i

δwðLÞ � Vð0Þ � Elwð3Þð0Þ
h i

δwð0Þ ¼ 0

MðLÞ � Elwð2ÞðLÞ
h i

δwð1ÞðLÞ � Mð0Þ � Elwð2Þð0Þ
h i

δwð1Þð0Þ ¼ 0: (15)

Equations (10) and (12) show that l0, l1 and l2 capture size effect by
including higher order stresses when the thickness/size of the beam is of
the order of these length scales. When the beam thickness increases to
higher value, the size effects reduce and all the values will be of the same
order as that given by the classical beam equation (Equation (14)).

● Frequency analysis of free vibration problem

To perform free vibration analysis, the term corresponding to external
force, qðxÞ, can be neglected and the deflection wðx; tÞ can be approxi-
mated as wðx; tÞ ¼ w0ðxÞe�ωt. Thus, governing Equation (10) reduces to the
form as given by

Swð4Þ
0 ðxÞ � Kw6Þ

0 ðxÞ � ρAω2w0ðxÞ ¼ 0: (16)

The above equation contains fourth- and sixth-order differential term of
w0 which is a function of x only. In the next section, we demonstrate DQM
in order to solve the above equation for a given boundary conditions.
Henceforth, we omit subscript ‘0’ from w0(x) for simplicity.

2.2. Length scale parameter

As discussed in Section 2.1, MSGT consists of three non-classical length
scale parameters (l0, l1 and l2) to incorporate the size effect. MCST
comprises of a single non-classical length scale parameter (l2) to capture
the size effect. For classical theory, these non-classical length scales become
zero.

To compute the length scales under which different theories become
significant, Lam et al. (2003) proposed the higher order bending rigidity
(bh) as given by

b2h ¼ 6ð1� 2νÞl20 þ
2
5
ð4� νÞl21 þ 3ð1� νÞl22; (17)
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where l0; l1; l2 are the length scale parameters and ν is the Poisson’s ratio.
Additionally, Lam et al. (2003) also experimentally determined the
higher-order bending rigidity to be bh ¼ 0:24μm for ν ¼ 0:38. The length
scale parameter l corresponding to MCST can be determined by putting
l0 ¼ l1 ¼ 0 and l2 ¼ l in Equation (17) to obtain the relation

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2h
3ð1� νÞ

s
(18)

Based on Equation (18), the value of length scale parameter is found to be
l ¼ 17:6μm (Dehrouyeh-Semnani, 2015; Park & Gao, 2006) corresponding
to MCST.

For determining the length scale parameters corresponding to MSGT,
we take l0 ¼ ll ¼ l2 ¼ ls based on the experimental evidences (Dehrouyeh-
Semnani, 2015). Under this assumption, based on Equation (17), we get

l0 ¼ l1 ¼ l2 ¼ ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2h
10:6� 15:4ν

r
: (19)

It gives the length scale parameter as ls ¼ 11:01 μm. Henceforth, we use
l0 ¼ l1 ¼ l2 ¼ ls ¼ 11:01 μm for MSGT and l2 ¼ l ¼ 17:6 μm for MCST.
For classical theory, l0 ¼ l1 ¼ l2 ¼ ls ¼ 0.

3. Differential quadrature method

DQM is a numerical method which reduces differential equations into
algebraic equations. The central idea behind DQM is to approximate the
spatial derivative of a function at a point with weighted linear combination
of the functional value at all other points in the domain as shown math-
ematically in Equations (20) and (21)

dnf ðx; tÞ
dxn

jx¼xi �
Xj¼1

N

CðnÞ
ij f ðxj; tÞ i ¼ 1; 2:::N; (20)

or

dn

dxn

f ðx1; tÞ
f ðx2; tÞ

..

.

f ðxN�1; tÞ
f ðxNÞ

2
666664

3
777775 � ½CðnÞ

ij �

f ðx1; tÞ
f ðx2; tÞ

..

.

f ðxN�1;tÞ
f ðxN; tÞ

2
666664

3
777775i; j ¼ 1; 2; 3;N; (21)

where f ðxi; tÞ is the functional value at ith sampling point of total N points,

½CðnÞ
ij � is the weighing coefficient matrix of the nth order differential equation.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 193



This reduces the differential equation into a set of linear algebraic equations.
The number of such algebraic equations depends on the number of sampling
points taken. In DQM, the domain is discretised into N sampling points
using the Chebyshev-Gauss-Lobatto distribution and is given by

Xi ¼ 1
2

1� cos
i� 1
N � 1

π

� �� �
; i ¼ 1; 2;N: (22)

The weighing coefficient matrix can now be generated using the sampling
distribution as mentioned above using following relations.

Cð1Þ
ij ¼ Lð1ÞðxiÞ

ðxi � xjÞLð1ÞðxjÞ ; i; j ¼ 1; 2;N; i�j

Cð1Þ
ii ¼ �

Xj¼1;j�i

N

Cð1Þ
ij ; i; j ¼ 1; 2;N; i ¼ j; (23)

where Lð1Þ is the first derivative of Lagrange interpolating polynomials at
sampling points given by

Lð1ÞðxiÞ ¼
YN

k¼1;k�i

ðxi � xkÞ; i ¼ 1; 2; ;N: (24)

The corresponding weighted coefficient matrices for higher order deriva-
tives can be obtained using the relation

CðnÞ
ij ¼ nðCðn�1Þ

ij Cð1Þ
ij � Cðn�1Þ

ij

xi � xj
Þ; i; j ¼ 1; 2; . . . ;N; i�j; n ¼ 2; 3; . . . ;N � 1

CðnÞ
ii ¼ �

XN
j¼1;j�i

CðnÞ
ij ; i; j ¼ 1; 2; . . .N; i ¼ j; n ¼ 2; 3; . . . ;N � 1: (25)

Using the DQM, Equation (16) is now re-written as

S
XN
j¼1

Cð4Þ
ij wj � K

XN
j¼1

Cð6Þ
ij wj � ρAω2wi ¼ 0; i ¼ 1; 2N: (26)

To solve the above equations, the correct implementation of boundary
conditions is vital in order to successfully implement DQM. Different
techniques have been proposed to incorporate different boundary condi-
tions. In DQM, we use the δ-technique (Lam et al., 2003) to solve vibra-
tional problems with clamped-free (CF) boundary conditions and the
SBCGE technique (Shu & Du, 1997) for clamped-clamped (CC) and
simply supported (SS) boundary conditions.
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3.1. Implementation of boundary conditions

For vibrational analysis of beams, there are two boundary conditions at one
end, i.e. X ¼ 0 or i ¼ 1, and another two at the other end, i.e. X ¼ 1 or
i ¼ N. As discussed earlier, we use the δ technique proposed by Bert et al.
(1988) and Jang et al. (1989) for the clamped-free boundary conditions. This
technique is simple and eliminates the difficulty of implementing two bound-
ary conditions at one grid point. It applies one condition at each end of the
boundary and the other condition at δ distance away from the boundary. In
other words, one boundary condition is applied at X ¼ 0 and X ¼ δ, and the
other condition at X ¼ 1� δ and X ¼ 1. However, proper selection of δ is
vital to ensure correct results (Bert et al., 1988). In δ technique, the boundary
conditions are approximated as the conditions are not implemented exactly
at the boundary but at grid points adjacent to it. However, this technique
works well for clamped-free end conditions but not for others. To do the
vibrational analysis for beams with clamped-clamped (CC) and simply-
supported (SS) end conditions, we use another approach devised by Shu
and Du (1997) referred as SBCGE. The central idea of this technique is to
implement all the four boundary conditions at the boundaries and not on
adjacent grids. As a result, this technique is more accurate and works for all
types of boundary conditions. In this technique, the boundary conditions are
directly substituted into the governing equations. In the next section, we
demonstrate this technique for CC and SS beams.

3.1.1. Clamped-free beams
For cantilever beams with clamped-free end conditions, the boundary
conditions given by Equation (11) reduce to

wð0Þ ¼ wð1Þð0Þ ¼ 0;Kwð5ÞðLÞ � Swð3ÞðLÞ ¼ 0; Swð2ÞðLÞ � Kwð4ÞðLÞ ¼ 0:

(27)

The equivalent formulation in DQM at the clamped end i ¼ 1 or x ¼ 0 is

w1 ¼ 0;
Xj¼1

N

Cð1Þ
1j wj ¼ 0; (28)

and, at the free end i ¼ N or X ¼ 1 is

K
Xj¼1

N

Cð5Þ
Nj wj � S

Xj¼1

N

Cð3Þ
Nj wj ¼ 0; S

Xj¼1

N

Cð2Þ
Nj wj � K

Xj¼1

N

Cð4Þ
Nj wj ¼ 0: (29)

Using the governing equation at inner domain points and boundary
conditions at the end points, we write the equation in matrix form as
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½K�½x� ¼ ω2½M�½x�; (30)

where ½K� matrix is composed of

211

21

423

321/

1

2

3

.

.

.

.

.

bbdbbb

bdddbd

bbdbbb

Nji

K K K

K K K

K K K

N

(31)

Kbb ¼ Kbb1 Kbb2

Kbb3 Kbb4

� �
;Kbd ¼ Kbd1

Kbd2

� �
;Kdb ¼ Kdb1; Kdb2½ �; (32)

and ½x� ¼ ½xb xd�T , where, subscripts xb ¼ ½X1 X2 XN�1 XN� and xd ¼
½X3 X4Xn�2� represent boundary grid points and domain grid points,
respectively. Similar analogy also holds for ½M� matrix. Rewriting
Equation (30) in terms of boundary and domain points, we get

Kbb Kbd

Kdb Kdd

� �
xb
xd

� �
¼ ω2 Mbb Mbd

Mdb Mdd

� �
xb
xd

� �
: (33)

For the boundary conditions, ½Mbb� ¼ ½Mbd� ¼ ½Mdb� ¼ ½0�. Rearranging
Equation (33) in the form of an eigenvalue problem, we get final form of
the equation as

½M�1
dd ðKdd � KdbK

�1
bb KbdÞ�½xd� ¼ ω2½xd�: (34)

Equation (34) is then solved using standard eigenvalue solving algorithm
to obtain natural frequencies ω.

3.1.2. Clamped-clamped and simply supported beams
For CC and SS beams, the boundary conditions as given by Equation (11)
are reduced to

wð0Þ ¼ wðnÞð0Þ ¼ 0;wðLÞ ¼ wðnÞðLÞ ¼ 0; (35)

where, n ¼ 1 corresponds to CC and n ¼ 2 corresponds to SS beams. The
equivalent formulation in DQM at clamped end i ¼ 1 or X ¼ 0 is
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w1 ¼ 0;
Xj¼1

N

CðnÞ
1j wj ¼ 0; (36)

and, at clamped end i ¼ N or X ¼ 1 is

wN ¼ 0;
Xj¼1

N

CðnÞ
Nj wj ¼ 0: (37)

However, these four boundary conditions cannot be applied at the two
boundaries of the domain in straightaway. Therefore, we apply the
Dirichlet conditions at the ends and derivative conditions are discretised
using DQ method. The discretised equations are then combined to deter-
mine w2 and wN�1 which are substituted back into the governing equations
applied to interior (or domain) points. We follow the approach given by
Shu & Du (1997) and write the derivative boundary conditions for CC and
SS beams in terms of w2 and wN�1 as

w2 ¼ 1
AXN

XN�2

j¼3

AXK1wj

wN�1 ¼ 1
AXN

Xj¼3

N�2

AXKNwj; (38)

where

AXK1 ¼ CðnÞ
1;j C

ðnÞ
N;N�1 � CðnÞ

1;N�1C
ðnÞ
N;j

AXKN ¼ CðnÞ
1;2C

ðnÞ
N;k � CðnÞ

1;j C
ðnÞ
N;2

AXN ¼ CðnÞ
N;2C

ðnÞ
1;N�1 � CðnÞ

1;2C
ðnÞ
N;N�1: (39)

Here, n ¼ 1 corresponds to CC case and n ¼ 2 corresponds to SS case. Now,
we substitute Equation (38) along with the Dirichlet boundary conditions of
Equations (36) and (37) in the governing Equation (26) giving

SðCð4Þ
i;2 w2 þ

XN�2

j¼3

Cð4Þ
i;j wj þ Cð4Þ

i;N�1wN�1Þ�

KðCð6Þ
i;2 w2 þ

XN�2

j¼3

Cð6Þ
i;j wj þ Cð6Þ

i;N�1wn�1Þ � ρAω2wi ¼ 0:

(40)
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After substituting Equation (38) into Equation (40), the governing equa-
tion is written in the form of Equation (30) applied at N � 4 grid points.
This again reduces to an eigenvalue problem and is solved using available
techniques.

4. Results and discussions

The natural frequencies for beams with different end conditions are
obtained by solving corresponding equations using standard eigenvalue
problem solvers. Beam dimensions and properties used for the analysis in
this paper are tabulated in Table 1.

In order to present the robustness and ease of using DQM to solve
vibrational problems, we first obtain the fundamental frequencies of beams
with different end conditions corresponding to the classical theory by
setting l0 ¼ l1 ¼ l2 ¼ 0 in our analysis. The nondimensional frequencies
Ω obtained using the present method are then compared with results
available in literature. Table 2 presents the first three frequencies for
different beams. We see that results obtained using the present analysis
agree well with those available in literature. It is emphasised here that δ
technique is used for beams with clamped-free end conditions while
SBCGE method is employed for analysis of other types of beams. It is to
be noted that SBCGE is a more accurate method as it ensures that the
boundary conditions are incorporated exactly at the boundaries. As a

Table 1. The dimensions and the material properties used for the
analysis.
Property Values

Thickness 20 μm
Width 40 μm
Length 400 μm
E 1.44 GPa
μ 0:5E

ð1þνÞ
ρ 1200 kgm�3

Table 2. The first three non-dimensional frequencies for different types of beams. For SS and
CC beams, the SBCGE is used, and for clamped-free beams, the δ technique is used to
determine the frequencies.

Ω1 Ω2 Ω3

SS
Su and Du (1997) 9.8696 39.4784 88.8264
Present 9.8689 39.4657 88.7957

CC
Su and DU (1997) 22.3733 61.6728 120.9034
Present 22.3733 61.6726 120.9028

Clamped-free
Singh, Pal, and Pandey, (2015) 3.5160 22.0345 61.6972
Present 3.5199 22.0589 61.7657
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result, this method always gives accurate results. The δ technique employs
two boundary conditions at a given boundary and other two at δ distance
away from the boundary. As a result, it produces accurate results for
clamped-free end conditions and is simpler in implementation.

Additionally, we also compare our results pertaining to MCST. The
present analysis can be reduced to that of MCST by setting the para-
meters l0 ¼ l1 ¼ 0 and l2 ¼ l. For MCST, we compare our results of
cantilever beams for l ¼ 0:5 and l ¼ h with that of Akgoz and Civalek
(2013) who used the RayleighRitz solution method to obtain the natural
frequency for different material length scale parameters in Table 3
(Akgoz and Civalek, 2013). Moreover, we also compare the first, second
and third mode frequencies obtained by solving classical theory using
DQM for cantilever beam with the numerical results given by Kong et al.
(2009) as shown in Figure 1(a), (b) and (c), respectively, at h ¼ 20 μm
and 50 μm. The percentage error is found to be about 10% due to the fact
that Kong et al. (2009) computed frequency values for ρ ¼ 1000 kg/m3

whereas we take ρ ¼ 1200 kg/m3 in current analysis based on the data
provided by Dehrouyeh-Semnani (2015). Considering the current values
of density, the percentage difference reduces to around 2%. Now, to
compare the present numerical solution based on MSGT for cantilever
beam, we compare our result with numerical solution mentioned by
Dehrouyeh-Semnani (2015) for the same dimension and density as
shown in Figure 1(a), (b) and (c). The comparison of results indicates
that the percentage error is about 2%. Thus, based on the above analysis,

Table 3. Comparison of first three non-dimensional frequencies based on MCST for different
material length scale parameters, l2 ¼ l with the available results in literature.

l = 0.5 h l ¼ h

Reference Ω1 Ω2 Ω3 Ω1 Ω2 Ω3

(Akgoz & Civalek, 2013) 5.160 32.338 90.547 8.332 52.215 146.203
Present method (DQM) 5.178 32.447 90.855 8.359 52.392 146.699
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Figure 1. (a) First, (b) second and (d) third mode frequencies of microbeams with fixed-free
end conditions based on the continuum theory, MCST (l ¼ 17:6μm) and MSGT (ls ¼ 11:01μm).
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we validate the solution approach based on DQM. Now, we use it to
analyse the influence of size effect on the evaluation of first, second and
third modes frequencies.

Figure 1(a)–(c) shows the variation of frequencies using classical theory,
MCST (l2 ¼ l ¼ 17:6 μm) and MSGT (l0 ¼ l1 ¼ l2 ¼ l ¼ 11:01 μm) with
beam thickness varying from 20 to 60 μm for cantilever beam with ρ ¼
1200 kgm�3 and ν ¼ 0:38. The results show that when h ¼ 20 μm, l=h ¼
0:83 for MCST and l=h ¼ 0:55 for MSGT. The percentage difference in
first mode frequencies computed by MCST and MSGT as compared to
classical theory are found to be about 109% and 139%, respectively. As the
thickness increases to h ¼ 60 μm, l=h ¼ 0:29 for MCST and l=h ¼ 0:18 for
MSGT, these differences reduce to 17% and 23%, respectively. As l=h ratio
decreases below 0.1, percentage difference reduced even further and
became eventually zero as l=h ! 0. Under this condition, frequencies
given by classical and non-classical theories (MCST and MSGT) become
same. Therefore, the results show that the size effect or nonlocal effect
becomes important when beam thickness is of the same order as that of
non-classical length scale. Similarly, we observe the same effect in the
variation of frequencies corresponding to second and third modes as
shown in Figure 1(b), (c).

To observe the size effect in fixed-fixed and simply-supported beams, we
also plot the variation of first, second and third mode frequencies for beam
thickness 20–60 μm based on classical theory, MCST and MSGT as shown
in Figures 2 and 3. Like the case of clamped-free condition, as the beam
thickness reduces, the difference in frequencies obtained by all theories
eventually becomes zero when the size effect is not significant.

5. Conclusions

In this paper, we have done the dynamic study of microbeams using MSGT.
Additionally, we have also presented the behaviour of beams employing
MCST. Beams with different end conditions like fixed-fixed, simply supported
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Figure 2. (a) First, (b) second and (d) third mode frequencies of microbeams with fixed-fixed
end conditions based on the continuum theory, MCST (l ¼ 17:6μm) and MSGT (ls ¼ 11:01μm).
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and fixed-free boundary conditions are analysed. We have presented the
dynamic analysis using DQM which is a fast, accurate and robust method
for studying structural problems. It is found that the frequencies for all types of
beams predicted by MSGT are higher than that predicted by MCST, which in
turn, is higher than that from the classical theory. However, as the thickness of
beam increases, difference in frequencies obtained using the three methods
continues to diminish. As a result, for application in micro/nanomechanics
where size effects are appreciable, our analysis is vital to obtain correct
frequencies for beams with different end conditions.
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